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Abstract

Given imbalanced data, it is hard to train a good classifier using deep
learning because of the poor generalization of minority classes. Tra-
ditionally, the well-known synthetic minority oversampling technique
(SMOTE) for data augmentation, a data mining approach for imbal-
anced learning, has been used to improve this generalization. However,
it is unclear whether SMOTE also benefits deep learning. In this work,
we study why the original SMOTE is insufficient for deep learning,
and enhance SMOTE using soft labels. Connecting the resulting soft
SMOTE with Mixup, a modern data augmentation technique, leads
to a unified framework that puts traditional and modern data aug-
mentation techniques under the same umbrella. A careful study within
this framework shows that Mixup improves generalization by implicitly
achieving uneven margins between majority and minority classes. We
then propose a novel margin-aware Mixup technique that more explicitly
achieves uneven margins. Extensive experimental results demonstrate
that our proposed technique yields state-of-the-art performance on
deep imbalanced classification while achieving superior performance on
extremely imbalanced data. The code is open-sourced in our developed
package imbalanced-DL to foster future research in this direction.

Keywords: Deep Learning, Imbalanced Classification, Margin, Mixup, Data
Augmentation
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https://github.com/ntucllab/imbalanced-DL
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1 Introduction

Imbalanced classification is an old yet practical research problem for the data
mining community. For example, fraud detection applications [1, 2] are often
characterized by data imbalance, because there are far fewer fraudulent cases
than normal ones. Another example is real-world image data for computer
vision, which often exhibits long-tail properties, where minority classes occur
less frequently [3–5].

One immediate challenge in imbalanced classification is that minority
classes are under-represented in the objective function, which can result in
underfitting to these minority classes. This is typically addressed via re-
weighting [6, 7] or resampling [8, 9] techniques. Re-weighting techniques
belong to the family of algorithm-oriented approaches, which directly mod-
ify the objective function and optimization steps. Re-sampling techniques,
on the other hand, belong to the family of data-oriented approaches, which
manipulate the data being fed to the learning model.

Among algorithm-oriented techniques, re-weighting by inverse class fre-
quencies stands out as one of the simplest methods, as discussed in previous
works [10]. Other approaches assign weights in various ways as [7, 11]. For
instance, in the study by Cui et al. [7], a theoretical framework is developed
to calculate the effective number of examples for each class, subsequently
assigning suitable weights based on this calculated value. More sophisticated
approaches in the algorithm-oriented family modify the objective function
to favor minority classes. For instance, the label-distribution-aware margin
(LDAM) loss proposed in [12] is based on a theoretical framework that gives
minority classes a larger margin. LDAM achieves state-of-the-art performance
on benchmark datasets. Nevertheless, it is harder to optimize LDAM loss
across general deep learning models due to its sophisticated design.

The most basic approaches in the data-oriented family involve oversampling
minority classes or downsampling majority classes [8] in an attempt to make
the data distribution less skewed. Compared with re-weighting approaches,
such sampling approaches tend to be less stable. Moreover, oversampling or
downsampling from the original data brings no new information to the learn-
ing model. Advanced approaches in the data-oriented family are thus based
on synthetic (or virtual) examples, such as the well-known synthetic minor-
ity oversampling technique (SMOTE) [8]. As its name suggests, SMOTE
synthesizes virtual examples from minority classes to improve imbalanced
classification. The concept of SMOTE has inspired various follow-up studies
that also synthesize virtual examples for imbalanced classification [9, 13–15].
SMOTE and its follow-ups are closely related to data augmentation tech-
niques commonly used in modern deep learning [16–18]. Nevertheless, despite
the practical success of SMOTE for non-deep models [15, 19], SMOTE has
not been thoroughly studied for its validity when coupled with modern deep
learning models.

A recent follow-up to SMOTE, designed for addressing imbalanced learn-
ing in the context of modern deep learning, is DeepSMOTE [20]. This method
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leverages the concept of Generative Adversarial Networks (GANs) [21] for over-
sampling. Effective SMOTE-based generation of synthetic examples is achieved
by utilizing a deep encoder/decoder model to convert the original data into
a lower-dimensional representation space. It allows DeepSMOTE to perform
better on complex data than the original SMOTE. DeepSMOTE is claimed
to produce high-quality synthetic examples to assist imbalanced classification.
Somehow to the best of our knowledge, DeepSMOTE needs more benchmarks
to demonstrate its practical potential.

Another oversampling technique is Major-to-minor Translation (M2m) [22].
M2m addresses class imbalance by augmenting less-frequent classes through
sample translation from more-frequent ones. It employs a pre-trained model
to identify potential samples by introducing random noise to majority-class
images. In case, the pre-trained model does not identify synthetic data, it uses
existing minority samples to achieve balance. By leveraging and integrating the
diversity of majority information, this approach enables the classifier to acquire
more generalized features from the minority classes. Despite its benefits, M2m
is computationally intensive and complex to implement due to the translation
process.

In this work, we examine the SMOTE approach to understand its disad-
vantages when coupled with modern deep learning models. We correct these
disadvantages via a soft variant of SMOTE that achieves competitive perfor-
mance on benchmark datasets. We then show that the soft variant of SMOTE
is coincidentally connected with Mixup [18], a modern and popular augmen-
tation technique for deep learning, which however was not originally proposed
for imbalanced classification. Although a recent workshop paper [23] proposes
a variant that modifies Mixup [18] to improve deep imbalanced classification,
the effectiveness and rationale of Mixup and its variants for deep imbalanced
classification have not been adequately studied, to the best of our knowledge.

Inspired by LDAM [12], which successfully improves deep imbalanced clas-
sification with uneven margins, we study the effectiveness of Mixup via margin
statistics analysis. We introduce a new tool called the margin gap between
the majority and minority classes. The gap is empirically demonstrated to
be loosely correlated to the accuracy in deep imbalanced classification. We
find that Mixup [18] implicitly improves the margin gap, which constitutes
a new piece of empirical evidence that explains its effectiveness. We fur-
ther demonstrate that the gap can be more explicitly fine-tuned by making
Mixup margin-aware when synthesizing the inputs and output of the virtual
example. The proposed margin-aware Mixup (MAMix) approach empirically
achieves state-of-the-art performance on common imbalanced classification
benchmarks, and achieves significantly better performance than Mixup and
LDAM for extremely imbalanced datasets. The results validate the usefulness
of our study and our proposed approach.

To make deep imbalanced learning easier for researchers and real-world
users, we further develop an open-sourced python package called imbalanced-
DL for this community. From our experience, we observed that to tackle deep
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imbalanced classification effectively, a single model may not be sufficient, thus
we provide several strategies for people to use. The package not only imple-
ments several popular deep imbalanced learning strategies, but also provides
benchmark results on several image classification tasks. We hope that our
research findings along with our developed software can not only help with
reproducibility but also shed lights on more comprehensive research in this
community in the future.

We summarize our contributions as the following:

1. We systematically design and study the variants of the SMOTE algorithm
for deep learning.

2. We are first to utilize margin statistics to analyze whether a model has
learned proper representations through uneven margins for deep imbalanced
classification.

3. We determine that a direct application of the original Mixup [18] already
achieves competitive results for imbalanced learning by implicitly enforcing
uneven margins.

4. We further develop a simple yet effective algorithm that guides Mixup to
take margins into account more explicitly, and show that the algorithm
works particularly well when the data is extremely imbalanced.

2 Related Work

In this section, we first define the imbalanced learning problem and review
existing solutions. Then we discuss studies that are closely related to our
approach. For a more comprehensive survey, see [24].

2.1 Problem Setup and Notations

We consider the imbalanced K-class classification problem. Let x ∈ Rd denote
the input and y ∈ {1, . . . ,K} denote the corresponding label. Given the
training dataD = {(xi, yi)}ni=1 generated from some unknown P (x, y) indepen-
dently, our goal is to learn a classifier f(x) : Rd → {1, . . . ,K}, which predicts
the correct label from a given input x. Let nj be the size of class j. We assume
the training data to be imbalanced. That is, the size of the largest class maxi ni

is very different from the size of the smallest class mini ni. The larger classes
are generally called the majority, and the smaller ones are called the minority.
After learning f(x), we follow [12] to evaluate its accuracy on a balanced test
set generated from the same P (x | y) for each class. The evaluation essentially
equalizes the importance of each class.

In this work, we adopt two standard benchmark settings to generate con-
trollable synthetic datasets from real-world datasets [12, 25]. Both settings
first decide the target size of each class by some parameters, and randomly
sample within the real-world dataset to obtain the corresponding synthetic
dataset under the target sizes. Both settings are based on the parameter of
class imbalance ratio, which is the ratio between the size of the largest (head)
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(a) ρ = 100 (b) µ = 0.5, ρ = 10

Fig. 1 Number of training samples per class in artificially created imbalanced CIFAR-10
datasets for (a) long-tailed imbalance with ρ = 100 and (b) step imbalance with ρ = 10, µ =
0.5

class and that of the smallest (tail) class, that is, ρ = maxi ni / minini. The
parameter characterizes the difficulty level of the dataset.

The first setting is called step imbalance, defined by ρ and another param-
eter µ. Step imbalance requires that µK of the classes be the minority, and
the other (1 − µ)K be the majority. All the minority classes are of the same
size, and so are all the majority classes. Following the class imbalance ratio,
the size of the majority classes is ρ times larger than that of the minority ones.

The second setting is called long-tailed imbalance [7, 12] defined by ρ, where
the sizes of the classes follow an exponentially decreasing sequence with a
decreasing constant of ρ1/(K−1). The constant ensures that the class imbalance
ratio is exactly ρ. An illustrative example for long-tailed and step imbalance
is in Fig. 1.

2.2 Algorithm-Oriented Approach

Traditionally, many classification approaches are designed from the principle
of empirical risk minimization (ERM), which minimizes the summation of
some loss function on each example. For the imbalanced classification, the
ERM principle easily leads to underfitting the minority classes, as they are
under-represented in the summation.

Approaches that improve ERM for the imbalanced classification problem
can be roughly divided to two categories: algorithm-oriented and data-oriented.
One possible algorithm-oriented approach, known as cost-sensitive learning,
gives a higher cost when mis-classifying the minority class [26]. Cost-sensitive
learning can also be carried out by giving larger weights to the minority
examples. For instance, the class balance (CB) loss [7] re-weights each class
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by calculating its effective number of examples. Re-weighting increases the
importance of the minority examples in the loss function, therefore preventing
underfitting the minority classes.

Studies on imbalanced deep learning reveals some interesting behavior
during the training process of deep learning, which generally updates the rep-
resentation of the inputs and the classifier through iterative optimization. It is
shown [12, 27, 28] that learning with re-weighting from the beginning of train-
ing can result in degraded representations because of early overfitting to the
minority classes, making the performance of the re-weighting even worse than
ERM. To solve the overfitting issue, [12] proposed the deferred re-weighting
(DRW) technique. DRW splits the one-stage training of deep learning into two
phases. In the first phase, ERM without any re-weighting is used to learn a
good representation, with the hope of not overfitting to the minority classes.
Then, the training continues with an annealed (smaller) learning rate on a
re-weighted loss, such as CB loss, in the second phase.

With the DRW technique, some other algorithmic attempts are used to
improve ERM. Label-distribution-aware margin (LDAM) [12] follows the rich
literature of margin classifiers [29, 30] and proposes a loss function that encour-
ages class-dependent margins to tackle the class imbalance issue. The ideal

margin τi for each class is theoretically derived to be proportional to n
1/4
i .

That is,

τi =
C

n
1/4
i

(1)

with some constant C. The ideal margin hints the need to enforce larger
margins for the minority classes.

With the definition of τi, the authors of LDAM propose a margin-aware
loss function that can be used in both the ERM phase and the re-weighting
phase of DRW. Combining LDAM and DRW with the CB loss in the second
phase results in a state-of-the-art approach for imbalanced learning [12], which
will serve as the baseline of our comparison.

2.3 Data-Oriented Approach

A common approach for imbalanced multi-class classification at the data level
is undersampling for majority classes or oversampling for minority classes. One
such approach is SMOTE [8], which essentially oversamples minority classes by
creating artificial examples through k-nearest neighbors within the same class.
In the context of deep learning, this kind of oversampling can be viewed as a
type of data augmentation. Also note ADASYN [9] and LoRAS [15], SMOTE
extensions that address class imbalance using machine learning approaches. In
this work, we revisit SMOTE and incorporate it into a modern deep learning
pipeline.
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2.3.1 SMOTE

Traditional replication-based oversampling techniques are prone to overfitting.
To account for this, [8] propose oversampling by creating synthetic examples
for minority classes; in this case, the synthetic examples are thus not replicated.
Specifically, for those samples categorized as belonging to a minority class, they
create new data points by interpolating them with their k-nearest neighbors
which belong to the same categories. Note that at the time this technique
was proposed, deep learning techniques were not yet widely used. Thus, we
first study this technique and design two SMOTE-like techniques along with
the current end-to-end deep learning training pipeline. This is described in
detail in the next section. We also note DeepSMOTE [31], which was published
during the course of the current study. However, since this approach requires
two-stage training in which the first stage requires training an encoder-decoder
framework, followed by DeepSMOTE generation, we consider it to be aligned
more with GAN-based work, which is not our main focus.

2.4 Mixup-based Techniques

2.4.1 Mixup

One of the most famous regularization—or data augmentation—techniques in
deep neural networks for image classification problem is Mixup [18], which
constructs virtual training examples via simple linear combinations as

x̃ = λxi + (1− λ)xj (2)

ỹ = λyi + (1− λ)yj , (3)

in which (xi, yi) and (xj , yj) are two examples drawn uniformly from the
training data and λ ∈ [0, 1). Mixup-based techniques have been shown to mit-
igate the memorization of corrupt labels, increase robustness to adversarial
training, and improve the generalizability of deep networks, which has led to
state-of-the-art performance on tasks such as image classification.

2.4.2 Remix

Similar to our proposed method, a recently proposed technique called
Remix [23] relabels Mixup-created examples with minority class labels cho-
sen by two hyperparameters in τ and P -majority. Specifically, Remix can be
formulated as

x̃ = λxxi + (1− λx)xj (4)

ỹ = λyyi + (1− λy)yj . (5)

Here, (xi, yi) and (xj , yj) are two examples drawn at random from the training
data and λx ∈ [0, 1), where it is sampled from the beta distribution as intro-
duced by the original Mixup authors [18]. Note that in contrast to the original
Mixup, where the mixing factor λ is the same for both x and y, in Remix, this
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Fig. 2 Mixup Framework Illustration

criterion is relaxed; they relabel the mixing factor for the label λy according
to the following conditions:

λy =


0, ni / nj ≥ P and λx < τ

1, ni / nj ≤ 1 / P and 1− λx < τ

λx, otherwise

, (6)

where [23] defines P as P-majority. Specifically, this is given a mixup-created
sample pair (xi, yi) and (xj , yj), where the respective sample numbers for
classes i and j are denoted as ni and nj . For this example pair, if ni / nj ≥ P ,
then xi is defined to be P-majority over xj . Thus the idea of Remix is to favor
minority classes by examining each selected Mixup-selected pair: if one is P-
majority over the other, and the other hyperparameter criterion is also met,
than Remix relabels the synthesized example with the label of the minority
class. Note that here it is suggested that τ be set to 0.5 and P be set to 3 [23].

3 Main Approach

We observe that Mixup [18] and Remix [23] can generalize to a general
framework, in the sense that they both train with similar fashion. We term
this Mixup framework (Fig. 2), and describe the training algorithm for Mixup
framework in Algorithm 1.

Specifically, within this Mixup Framework, the main difference between
each method lies in three steps during mini-batch training, that is, (a) How to
obtain mixed input (b) How to obtain label mixing factor λy and (c) How to
obtain mixed label. For example, Mixup [18] obtains mixed input through (2),
mixed label through (3), and its λy = λx; while Remix [23] obtains mixed
input by (4), mixed label by (5), and λy by (6).

With this Mixup Framework, we design new methods through two per-
spectives. First, we design two SMOTE-like techniques—SMOTE-Mix and
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Algorithm 1: Mixup Framework Training Algorithm

Required Dataset D = {(xi, yi)}ni=1, model with parameter θ
Initialize;
while training do

Sample {(xi, yi), (xj , yj)}Mm=1 from D;
Sample λx ∼ Beta(α, α);
for m = 1 to M do

(a) Obtain mixed input x̃ ;
(b) Obtain λy ;
(c) Obtain mixed label ỹ ;

end

L(θ) ← 1

M

∑
(x̃,ỹ) L((x̃, ỹ); θ);

θ ← θ − δ▽θ L(θ);
end

Neighbor-Mix—within this framework to examine the effectiveness of SMOTE
in modern deep learning from input mixing perspective, and this is described
in the following Approach 1. Secondly, we propose to incorporate the idea
of uneven margin into this Mixup framework to better tackle deep imbalanced
learning, which will be illustrated in Approach 2. Our proposed Approach 2
and Remix can be viewed from non-uniform label mixing perspective.

3.1 Approach 1: SMOTE-like Techniques

We introduce two SMOTE-like techniques from input mixing perspective in
SMOTE-Mix and Neighbor-Mix. First, we perform SMOTE-like input mix-
ing under Mixup framework and term this SMOTE-Mix. Recall that SMOTE
performs linear interpolation with their same-class samples on input only.
Formally, with SMOTE-Mix, we create synthetic examples from two training
samples (xi, yi), (xj , yj) with the following equations:

x̃ = λxi + (1− λ)xj (7)

xj = same-class nearest neighbor of xi

ỹ = yi. (8)

Following Algorithm 1, SMOTE-Mix obtains mixed input by (7), mixed label
by (8), and λy = λx. Note that in SMOTE-Mix, the mix pair for creating
synthetic examples is sampled from its same-class nearest neighbors. Thus for
each pair, the label is the same (yi = yj); that is, they are hard labels.

We then further relax the above idea by not restricting xj to be the same
class as xi; that is, we still create synthetic samples through the nearest neigh-
bors, but due to the fact that data are in a high dimensional space, its nearest
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neighbors may not belong to the same categories. We term this relaxed version
Neighbor-Mix, and formulate it as

x̃ = λxi + (1− λ)xj (9)

xj = nearest neighbor of xi

ỹ = λyi + (1− λ)yxj . (10)

Following Algorithm 1, Neighbor-Mix obtains mixed input by (9), mixed label
by (10), and λy = λx. Note that for ỹ, Neighbor-Mix is soft-label, as xj may
belong to other categories.

We discuss the empirical results of SMOTE-Mix and Neighbor-Mix on
modern long-tailed image datasets in Table 1 to verify the effectiveness of
SMOTE in deep learning. Now we further propose our main strategy within
the Mixup framework to address deep imbalanced classification.

3.2 Approach 2: Margin-Aware Mixup (MAMix)

Inspired by the attempt to achieve uneven margins through a well-designed
LDAM loss [12], we propose incorporating the concept of uneven margins into
Mixup-based data augmentation techniques. We adopt the common definition
and define the margin of an example (x, y) as

γ(x, y) = f(x)y −max
j ̸=y

f(x)j . (11)

The margin for class j is defined as the average margin of all examples in the
class:

γj =
1

nj

∑
i:yi=j

γ(xj , yj), (12)

Recall that the optimal class-distribution-aware margin trade-off follows
(1) [12]. Suppose that (xi, yi) and (xj , yj) are two samples of different classes.
Define ηi as the distance from xi to the decision boundary between class i
and j, and define ηj similarly. Motivated by (1), we set

ηi = 1 / nω
i ; ηj = 1 / nω

j . (13)

We tune the hyper-parameter ω to strike the best trade-off in the proposed
margin-aware Mixup. The sensitivity of this hyper-parameter is discussed in
Table 12.

The proposed margin-aware Mixup (MAMix) is formulated as

x̃MAM = λxxi + (1− λx)xj (14)

ỹMAM = λyyi + (1− λy)yj . (15)
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Note that here, λx and the Mixup-selected pair (xi, yi) and (xj , yj) are
obtained as in the original Mixup, whereas we compute λy for each Mixup-
selected pair based on the following formula, where λy ∈ [0, 1]:

λy =


1− (1− λx)× 0.5

ηi / (ηi + ηj)
, if λx ≥ ηj / (ηi + ηj)

(0.5)× (λx)

ηj / (ηi + ηj)
, if λx < ηj / (ηi + ηj).

(16)

Therefore, with Algorithm 1, our proposed MAMix obtains mixed input
by (14), mixed label by (15), and λy through (16). Essentially, we obtain the
optimal mixing factor by ηj / (ηi + ηj); note that ηi, ηj are obtained via (13).
If the mixing factor λx is exactly the same as ηj / (ηi + ηj), the probability to
output this synthetic example should be exactly 50% for class i and 50% for
class j. Also, if the mixing factor λx is larger or smaller than ηj / (ηi + ηj),
we compute its corresponding λy using (16), where the core idea is to use
arithmetic progression to ensure that the classifier favors minority classes and
therefore achieves uneven margins.

Recall that in original Mixup, the mixing factor λx is the same for syn-
thetic x and y, that is, λx = λy. The core idea for Mixup to better account
for class-imbalanced learning is by making y not uniform. Our proposed
method achieves this by incorporating margin-aware concepts. We also note
the recently proposed Remix [23], which is similar to our approach: given two
hyperparameters, they relabel the synthetic y to be the minority class. An
illustration is in Fig. 2.

4 Experiments

4.1 Experiment Setup

We follow [12] in creating synthetic datasets for CIFAR-10 [32], CIFAR-100,
and Tiny ImageNet; additionally, we follow [23] for CINIC-10 and [28] for
SVHN for a more complete study. Furthermore, we examine CIFAR-10 and
CINIC-10 with extreme imbalance ratios to simulate extremely imbalanced
scenarios. Moreover, for step imbalance, we follow [12] to fix µ = 0.5. For a
more comprehensive description about the dataset preparation, please refer to
the appendix.

4.2 Compared methods

We compared our method with the baseline training methods: (1) Empiri-
cal risk minimization (ERM) loss, where we use standard cross-entropy loss
with all examples sharing the same weights. (2) Deferred re-weighting (DRW),
proposed by [12], where we train with standard ERM in the first stage and
then apply re-weighting in the second stage with the final learning rate decay.
(3) The margin-based state-of-the-art work of LDAM-DRW [12]. (4) The recent



Springer Nature LATEX template

12 From SMOTE to Mixup for Deep Imbalanced Classification

Table 1 Top-1 validation accuracy (mean ± std) on long-tailed imbalanced CIFAR-10
with ratio ρ = 100 with ResNet32 using SMOTE and its two variants

Method Accuracy

ERM 71.23 ± 0.51
SMOTE 72.68 ± 1.41
DRW 75.08 ± 0.61
M2m 76.15 ± 0.72

DeepSMOTE 76.66 ± 0.57
SMOTE-Mix–DRW 77.46 ± 0.64
Neighbor-Mix–DRW 80.44 ± 0.32

Mixup–DRW 82.11 ± 0.57

Mixup-based Remix [23]. Note that following the notation of [12], when two
methods are combined, we abbreviate their acronyms with a dash. Our main
proposed method is margin-aware Mixup (MAMix). For all experiments, we
report the mean and standard deviation over 5 runs with different seeds. We
computed the margin gap γgap (introduced later) on the validation sets. Our
proposed method was developed using PyTorch [33].

5 Results and Analysis

In this section, we first discuss SMOTE-like techniques—SMOTE-Mix and
Neighbor-Mix—for imbalanced deep learning. Then we discuss Mixup-based
approaches [18], [23] and their effects on margin statistics compared with
margin-based state-of-the-art work in LDAM [12].

5.1 From SMOTE to Mixup

When directly using SMOTE for oversampling, the performance gain from
around 71% to 72% is not competitive enough (Table 1). Previous stud-
ies [12, 27, 34] show that training with re-weighting or re-sampling based
approaches is harmful for representation learning with deep models. Therefore,
direct incorporation of SMOTE into deep learning achieves only limited perfor-
mance improvements. However, SMOTE-Mix and Neighbor-Mix are effective
when coupled with DRW (Table 1). Neighbor-Mix coupled with DRW achieves
a greater performance improvement over SMOTE-Mix, whereas the perfor-
mance of Neighbor-Mix is still inferior to that of Mixup, as demonstrated in
Table 1, in which the performance difference lies in how to select the Mixup
pair during training.

Motivated by the competitive results of SMOTE-Mix and Neighbor-Mix,
we further relaxed Neighbor-Mix back to the original form of Mixup to examine
the effectiveness of this approach on imbalanced data. Mixup is a modern data
augmentation technique that is widely recognized to be effective in the deep
image classification literature. However, the datasets are usually balanced; the
effect of Mixup for imbalanced datasets has not been widely studied. There-
fore, by simply applying Mixup on imbalanced learning settings, we expect to
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Table 2 Top-1 validation accuracy (mean ± std) on extremely long-tailed imbalanced
CIFAR-10 using ResNet32

Imbalance ratio 200 250 300

Mixup–DRW 77.02± 0.53 76.33± 0.78 73.39± 0.47
Remix–DRW 77.23± 0.61 75.39± 0.72 73.79± 0.29
MAMix–DRW 78.08 ± 0.23 76.34 ± 0.71 74.85 ± 0.29

MAMix-Remix–DRW 78.01± 0.23 76.25± 0.63 74.87± 0.56

Table 3 Top-1 validation accuracy (mean ± std) on extremely long-tailed imbalanced
CINIC-10 using ResNet18

Imbalance ratio 200 250 300

Mixup–DRW 66.86± 0.50 65.24± 0.50 63.91± 0.39
Remix–DRW 66.46± 0.51 64.76± 0.47 63.25± 0.17
MAMix–DRW 67.59 ± 0.37 66.54 ± 0.36 65.27 ± 0.37

Table 4 Top-1 validation accuracy (mean ± std) on extremely imbalanced CINIC-10
using ResNet18

Dataset Long-tailed Step

Imbalance ratio 200 200

ERM 56.22 ± 1.46 52.01 ± 0.52
DRW 58.97 ± 0.30 57.87 ± 1.01

LDAM–DRW 63.09 ± 0.54 65.47 ± 0.63
Mixup–DRW 66.86 ± 0.50 65.61 ± 0.59
Remix–DRW 66.46 ± 0.51 66.61 ± 0.27
MAMix–DRW 67.59 ± 0.37 67.34 ± 0.32

see improvement over a non-Mixup counterpart. For example, in long-tailed
imbalanced CIFAR-10 with an imbalance ratio of ρ = 100, we can see that
the top-1 validation accuracy improves from 72% to around 74% (Table 9)
when applying Mixup, which is expected. However, when Mixup is deployed
with DRW, the performance boosts from 72% to around 82% (Table 9) under
the same setting, which exceeds the previous state-of-the-art result on imbal-
anced learning of LDAM-DRW [12]. The comprehensive results for imbalanced
CIFAR-10 and CIFAR-100 are given in Tables 9 and 10; those for imbalanced
CINIC-10 are given in Table 11. The detailed results for imbalanced SVHN
and imbalanced Tiny-ImageNet are shown in Tables 13 and 14, respectively.

Note that Mixup-based methods work best when coupled with DRW. Tra-
ditional re-weighting or re-sampling approaches have been shown to harm
feature extraction when learning with imbalanced data [12, 34]. As a result,
DRW provides a training scheme which first learns a good representation and
further accounts for minority classes by re-weighting at later training stages.
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Table 5 Margin gap on imbalanced CIFAR-10 with ρ = 100 using ResNet32

Dataset Long-tailed Step

Imbalance ratio 100 100

ERM 7.645 8.515
DRW 6.089 7.086

LDAM–DRW 0.171 0.056
Mixup–DRW -0.978 -0.481
Remix–DRW -1.598 -1.870
MAMix–DRW -1.136 -1.798

Table 6 Margin gap for extremely imbalanced CIFAR-10 with ρ = 300 using ResNet32

Method Margin gap

Remix–DRW -0.101
MAMix–DRW -0.487

In general imbalanced settings where the imbalance ratios are not extreme
(e.g., ρ < 200), the original Mixup coupled with DRW already achieves com-
petitive results, with the results among different Mixup-based approaches
comparable to each other. However, our proposed MAMix outperforms the
original Mixup and Remix in extremely imbalanced cases (e.g., ρ ≥ 200), as
demonstrated in Tables 2, 3, and 4. When the imbalance ratio is extreme, our
method consistently achieves results superior to those of Mixup and Remix,
demonstrating the effectiveness of our method as well as the necessity of our
algorithm in extremely imbalanced scenarios. Moreover, MAMix also serves
as a general technique used to improve over Mixup or Remix; when deploy-
ing MAMix on top of Remix (MAMix–Remix–DRW in Table 2), there is also
improvement (Table 2). However, simple deployment of MAMix already yields
superior results.

To further demonstrate the effectiveness of our proposed method, we can
see from Table 15 for detailed per class accuracy evaluation. As we can see
from Table 15, with ERM, the minority classes (i.e, C7,C8,C9), the accuracy
for those classes are low, with C8 and C9 to be 0.46 and 0.48 respectively.
And we can see that previous state-of-the-art in LDAM–DRW improved those
two minority classes to 0.63 and 0.66. However, our proposed MAMix–DRW
further elevated the per class accuracy of C8 and C9 and 0.79 and 0.82
respectively, without sacrificing the performance of the majority classes, which
can be another evidence that shows the effectiveness of our algorithm.

Moreover, as seen in Table 12, in the proposed MAMix, we can simply set
ω to 0.25, which is consistent with that suggested for LDAM [12]; however, the
performance changes little when using different settings for ω, demonstrating
that the proposed method is easy to tune.

Furthermore, we also compared our method with two additional meth-
ods: (1) Major-to-minor translation (M2m) [22]. (2) Fusing deep learning and
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SMOTE for imbalance data (DeepSMOTE) [20] to have a variety of compar-
isons. The results in Tables 9, 10, 11, 13, 14 reveal that our proposed method
not only performs better on all five datasets but also requires less training time
and computational cost. To be more precise, M2m spent much time trans-
lating the majority sample to the minority by adding noise into the images
and then using the pre-trained model to label them. Meanwhile, DeepSMOTE
requires more time and server computing capacity because this method has
two stages. The first stage is to train the DeepSMOTE model, and the second
stage uses this model to generate synthetic data. Generally, both M2m and
DeepSMOTE are much more complicated to implement in comparison to our
proposed method.

5.2 Margin Perspectives

5.2.1 Proposed Metric: Margin Gap

To better analyze and quantify the effect of different learning algorithms on the
majority- and minority-class margins, we define the margin gap metric γgap as

γgap =

∑
i ni · γi∑

i ni
−

∑
j nj · γj∑

j nj
, (17)

where i, j belong to majority and minority classes, respectively. To decide
which class belongs to a majority class, and which belongs a minority class,
we set a threshold: if the class sample numbers exceed 1 / K of the total
training samples, we categorize them as majority classes; the others are viewed
as minority classes.

Hence a large margin gap corresponds to majority classes with larger mar-
gins and minority classes with smaller margins, and hence poor generalizability
for the minority classes. We hope to achieve a smaller margin gap when given
unbalanced classes. Note that this metric can be negative, as the margins for
minority classes are larger than those of majority classes. To better determine
whether this is a good indicator of the correlation between the margin gap
and top-1 validation accuracy, we further evaluate with Spearman’s rank order
correlation ρ in Fig. 3.

5.2.2 Spearman’s Rank Order Correlation

We demonstrate the results of analysis using Spearman’s rank order correlation
in Fig. 3. We note a negative rank order correlation between validation accu-
racy and margin gap γgap , as our definition of margin gap reflects the trend
in which the better the model generalizes to the minority class, the lower the
margin gap is. That is, better models produce smaller margin gaps between
majority and minority classes. As seen in Fig. 3, Spearman’s rank order cor-
relation is -0.820, showing that although it is sometimes noisy, in general γgap
is a good indicator for top-1 validation accuracy. Note that we will discuss the
noisy part later in the next subsection.
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Fig. 3 Relationship between margin gap and validation accuracy for long-tailed imbalanced
CIFAR-10 with imbalance ratio ρ = 100 using ResNet32

5.2.3 Uneven Margin

Given the superior empirical performance of Mixup-based methods, we further
analyzed this from a margin perspective to demonstrate the effectiveness of our
method. First, we establish our baseline margin gap when the model is trained
using ERM. Then, we examine the margin-based LDAM work in which larger
margins are enforced for minority classes [12]. As seen in Table 5, the margin
gap for ERM is the highest; that is, for deep models trained using ERM, major-
ity classes tend to have higher margins than minority classes, resulting in poor
generalizability for minority classes. LDAM-DRW [12] demonstrates its ability
to shrink the margin gap, reducing the generalization error for the minor-
ity class through margin-based softmax training. Moreover, we observe that
in long-tailed imbalance, the original Mixup alone yields competitive results,
as the margin gaps are similar between the original Mixup, Remix, and our
proposed method. This observation is consistent with Remix, for which simi-
lar performance is reported in a long-tailed imbalance setting. However, in a
step imbalance setting, the superiority of our method is evident, as it not only
achieves better performance but also shrinks the margin gap more than the
original Mixup.

Note that in Table 5, we see that for the long-tailed scenario, the margin
gap of Remix-DRW is -1.598 and that of MAMix-DRW is -1.136. However, as
shown in Table 9, their respective validation accuracies are 81.82 and 82.29.
This is an example of the noisy part that is mentioned in the previous context.
Here Remix-DRW yields a smaller margin gap than that of MAMix-DRW but
poorer validation accuracy, because Remix tends to enforce excessive margins
in minority classes, whereas our method strikes a better trade-off.

To further study why excessive margins in minority classes do not help
with validation accuracy, we first decompose the margins into two parts: γ ≥ 0
and γ < 0 part, where validation accuracy is decided by the γ < 0 part
(γ < 0 determines the validation error). The detailed decomposition result is
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Table 7 Margin decomposition on long-tailed imbalanced CIFAR-10 with ρ = 100 using
ResNet32 (Majority: Class 0 to Class 2; Minority: Class 3 to Class 9)

Average Margin γ < 0 γ ≥ 0

Remix–DRW Majority -1.587 2.371
MAMix–DRW Majority -1.523 2.308
Remix–DRW Minority -1.933 4.891
MAMix–DRW Minority -1.875 4.213

in Table 7, where we take all γ < 0 margins and report the average among
majority classes and minority classes for each method, and we compute γ ≥ 0
part the same way. From our observation, γ < 0 part is generally similar
between Remix and our MAMix, thus there is only slight accuracy difference,
however, the γ ≥ 0 part is generally higher for Remix, as we can see from
Table 7. Therefore, the reason why in this case Remix has lower margin gap
lies in the fact that it enforces more margins in γ ≥ 0 part of minority classes,
as we can see the γ ≥ 0 part is 4.891 for Remix minority classes, and 4.213
for that of MAMix counterpart. From this observation, we identify that there
seems to be excessive margins in minority classes for Remix, but—Do these
excessive margins help or not ?—Previous research [35] has indicated that
overly optimizing the margin may be an over-kill, in which the performance
may be worse. We further answer this question by examining the difference
between theoretical and practical margin distribution.

Recall that LDAM [12] derives a theoretically optimal ratio (1) for per class
margin distribution, where such a ratio hints the need to not over-push the
margin of minority classes. To further analyze how close the practical per class
margin distribution of different methods are than that of theoretical margin
distribution, we fit theoretical margin by practical margin, and since there is
a constant multiplier C in theoretical margin, as in the form of (1), we choose
to use linear regression without bias. We set C = 1 and compare the fitting
(L2) error in Table 8. As we can see from Table 8, our proposed MAMix shows
the smallest L2 error, hinting that the per class margin distribution produced
by our method is the closest to the theoretical margin distribution derived
by [12], while the per class margin distribution produced by Remix [23] is
slightly inferior than ours in terms of L2 error between theoretical and practical
margin, which is due to the excessive margins in minority classes as shown
in Remix-DRW Minority γ ≥ 0 part in Table 7. Moreover, from Table 8 and
Table 9, we observe that the closer practical margin is to theoretical margin,
the higher the validation accuracy. Therefore, from the above evidence, we
argue that we not only need to enforce larger margin for minority classes,
but also need to not over-push minority margins, indicating the need for our
method to strike for the better trade-off.

Note that in Table 6—the extremely imbalanced setting—our method
brings the margin gap closer than Remix, verifying that our method consis-
tently outperforms Remix.
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Table 8 L2 error on long-tailed imbalanced CIFAR-10 with ρ = 100 using ResNet32

Method L2 Error

ERM 0.435
LDAM–DRW 0.195
Mixup–DRW 0.0133
Remix–DRW 0.0179
MAMix–DRW 0.0126

Therefore, from a margin perspective, we first establish the baseline: when
trained with ERM for imbalanced learning, the margins for majority classes are
significantly larger than those for minority classes. Second, the recently pro-
posed LDAM loss indeed shrinks the margin gap significantly, suggesting that
their approach is effective. To answer the original question—Can we achieve
uneven margins for class-imbalanced learning through data augmentation?—
the answer is positive, as we observe that applying the original Mixup implicitly
closes the gap from a margin perspective, achieving comparable results. We
further achieve uneven margins explicitly through the proposed MAMix.

6 Conclusion

In this work, we are first to utilize margin statistics to analyze whether the
model has learned a proper representation under a class-imbalanced learn-
ing setting from a margin perspective. We propose achieving uneven margins
via Mixup-based techniques. We first show that coupled with DRW training,
the original Mixup implicitly achieves uneven margins in general imbalanced
multi-class classification. However, in the case of extreme data imbalance (for
example, CINIC-10 with an imbalance ratio ρ ≥ 200), the proposed margin-
aware Mixup outperforms Mixup by explicitly controlling the degree of uneven
margins, and also outperforms the recently proposed Remix [23]. Therefore,
in practice, we suggest using the original Mixup for good results on gen-
eral imbalanced tasks; for extremely imbalanced tasks, we offer the proposed
method to better account for such data imbalance. In sum, our study connects
SMOTE to Mixup in deep imbalanced classification, while shedding light on a
novel framework that combines both traditional [8] and modern [18, 23] data
augmentation techniques under the same umbrella. Future work is needed to
examine the theoretical aspects of these Mixup-based approaches. With this
method and our developed software, we hope that our work can serve as a
starting point for future research in the community.

Appendix A Implementation Details

A.1 Implementation Details for CIFAR

We followed [12] for CIFAR-10 and CIFAR-100. We also followed [12] to per-
form simple data augmentation described in [36] for training, where we first
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Table 9 Top-1 validation accuracy (mean ± std) on imbalanced CIFAR-10 using ResNet32

Dataset Long-tailed Step

Imbalance ratio 100 50 10 100 50 10

ERM 71.23 ± 0.51 77.33 ± 0.74 86.72 ± 0.36 65.64 ± 0.82 71.41 ± 1.21 85.02 ± 0.33

Mixup 74.03 ± 0.96 78.79 ± 0.16 87.79 ± 0.42 66.91 ± 0.74 72.84 ± 0.60 85.50 ± 0.37

Remix 75.18 ± 0.26 80.21 ± 0.26 88.36 ± 0.36 69.26 ± 0.48 74.50 ± 1.16 86.68 ± 0.38

MAMix 74.74 ± 0.76 80.00 ± 0.24 88.17 ± 0.15 68.24 ± 0.43 73.88 ± 0.35 85.91 ± 0.33

LDAM 74.01 ± 0.68 78.71 ± 0.38 86.43 ± 0.32 65.64 ± 0.52 72.37 ± 0.61 84.74 ± 0.26

DRW 75.08 ± 0.61 80.11 ± 0.67 87.52 ± 0.25 72.02 ± 0.59 78.17 ± 0.27 87.73 ± 0.15

M2m 76.15 ± 0.72 80.71 ± 0.17 88.01 ± 0.24 72.91 ± 0.90 79.12 ± 0.21 87.85 ± 0.11

DeepSMOTE 76.66 ± 0.57 80.60 ± 0.38 87.60 ± 0.25 72.47 ± 0.64 77.52 ± 0.42 87.33 ± 0.07

LDAM–DRW 77.75 ± 0.39 81.70 ± 0.22 87.67 ± 0.39 77.99 ± 0.65 81.80 ± 0.39 87.68 ± 0.38

Mixup–DRW 82.11 ± 0.57 85.15 ± 0.27 89.28 ± 0.23 79.22 ± 0.98 83.28 ± 0.50 89.24 ± 0.15

Remix–DRW 81.82 ± 0.14 84.73 ± 0.23 89.33 ± 0.36 80.31 ± 0.70 83.61 ± 0.24 89.10 ± 0.15

MAMix–DRW 82.29 ± 0.60 85.11 ± 0.32 89.30 ± 0.14 80.02 ± 0.27 83.47 ± 0.19 89.29 ± 0.29

Table 10 Top-1 validation accuracy (mean ± std) on imbalanced CIFAR-100 using
ResNet32

Dataset Long-tailed Step

Imbalance ratio 100 50 10 100 50 10

ERM 38.46 ± 0.36 43.51 ± 0.55 56.90 ± 0.13 39.56 ± 0.31 42.81 ± 0.21 55.09 ± 0.21

Mixup 40.69 ± 0.39 46.07 ± 0.60 59.63 ± 0.32 39.89 ± 0.10 41.09 ± 0.16 55.79 ± 0.35

Remix 42.46 ± 0.51 47.81 ± 0.48 60.71 ± 0.41 40.27 ± 0.18 42.97 ± 0.24 58.77 ± 0.23

MAMix 42.59 ± 0.22 47.89 ± 0.87 60.86 ± 0.55 40.02 ± 0.19 41.85 ± 0.44 57.39 ± 0.40

LDAM 40.49 ± 0.62 44.69 ± 0.37 56.06 ± 0.44 40.56 ± 0.29 43.11 ± 0.09 54.29 ± 0.41

DRW 40.40 ± 0.80 45.19 ± 0.49 57.23 ± 0.33 42.97 ± 0.24 46.78 ± 0.38 56.82 ± 0.38

M2m 41.92 ± 1.01 46.25 ± 0.15 58.34 ± 0.07 45.66 ± 0.02 49.54 ± 0.06 59.08 ± 0.22

DeepSMOTE 38.87 ± 0.19 44.70 ± 0.34 56.97 ± 0.25 42.27 ± 0.16 46.22 ± 0.39 55.45 ± 0.20

LDAM–DRW 41.28 ± 0.43 45.61 ± 0.41 56.42 ± 0.38 43.51 ± 0.61 46.81 ± 0.29 56.07 ± 0.30

Mixup–DRW 46.91 ± 0.46 51.75 ± 0.20 62.18 ± 0.24 47.56 ± 0.34 53.50 ± 0.47 62.91 ± 0.53

Remix–DRW 46.00 ± 0.48 51.16 ± 0.23 61.63 ± 0.25 48.91 ± 0.29 53.75 ± 0.26 62.47 ± 0.35

MAMix–DRW 46.93 ± 0.24 51.92 ± 0.20 62.30 ± 0.33 48.87 ± 0.36 53.87 ± 0.62 62.84 ± 0.18

Table 11 Top-1 validation accuracy (mean ± std) on imbalanced CINIC-10 using
ResNet18

Dataset Long-tailed Step

Imbalance ratio 100 50 10 100 50 10

ERM 61.08 ± 0.55 66.17 ± 0.37 77.64 ± 0.08 57.29 ± 0.73 62.26 ± 0.42 75.39 ± 0.30

DRW 63.75 ± 0.22 69.35 ± 0.35 78.66 ± 0.10 64.34 ± 0.25 68.73 ± 0.27 78.24 ± 0.21

M2m 64.20 ± 0.22 69.84 ± 0.41 78.67 ± 0.11 63.99 ± 1.25 69.82 ± 0.20 78.66 ± 0.03

LDAM–DRW 68.15 ± 0.22 72.34 ± 0.42 79.03 ± 0.17 70.09 ± 0.32 73.16 ± 0.48 79.07 ± 0.10

Mixup–DRW 71.40 ± 0.25 75.02 ± 0.16 81.36 ± 0.09 71.33 ± 0.23 74.74 ± 0.20 81.37 ± 0.18

Remix–DRW 71.15 ± 0.24 74.68 ± 0.09 81.27 ± 0.13 71.48 ± 0.50 74.91 ± 0.21 81.26 ± 0.08

MAMix–DRW 71.76 ± 0.29 75.27 ± 0.17 81.46 ± 0.08 71.91 ± 0.23 75.26 ± 0.08 81.39 ± 0.08
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Table 12 Sensitivity of ω in long-tailed extremely imbalanced CIFAR-10 with ρ = 300
using ResNet32

Method Accuracy

MAMix–DRW (ω = 0.125) 74.64 ± 0.17
MAMix–DRW (ω = 0.25) 74.85 ± 0.28
MAMix–DRW (ω = 0.5) 74.7 ± 0.75
MAMix–DRW (ω = 1.0) 74.66 ± 0.36
MAMix–DRW (ω = 2.0) 74.21 ± 0.56
MAMix–DRW (ω = 4.0) 74.05 ± 0.50
MAMix–DRW (ω = 8.0) 73.52 ± 0.52

Table 13 Top-1 validation accuracy (mean ± std) on imbalanced SVHN using ResNet32

Dataset Long-tailed Step

Imbalance ratio 100 50 10 100 50 10

ERM 79.91 ± 0.67 83.42 ± 0.15 88.43 ± 0.22 76.38 ± 0.93 81.33 ± 1.11 87.89 ± 0.31

Mixup 81.57 ± 0.68 85.16 ± 0.48 90.75 ± 0.28 76.62 ± 1.03 82.88 ± 1.06 89.79 ± 0.61

Remix 82.37 ± 0.67 86.27 ± 0.41 91.07 ± 0.21 78.89 ± 1.30 83.57 ± 0.63 90.20 ± 0.45

Ours 82.39 ± 0.45 86.75 ± 0.37 91.09 ± 0.25 77.83 ± 1.87 83.91 ± 0.97 90.68 ± 0.32

LDAM 81.96 ± 0.69 85.31 ± 0.29 89.40 ± 0.36 77.93 ± 1.00 83.84 ± 0.62 89.45 ± 0.37

DRW 80.68 ± 0.32 83.66 ± 0.49 88.64 ± 0.26 76.33 ± 2.00 82.29 ± 1.17 88.18 ± 0.45

M2m 77.68 ± 0.45 82.25 ± 0.36 88.39 ± 0.38 76.10 ± 0.83 80.46 ± 1.96 87.84 ± 0.77

DeepSMOTE 81.12 ± 0.58 83.62 ± 0.55 88.06 ± 0.49 78.67 ± 0.88 82.08 ± 0.52 87.73 ± 0.19

LDAM–DRW 83.48 ± 1.11 86.17 ± 0.54 89.85 ± 0.26 79.24 ± 1.19 84.79 ± 0.65 90.11 ± 0.41

Mixup–DRW 85.19 ± 0.32 87.43 ± 0.63 90.14 ± 0.23 80.73 ± 1.72 87.32 ± 0.87 90.84 ± 0.24

Remix–DRW 84.52 ± 0.62 87.27 ± 0.37 90.11 ± 0.53 80.90 ± 1.96 87.09 ± 0.85 90.80 ± 0.23

MAMix–DRW 85.41 ± 0.56 87.79 ± 0.45 90.59 ± 0.52 81.71 ± 1.28 87.62 ± 0.36 90.57 ± 0.23

Table 14 Top-1 validation accuracy (mean ± std) on imbalanced Tiny-ImageNet using
ResNet18

Dataset Long-tailed Step

Imbalance ratio 100 10 100 10

ERM 32.86 ± 0.22 48.90 ± 0.43 35.44 ± 0.25 48.23 ± 0.13

DRW 33.81 ± 0.49 49.99 ± 0.27 37.79 ± 0.11 50.13 ± 0.30

M2m 34.33 ± 0.42 49.39 ± 0.63 37.02 ± 0.68 50.11 ± 0.24

LDAM 31.13 ± 0.36 46.90 ± 0.19 35.88 ± 0.09 47.91 ± 0.19

LDAM–DRW 31.90 ± 0.13 47.15 ± 0.31 36.75 ± 0.19 48.17 ± 0.16

Mixup–DRW 37.97 ± 0.38 52.51 ± 0.40 40.45 ± 0.21 54.46 ± 0.29

Remix–DRW 36.89 ± 0.61 52.13 ± 0.23 41.07 ± 0.37 53.58 ± 0.23

MAMix–DRW 37.73 ± 0.18 52.53 ± 0.34 41.46 ± 0.38 54.37 ± 0.29

Table 15 Per Class Accuracy in long-tailed imbalanced CIFAR-10 with ρ = 100 using
ResNet32

Method C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

ERM 0.94 0.97 0.83 0.71 0.76 0.61 0.72 0.61 0.46 0.48
LDAM–DRW 0.95 0.97 0.79 0.73 0.82 0.69 0.78 0.70 0.63 0.66
MAMix–DRW 0.89 0.94 0.79 0.71 0.82 0.76 0.85 0.81 0.79 0.82
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padded 4 pixels on each side, then a 32 x 32 crop was randomly sampled from
the padded image, or its horizontal flip. We also used ResNet-32 [36] as our
base network. We trained the model with a batch size of 128 for 200 epochs.
We use an initial learning rate of 0.1, then decay by 0.01 at the 160 and 180th
epoch. We also use linear warm-up learning rate schedule [37] for the first 5
epochs for fair comparison.

A.2 Implementation Details fo CINIC

We followed [23] for CINIC-10 where we used ResNet-18 [36] as our base net-
work. Initially, the training scheme provided by [23] was to train the model
for 300 epochs, with initial learning rate of 0.1 and decay the learning rate by
0.01 at the 150th, and 225th epoch. However, we found that training for 200
epochs is sufficient, thus we trained the model for 200 epochs, with a batch
size of 128, and initial learning rate of 0.1, followed by decaying the learning
rate by 0.01 at the 160 and 180th epochs. We also use linear warm-up learning
rate schedule. When DRW was deployed, it was deployed at the 225th epoch.
When LDAM was used, we enforced the largest margin to be 0.5.

A.3 Implementation Details for SVHN

We followed [28] for SVHN. We adoped ResNet-32 [36] as our base network.
We trained the model for 200 epochs, with initial learning rate of 0.1 and batch
size of 128. We used linear warm-up schedule, and decay the learning rate by
0.1 at the 160th, and 180th epochs. When DRW was deployed, it was deployed
at the 160th epoch. When LDAM was used, we enforced the largest margin to
be 0.5.

A.4 Implementation Details for Tiny ImageNet

We followed [12] for Tiny ImageNet with 200 classes. For basic data augmenta-
tion in training, we first performed simple horizontal flips, followed by taking
random crops of size 64 x 64 from images padded by 8 pixels on each side.
We adopted ResNet-18 [36] as our base networks, and used stochastic gradi-
ent descent with momentum of 0.9, weight decay of 2 · 10−4. We trained the
model for 120 epochs, with initial learning rate of 0.1 and batch size of 128.
We used linear warm-up rate schedule, and decay the learning rate by 0.1 at
the 90th epoch. When DRW was deployed, it was deployed at the 90th epoch.
When LDAM was used, we follow the original paper to enforce largest margin
to be 0.5. Note that we cannot reproduce the numbers reported in [12].
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