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Abstract—The evolution of quantum hardware is highlighting
the need for advances in quantum software engineering that help
developers create quantum software with good quality attributes.
Specifically, reusability has been traditionally considered an
important quality attribute in terms of efficiency of cost and
effort. Increasing the reusability of quantum software will help
developers create more complex solutions, by reusing simpler
components, with better quality attributes, as long as the reused
components have also these attributes. This work focuses on
the reusability of oracles, a well-known pattern of quantum
algorithms that can be used to perform functions used as input
by other algorithms. In particular, in this work, we present
several guidelines for making reusable quantum oracles. These
guidelines include three different levels for oracle reuse: the ideas
inspiring the oracle, the function which creates the oracle, and
the oracle itself. To demonstrate these guidelines, two different
implementations of a range of integers oracle have been built by
reusing simpler oracles. The quality of these implementations is
evaluated in terms of functionality and quantum circuit depth.
Then, we provide an example of documentation following the
proposed guidelines for both implementations to foster reuse
of the provided oracles. This work aims to be a first point
of discussion towards quantum software reusability. Additional
work is needed to establish more specific criteria for quantum
software reusability.

Index Terms—quantum computing, quantum software reuse,
oracle, reuse guidelines, range of integers oracle, quantum
algorithms

I. INTRODUCTION

The development of quantum computers and simulators in
the NISQ era has opened the door to the design and building of
quantum programs that can now be run and tested. Quantum
software is beginning to become a reality and with it, the
first forums have begun to appear that address the discipline
of Quantum Software Engineering (IEEE QSW, ICSE Q-
SE, Q-SET, etc). One of the problems to be addressed by
this discipline is that of achieving good quality attributes in
quantum programs [1], [2].

The standard ISO/IEC 25010:2011 - Systems and software
Quality Requirements and Evaluation (SQuaRE) [3] identifies
Reusability as one of the of the sub-characteristics of the

quality attribute Maintainability. It is defined as the degree
to which an asset can be used in more than one system, or
in building other assets. Thus, in terms of efficiency of cost
and effort, software is of better quality the more reusable
it is. Modularity can contribute to reusability in that the
asset to be reused needs not be a complete program but a
smaller module of whatever it may be (procedure, function,
component, service, etc.).

The oracle has been identified as a pattern for quantum
algorithms [4]. An oracle can be thought as a black box
performing a function that is used as an input by another
algorithm [5]. Although oracles are not real black boxes as
they are known in classical software development, the above
means that how an oracle works is not a matter of concern
for the algorithm that uses it. Following the principles of
Separation of Concerns [6], they can be designed in isolation
and then applied in solving different problems. These features
make oracles a good candidate asset for quantum software
reuse.

However, oracles are not reusable by themselves. Software
reuse involves building software that is reusable by design and
building with reusable software [7]. So, as in classical systems
programming, quantum programmers must apply techniques
that make the code they build reusable. Also, practices that
promote the quantum code reuse are also necessary.

Proper documentation is a necessity for the systematic reuse
of software [8]. Thus, this work focuses on how to properly
document quantum software and more specifically quantum
oracles. Furthermore, some guidelines for documenting of
oracles are proposed. To demonstrate the use of the guidelines
two different implementations of the same oracle are provided.
These oracles responds to the range of integers, i.e., applied
to a state in superposition that encodes integers and given two
integers n1 and n2 (n1 < n2), both oracles mark in phase all
those integers greater or equal than n1 and less or equal than
n2.

This work is part of a research direction that aims to provide
quantum programmers with operations that can be composed
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at a higher level of abstraction than quantum gates. Thus,
for example, one of the implementations of the range of
integers oracle offered in the paper corresponds to a reuse
and composition of two oracles less than and greater than.
We find that for programmers to be able to make proper use
of these more abstract operations, their implementations need
to be well documented.

The remainder of this paper is structured as follows. Section
II introduces some background and related works about oracles
and their usage. Then, section III introduces two different im-
plementations for the range of integers oracle. One of them is
based on the composition of two oracles less than and greater
than. The second one corresponds to a direct implementation
optimizing the depth of the produced quantum circuit. Section
IV analyses the documentation needs for oracles to be reused.
We analyse three different levels of re-usability said reuse of
the ideas inspiring the oracle, reuse of the oracle and reuse
of the classical function that builds the implementation of the
oracle. Finally, section V gives some conclusions and explores
future works.

II. BACKGROUND AND RELATED WORK

While oracles can be viewed as black boxes, it is important
to know how they will affect the quantum state they are applied
to. In terms of their effects on quantum states there are two
main types of oracles [9]: probability and phase oracles. The
former are common in quantum optimization procedures. The
latter are used in quantum algorithms and encode a function
in the phase of the quantum states.

A well-known example of a quantum algorithm that uses
an oracle is Grover’s algorithm [10]. This quantum algorithm
can search a value in an unordered data sequence faster than
any classical algorithm. In order to do that, it needs an oracle
that encodes the desired value. There are many other quantum
algorithms that use oracles such as Deutsch-Jozsa [11], Simon
[12] or Bernstein-Vazirani [13].

However, the most famous quantum algorithm is probably
Shor’s [14]. By using this algorithm, it is possible to find
the prime factors of a number exponentially faster than with
any known classical method [15]. The different operations of
this algorithm can be understood as oracles as well [16]. In
fact, Shor employs the Quantum Fourier Transform, previously
described in [17]. This can be seen as one of the first cases
of quantum software reuse.

It is desired that reusable software have the best possible
quality attributes. This is specially relevant in quantum soft-
ware as actual quantum computers are prone to decoherence.
One of the crucial factors regarding reliability of results is
the depth of circuits. As depth is a measure of the execution
time of a given circuit, the deeper the circuit, the greater the
exposition to noise and lower its reliability [18]. Consequently,
disregarding the depth of the circuit may arise results indis-
tinguishable from noise [19]. Therefore, reducing the depth of
oracles improves their quality attributes and their reusability.

In this paper we present an example of quantum software
reutilisation by combining existing quantum software to build

a range of integers phase-marking oracle. We present two
different implementations of the same oracle to showcase the
need for a good description in order to have easily reusable
oracles. Based on this example, we provide some guidelines
for making reusable oracles.

III. ORACLE FOR RANGE OF INTEGERS

In this section we present two different implementations
of what is, in principle, the same oracle. We provide the
documentation of both implementations. These two different
implementations exemplify how already existing oracles can
be reused to achieve a different purpose.

The aim is to design a phase-marking oracle which, assum-
ing quantum states encode natural numbers (including 0), gives
a π-phase to those numbers within a given range, [n1, n2]. This
oracle ideally would encode the following function:

f(x) =

{
−1 if x ∈ [n1, n2]
1 otherwise (1)

These two implementations of a phase-marking oracle for
a range of integers have been developed by reusing existing
quantum software. We have used, in all cases, the linear-depth
multi-controlled Z-gate as provided in [20]. The less-than ora-
cle presented in [21] is also used in both implementations. The
quantum addition presented in [22] is used in implementation
B. As all these quantum software pieces have a depth with
polynomial growth with the number of qubits, the resulting
compositions of these oracles have polynomial depth. All the
coding has been done in Qiskit [23].

In the next subsections we will explain how these reused
pieces of quantum software are combined to get the range
of integers oracle and we will present a comparison on both
implementations to showcase the differences between them.
The code for both implementations as well as the data of
experiments conducted in this work can be found in Code
and Data.

A. Implementation A: two less-than oracles

The first way of implementing a range of integers oracle
is by combining two less-than oracles. If the aimed range
is [n1, n2], notice the close interval, the oracle which marks
these states can be obtained by applying oracles less-than
n2 + 1 and less-than n1 (equivalent to a greater-than oracle
and a global phase). It is noticeable that this oracle marks the
desired states regardless of the order. This happens because
the states smaller than n1 are marked twice, so the second
phase-marking applied to already marked states return them
to 0-phase.

This implementation does perform the function 1 for any
input state. The unitary matrix of this oracle is 2 where
−1† and −1‡ are in the positions (n1, n1) and (n2, n2),
respectively.






1
. . .

−1†
0

. . .
−1‡

. . .0
1




(2)

An example of this oracle is shown in Figure 1. The upper
part of the figure corresponds to the quantum states after
applying the circuits displayed in the bottom part. In blue
with no border, the states with a 0-phase, in red with thick
border, the states with a π-phase. Subfigure 1a represents
the states after the initialisation to full superposition and the
corresponding circuit. Subfigure 1b shows in red with thick
border the quantum states marked after applying a less-than 4
oracle to the circuit. Subfigure 1c shows the states within the
desired range successfully marked after a less-than 8 oracle is
applied to the circuit.

B. Implementation B: less-than oracle and displacement

The second way of implementing this oracle is by applying
a less-than oracle followed by a displacement of the marked
states by using quantum addition. If the aimed range is
[n1, n2], the oracle can be obtained by applying the oracle
less-than n2 − n1 + 1 followed by quantum addition of n1.
Contrary to the first implementation, the order of the oracles
in this implementation must always be as explained.

However, this implementation possesses some drawbacks.
A hard condition on the input state is needed as the oracle
only performs function (1) given a full superposed input state
without relative phases, formally:

1√
N

N−1∑

i=0

|i〉 (3)

where N = 2n being n the number of qubits. The unitary
matrix of this implementation is matrix 4 where −1† and −1‡
are in the positions (n1, 1) and (n2, n2−n1+1), respectively.




0 · · · 0 1
...

. . . . . . . . .

0 0
. . . 1

−1† . . .
...

. . .
0

0
. . . 0

. . .

−1‡ . . . 0
...

. . . 0
. . .0

1 0 · · · 0




(4)

An example of this oracle is shown in Figure 2. The upper
part of the figure corresponds to the quantum states after
applying the circuits displayed in the bottom part. In blue

with no border, the states with a 0-phase, in red with thick
border, the states with a π-phase. Subfigure 2a represents
the states after the initialisation to full superposition and the
corresponding circuit. Subfigure 2b shows in red with thick
border the quantum states marked after applying a less-than 4
oracle to the circuit. Subfigure 2c shows the states within the
desired range successfully marked after a less-than 4 oracle
and addition of 4 are applied to the circuit. This addition may
be seen as a displacement of the already marked states.

C. Depth comparison of both implementations

To properly compare the depth of these two methods, we
have transpiled both circuits to the gate set used in one of
the IBM quantum computers (ibm washington), using the fake
provider 1.

In order to do the comparison we generate a range of
integers circuit for each possible interval [n1, n2] where
0 < n1 < n2 < N − 1, where N is the total number of
states. We have conducted this analysis from 3 to 12 qubits,
both included. Figure 3 shows the comparison of the two
implementations of the range of integers oracle. While both
implementations have polynomial depth on the number of
qubits, it can be noted that Implementation B has a lower
depth than Implementation A. It is more suitable to be used
in NISQ devices given a full superposed initial state without
relative phases. However, Implementation A, as stated, does
not have this constraint and would work on any input state.

IV. GUIDELINES FOR MAKING REUSABLE ORACLES

From the above examples, it is clear that is not enough
to document the function that an oracle is performing in
order for them to be reused later. Both oracles perform the
same function in the adequate input, however choosing one of
them over the other can have a significant impact in the final
quantum software. From the current version of the oracles,
it seems clear that implementation B of the oracle is the
preferred one due to the lesser depth of the circuit. However,
this could change if a more efficient implementation of the
less than oracle that is used twice to create implementation A
is discovered. For developers to be able to effectively reuse
quantum oracles, they should be aware of all the aspects of
the oracle that could have an impact in their software.

In order to facilitate the creation of such reusable oracles,
and based on the experience of the creation of the two
implementations of the range of integers oracle, in this section
we present some initial guidelines for making reusable oracles.
We present these guidelines organized in three subsections
that represent three different levels of oracle reuse in quantum
software.

First, we propose some guidelines for making the funda-
mentals ideas inspiring the oracle easier to reuse. Given the
current state of quantum software development, oracles are
usually based on algorithms with low abstraction levels. As
has been demonstrated in classical software reuse, this kind of

1Fake providers are built to mimic IBM quantum systems, they have the
same properties (gate set, coupling map, etc.) as the real devices.



|0000〉 = |0〉
|0001〉 = |1〉
|0010〉 = |2〉
|0011〉 = |3〉
|0100〉 = |4〉
|0101〉 = |5〉
|0110〉 = |6〉
|0111〉 = |7〉
|1000〉 = |8〉
|1001〉 = |9〉
|1010〉 = |10〉
|1011〉 = |11〉
|1100〉 = |12〉
|1101〉 = |13〉
|1110〉 = |14〉
|1111〉 = |15〉

A
A

A
A

|0000〉 = |0〉
|0001〉 = |1〉
|0010〉 = |2〉
|0011〉 = |3〉
|0100〉 = |4〉
|0101〉 = |5〉
|0110〉 = |6〉
|0111〉 = |7〉
|1000〉 = |8〉
|1001〉 = |9〉
|1010〉 = |10〉
|1011〉 = |11〉
|1100〉 = |12〉
|1101〉 = |13〉
|1110〉 = |14〉
|1111〉 = |15〉

A
A

A
A

< 4

|0000〉 = |0〉
|0001〉 = |1〉
|0010〉 = |2〉
|0011〉 = |3〉
|0100〉 = |4〉
|0101〉 = |5〉
|0110〉 = |6〉
|0111〉 = |7〉
|1000〉 = |8〉
|1001〉 = |9〉
|1010〉 = |10〉
|1011〉 = |11〉
|1100〉 = |12〉
|1101〉 = |13〉
|1110〉 = |14〉
|1111〉 = |15〉

A
A

A
A

< 4

< 8

q0 H

q1 H

q2 H

q3 H

(a) Full superposed state and circuit
for full superposition.

q0 H

< 4

q1 H

q2 H

q3 H

(b) States smaller than 4 marked and circuit after
applying less-than 4 oracle.

q0 H

< 4 < 8

q1 H

q2 H

q3 H

(c) States within range [4, 7] and circuit after
applying less-than 4 and less-than 8 oracle.

Fig. 1: Implementation A of range of integers oracle for [4, 7].

low abstraction level patterns or algorithmic paradigms, if well
understood, can help developers in the development process.

Then, we consider two different levels of specification
for the reuse of the oracles. On one side, we consider the
classical algorithm that is used to create the oracle circuit.
This algorithm is needed for generating the actual quantum
circuit that would be used as part of the quantum program,
adapted to the required size of the input. And on the other side,
we considered the oracle itself. This will be the final piece of
software that could be reused to create more complex functions
by composing them with others and, therefore, developers
should be made aware of how to reuse it, how it can be
composed, its effects on the quantum state, the impact in the
resulting circuit and many other elements needed for effective
reuse.

A. Reuse of the Ideas Inspiring the Oracle

As is well known from classical software, all approaches
to software reuse refers to some form of abstraction [24].
One of the higher level abstractions in classical software

are algorithmic paradigms, a generic model or framework
that underlies the design of a class of algorithms. Oracle,
as patterns for quantum algorithms can be considered as an
algorithmic paradigm and, therefore, a prime candidate for
reuse.

Nevertheless, a high abstraction level is not enough. Any
approach to reusability should help software developers lo-
cate, compare, and select reusable software artifacts [24]. By
treating oracles as black box functions, although as mentioned
above they are not, we might provide enough information for
quantum software developers to understand how an oracle can
be used. However, as demonstrated by the presented examples,
is not enough if they need to compare them and select the best
suited one.

If we constrain ourselves to the function of oracles A and
B, there is not enough information to determine which oracle
is better for a given situation. For this specific example, it
can be argued that, since the depth of one of the oracles is
always smaller, there is no need to select one of the oracles,
as the answer will always be the most optimized one. We



|0000〉 = |0〉
|0001〉 = |1〉
|0010〉 = |2〉
|0011〉 = |3〉
|0100〉 = |4〉
|0101〉 = |5〉
|0110〉 = |6〉
|0111〉 = |7〉
|1000〉 = |8〉
|1001〉 = |9〉
|1010〉 = |10〉
|1011〉 = |11〉
|1100〉 = |12〉
|1101〉 = |13〉
|1110〉 = |14〉
|1111〉 = |15〉

A
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A
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|1010〉 = |10〉
|1011〉 = |11〉
|1100〉 = |12〉
|1101〉 = |13〉
|1110〉 = |14〉
|1111〉 = |15〉

A
A

A
A

< 4

|0000〉 = |0〉
|0001〉 = |1〉
|0010〉 = |2〉
|0011〉 = |3〉
|0100〉 = |4〉
|0101〉 = |5〉
|0110〉 = |6〉
|0111〉 = |7〉
|1000〉 = |8〉
|1001〉 = |9〉
|1010〉 = |10〉
|1011〉 = |11〉
|1100〉 = |12〉
|1101〉 = |13〉
|1110〉 = |14〉
|1111〉 = |15〉

A
A

A
A

<4 & +4

q0 H

q1 H

q2 H

q3 H

(a) Full superposed state and circuit
for full superposition.

q0 H

< 4

q1 H

q2 H

q3 H

(b) States smaller than 4 marked and circuit after
applying less-than 4 oracle.

q0 H

< 4 +4

q1 H

q2 H

q3 H

(c) States within range [4, 7] and circuit after
applying less-than 4 oracle and addition of 4.

Fig. 2: Implementation B of range of integers oracle for [4, 7].

believe this to be a shortsighted approach given the current
status of quantum devices and software. The current diversity
in quantum hardware could make a more efficient oracle to
perform worse in a given quantum computer or advances in
quantum algorithms or transpilers could make a less efficient
oracle suddenly improve its performance over others.

For this reason, the first proposed guideline for oracle
reuse is that it is not enough to document the function that
oracles perform. The underlying components used to create
an oracle need to be detailed if we want the oracle to be
reused effectively. In Documentation of implementation A and
Documentation of implementation B the Oracle as a Black Box
and Oracle as its components show the difference between the
two types of oracle documentation.

Additionally, by providing a more detailed description of the
oracle we not only make them more reusable by themselves,
we allow developers to reuse the ideas inspiring the oracle for
the creation of other oracles. An example of this can be found
in implementation A. As mentioned above, one of the key
ideas of this implementation is that if a given state is marked

two times (in this case by both less-than oracles) it returns to 0-
phase. This is not an obvious behavior of the less-than oracle,
and by making developers aware of it they could be inspired
for the creation of new software that can take advantage of
this property.

Taking this into account we can propose another guideline
for creating reusable oracles. To foster reuse, a developer must
be able to navigate through, and reason about, the source code
and its dependencies in order to identify program elements
that are relevant [25]. In the specific case of quantum oracles
this means that the ideas inspiring them should be thoroughly
documented alongside the oracle for the developer to be able
to reason about them and get inspired for the creation of new
oracles based on such ideas.

Another example of this kind of reuse can be found in
implementation B of the proposed oracle. In that oracle, we
make use of the quantum addition to shift the states the marked
states to the desired one.
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Fig. 3: Depth comparison of implementations A and B.

B. Reuse of the Algorithm that Creates the Oracle

Once the ideas inspiring an oracle are clearly documented,
another relevant level of reuse to consider is the reuse of
the function that creates the oracle circuit. For most oracles,
a classical algorithm is used in order to generate a specific
quantum circuit that implements the oracle for a given size of
the input. As such, to foster reuse its documentation should
focus on some of the metrics that traditionally help software
reuse like the ratio of input/output parameters or the ratio of
comments [26].

Additionally, some aspects have to be considered that are
specific of quantum software in general and oracles in par-
ticular. Specifically, a relevant guideline when documenting
for reuse an algorithm that creates oracles is to differentiate
between input parameters that are only used by the algorithm
that those that are used by the oracle itself.

One example of such parameters in the case of the range
of integers oracle are the two specific integers that define the
limits of the range. These values are used by the function
to create the quantum circuit. However, once the circuit is
generated those are not input parameters of the oracle. The
circuit that implements the oracle for the range [4, 7] will only
work for those values and a completely different circuit should
be created for the range [3, 8] or any other range.

How this kind of parameters of the function but not of the
oracle work may not be obvious for developers wanted to reuse
an oracle, specially for those coming from classical software
engineering, and therefore should be clearly documented as
such. To make these functions more reusable, the user must
clearly understand their interface (i.e., those properties of the
function that interact with other artifacts) [24].

To improve reuse these parameters should be clearly distin-
guished from other types of input parameters like those that are

only used by the oracle and not by the function that creates it
or those parameters used by both. An example of the first type
is the specific qubits to which the oracle is going to be applied.
This information is relevant for the oracle itself, and therefore
it would be discussed in the next section, but is irrelevant for
the function that creates the oracle. The quantum circuit for
the range [4, 7] would be the same regardless of whether it is
applied to qubits from q0 to q4 or from q5 to q8.

C. Reuse of the Oracle

Finally, the last level of reuse to consider when creating
oracles is the reuse of the oracle itself. Similar to classical
software, using a formalized process to foster reuse, as the
one proposed by these guidelines, increases the chance that the
software can be reused successfully [27]. In the specific case of
quantum oracles, some additional aspects should be considered
that are not included in the reuse of classical software.

As part of classical software documentation, pre and post-
conditions are fundamentals aspects of software reuse. For
oracles, one of the most relevant preconditions is the quantum
state that the oracle is expecting as input. This is a key
difference between implementations A and B. Whereas im-
plementation A marks the states regardless of their amplitude,
implementation B requires a superposition of all possible
states with no relative phase. If the input does not meet this
precondition, the oracle B will not behave as expected. In other
oracles, the expected state could be different.

As important as the input quantum state are the postcondi-
tions that can be guaranteed after the oracle has been applied
to the quantum state. Specifically, the quantum state in which
the qubits are left once the oracle has been applied. This can
be extrapolated from the oracle’s unitary matrix (as shown
in Section III for the range of integers example), however a



textual description of the state would improve readability and
foster reuse. For both implementations of the range of integer
oracles, the postcontition of the quantum state is that states that
represent integers in the selected range would have π-phase
without any other change to the input quantum state (as long as
input state fulfills the preconditions). Another example would
be the addition oracle. The postcondition of this oracle is just
a displacement on any given input state, i.e, for an input state
|4〉 = |100〉 an addition of 3 results in the state |7〉 = |111〉.
It also maintains the phases of the displaced states.

Therefore, an important guideline for creating reusable
quantum oracles is to clearly document the pre and post-
conditions of the quantum state manipulated by the oracle.
Providing this information will make oracles easier to reuse,
since developers understand the expected state and how to
keep working with the output state once the oracle has been
applied.

Finally, the last proposed guideline for creating reusable
quantum oracles is to document the properties of the oracles’
quantum circuits that are relevant for future users.

One of the most relevant properties of the circuit to be
documented, given the current state of quantum hardware,
is the depth of the oracle’s circuit. As has been discussed
above, this property is crucial to determine if a given oracle
can be successfully used in a NISQ era quantum computer
and, therefore, it should be known by developers willing to
reuse the oracle. The depth of the circuits should be measured
by transpiling them to a specific device, as the architecture of
quantum chips is not yet standardized and can greatly affect
the resulting depth.

Nevertheless, other aspects of the circuit should also be
considered. For example, the quantum gates used in the circuit
are also a relevant aspect to consider if it is going to be run
a real device. Although not available quantum gates can be
replaced by alternative circuits, this could heavily impact the
circuit’s depth or other properties, so it should be documented
for reuse. Something similar happens with the assumption of
connections between given qubits for entanglement. Although
this is usually handled by the transpiler it can affect the circuit
properties. In general, any aspect of the circuit that could affect
to its performance should be thoroughly documented.

For the range of integer oracles, both implementations need
the universal set of quantum gates. Moreover, all qubits require
connections between them, because the less-than oracle and
the Quantum Fourier Transform.

D. Documentation of the range of integer oracles following
the proposed guidelines

The documentation cards of the two implementations can
be found in documentation of implementation A and docu-
mentation of implementation B.

V. CONCLUSIONS AND FUTURE WORK

We have presented two different implementations of a
range of integers oracle built by reusing two different simpler
oracles, less-than oracle and addition oracle. This is done

to exemplify the reusability of oracles. The functionality of
both implementations has been shown with the same example.
A study on the depth of both implementations has been
made. An improvement in depth is clearly shown with one
of the implementations. Moreover, we have presented several
guidelines for making reusable oracles taking the range of
integers oracle as an example, including the ideas inspiring
the oracle, the function which creates the oracle and the oracle
itself. We have provided an example of a documentation that
follows those guidelines for both implementations presented.

This work aims to be a first point of discussion towards
quantum software reusability. There is still work to do in
establishing proper criteria for quantum software reusability,
starting from the fact that this software is in an early devel-
opment stage. Further guidelines may be presented not only
on oracles, but also on any type of quantum software, such as
full algorithm implementations.
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Documentation of Implementation A

Documentation for implementing the oracle ‘Interval [a, b]’ using the implementation A (previously described).

Oracle as Black Box

[a, b]|q⟩

Oracle as its components

< a < b+ 1|q⟩

Unitary Matrix of Oracle
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. . .0
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Ideas inspiring the oracle

This oracle reuses the less-than oracle. It applies them twice to give a π-phase to the desired states and give a
2π-phase (return to initial state) to other ones. Firstly it applies the oracle ‘less-than a’, and then the oracle
‘less-than b+ 1’, marking all the states in the interval [a, b].

Classical algorithm which builds the oracle

Parameters needed for the classical algorithm which builds the oracle.

Parameters of the function:

• a: Lower boundary of the
range of integers.

• b: Upper boundary of the
range of integers.

• n: Number of qubits.

Parameters of the oracle:

• Which qubits of the general
circuit is the oracle applied
to.

Conditions:

• Precondition: There are no
hard preconditions on the
states.

• Postcondition: Input state
with a π-phase applied to
states within range [a, b].

Oracle Circuit

The details in this section are given with respect to a specific backend. In this case, FakeWashingtonV2 from
Qiskit.

Depth:
Gate Set:

• The oracle requires a universal gate set (Clif-
ford and T gates).

• The backend FackeWashingtonV2 has the
following gate set: CX, RZ, S, X.

Assumptions over connections:

• The oracle assumes that each qubit is con-
nected to the rest of the qubits.



Documentation of Implementation B

Documentation for implementing the oracle ‘Interval [a, b]’ using the implementation B (previously described).

Oracle as Black Box

[a, b]|q⟩

Oracle as its components

< (b− a+ 1) + a|q⟩

Unitary Matrix of Oracle
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Ideas inspiring the oracle

This oracle reuses the less-than oracle and the addition oracle. Firstly, it applies a less-than oracle (give a
π-phase to a number of states) and then applies an addition oracle, shifting the marked states to the desired
positions.Firstly it applies the oracle ‘less-than b − a + 1’, and then the oracle ‘+a’, marking all the states in
the interval [a, b].

Classical algorithm which builds the oracle

Parameters needed for the classical algorithm which builds the oracle.

Parameters of the function:

• a: Lower boundary of the
range of integers.

• b: Upper boundary of the
range of integers.

• n: Number of qubits.

Parameters of the oracle:

• Which qubits of the general
circuit is the oracle applied
to.

Conditions:

• Precondition: Input state
must be the full superposed
state with relative 0-phase.

• Postcondition: Full super-
posed state with a π-phase
on states within range [a, b].

Oracle Circuit

The details in this section are given with respect to a specific backend. In this case, FakeWashingtonV2 from
Qiskit.

Depth:
Gate Set:

• The oracle requires a universal gate set (Clif-
ford and T gates).

• The backend FackeWashingtonV2 has the
following gate set: CX, RZ, S, X.

Assumptions over connections:

• The oracle assumes that each qubit is con-
nected to the rest of the qubits.
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