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Abstract. In the field of biological research, it is essential to comprehend the
characteristics and functions of molecular sequences. The classification of molec-
ular sequences has seen widespread use of neural network-based techniques. De-
spite their astounding accuracy, these models often require a substantial number
of parameters and more data collection. In this work, we present a novel approach
based on the compression-based Model, motivated from [1], which combines the
simplicity of basic compression algorithms like Gzip and Bz2, with Normalized
Compression Distance (NCD) algorithm to achieve better performance on clas-
sification tasks without relying on handcrafted features or pre-trained models.
Firstly, we compress the molecular sequence using well-known compression al-
gorithms, such as Gzip and Bz2. By leveraging the latent structure encoded in
compressed files, we compute the Normalized Compression Distance between
each pair of molecular sequences, which is derived from the Kolmogorov com-
plexity. This gives us a distance matrix, which is the input for generating a kernel
matrix using a Gaussian kernel. Next, we employ kernel Principal Component
Analysis (PCA) to get the vector representations for the corresponding molecular
sequence, capturing important structural and functional information. The result-
ing vector representations provide an efficient yet effective solution for molecular
sequence analysis and can be used in ML-based downstream tasks. The proposed
approach eliminates the need for computationally intensive Deep Neural Net-
works (DNNs), with their large parameter counts and data requirements. Instead,
it leverages a lightweight and universally accessible compression-based model.
Also, it performs exceptionally well in low-resource scenarios, where limited la-
beled data hinder the effectiveness of DNNs. Using our method on the benchmark
DNA dataset, we demonstrate superior predictive accuracy compared to SOTA
methods.

Keywords: Classification, Sequence Analysis, Compression, Gzip

1 Introduction

Molecular sequence analysis stands as a pivotal pursuit in contemporary research, hold-
ing the key to unraveling the intricate language encoded in molecular sequences, such
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as DNA and proteins. The accurate comprehension and classification of these molecu-
lar sequences offer profound insights into their structural, functional, and evolutionary
characteristics. As the foundation of numerous biological studies, including functional
gene annotation, drug discovery, and evolutionary biology, molecular sequence analy-
sis plays an indispensable role in advancing our understanding of the fundamental pro-
cesses governing life. The pursuit of innovative methodologies in this realm is driven
by the quest for more accurate, efficient, and resource-effective approaches to decipher
the rich information concealed within the sequences, ultimately contributing to trans-
formative breakthroughs in the broader landscape of molecular biology.

Several methods have been used for the classification of molecular sequences in-
volving Neural Networks, language models, Feature Embedding, and Kernel functions.
All these methods face certain challenges when it comes to achieving good accuracy in
cases when the available data is less. Neural Network (NN) based methods are one of
the most widely employed in molecular sequence classification and have demonstrated
impressive accuracy in many cases [2]. However, these methods come with significant
limitations including the requirement of a substantial number of parameters and long
training times, making them computationally expensive and resource-demanding. Ad-
ditionally, neural networks and NN-based language models heavily rely on large-scale
training data, which may not be readily available for certain biological datasets, partic-
ularly in low-resource or rare species scenarios.

Designing low-dimensional embedding for molecular sequences is a challenging
task. One of the most feasible solutions to this challenge is sequence data compres-
sion. Some of the well-known compression methods include Gzip, zlib, Bz2 [3] etc.
Gzip is used on a large scale for lossless data compression [4], it became popular be-
cause of certain characteristics which include being free, open source, robust, compact,
portable, has low memory overhead, and has reasonable speed [5]. Due to its inertia
and its integration with so many sequence analysis tools, even today most of the se-
quence databases rely on Gzip [5]. The zlib and Bz2 compression algorithms efficiently
detect non-randomness and low information content [6]. Their performance gets bet-
ter as the string length increases. Bz2 compression is used to compress the strings and
is not affected by the mass ratios, it does not include character order information due
to the process of permuting characters during compression, this negatively affects the
accuracy [1]. Our compression-based model offers several notable advantages over tra-
ditional neural network-based approaches. Firstly, it eliminates the computationally in-
tensive nature of deep neural networks, reducing the parameter requirements and mak-
ing them more lightweight and accessible. Secondly, by leveraging Gzip compression,
our approach can efficiently handle low-resource biological datasets where labeled data
is scarce or limited. This enables us to analyze molecular sequences even in resource-
constrained scenarios. Our contributions can be summarized as follows:

– We propose a novel approach for analyzing and classifying molecular sequences,
using compression-based models including Gzip and Bz2.

– We develop an algorithm for Distance Matrix computation, in which we take a set of
sequences as input and output a non-symmetric Distance matrix using Normalized
Compression Distance (NCD) and different compressors.
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– We convert the distance matrix into a kernel matrix and extract the low dimensional
numerical representation in the end, which can be used as input to any linear and
nonlinear machine learning model for supervised and unsupervised analysis. In this
way, we also addressed the limitation in [1] where they were only able to apply the
k-nearest neighbor classifier for the classification purpose. Hence we show that our
proposed method can generalize better for sequence classification.

– We also discuss the theoretical justifications for the proposed pipeline including
the symmetry of the distance matrix and reproducing Kernel Hilbert Space for the
kernel matrix along positive semi-definite, smoothness, continuity, and sensitivity.

The rest of the paper is organized as follows: In Section 2 we will give details of the
literature review followed by the proposed method along with the experimental setup
in Section 3. Our results and experimental evaluation are reported in Section 4. Fi-
nally, Section 5 concludes the paper, emphasizing the effectiveness and potential of our
compression-based model in advancing molecular sequence analysis and classification.

2 Related Work

Molecular sequence analysis is based on two types of methods, alignment-based and
alignment-free. Alignment-based is suitable for small sequences (due to higher dimen-
sionality). The alignment-free method works well for both short and long sequences [7].
Several methods have been used for the analysis of molecular sequences, including neu-
ral networks (NN) [8], language models [9], feature embedding [10], and kernel func-
tions [11]. In recent work, it was seen that the performance of protein prediction tasks
can be improved by training language models on protein sequences [12]. Pretrained
language models and word embedding methods have proved to be successful in em-
bedding molecular sequences forming easy-to-process representations that are context-
sensitive [13]. In the analysis of big data in proteomics, SeqVec provides a scalable
approach for the analysis of the protein data [12], which has improved the study of
the structure and composition of proteins. ProtBert is a transformer-based model, that
uses a masked language model [9] it requires positional encoding and has a high mem-
ory requirement. In the case of NN, several methods have been proposed for sequence
analysis [14]. Variational AutoEncoder-based methods are also used in the literature
for molecular sequence analyses [8]. These NN-based methods prove to be compu-
tationally expensive, face increased risk of overfitting, and are resource-demanding.
In recent works, deep learning-based feature representation methods have been pro-
posed [15,16]. Several authors proposed feature engineering-based methods to design
embeddings for the molecular sequences [17]. Although such methods are efficient in
terms of predictive performance, they usually face the problem of the “curse of dimen-
sionality” due to the higher dimensions of the generated vectors. Another method used
for the sequence analysis is to project the data into high dimensional feature space us-
ing kernel matrices [18,11]. However, these methods could cause an overfitting problem
along with scalability issues (memory intensive) [19]. Some prominent sequence com-
parison methods include Normalized Compression Distance (NCD) [20], Normalized
Information Distance (NID) [21], Euclidean Distance, and Manhattan Distance. The
NCD, derived from the concept of Kolmogorov complexity [22], provides a measure
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of similarity between sequences by considering their compressed file sizes. However,
such methods are not used in the literature for representation learning, specifically for
molecular sequence analysis.

3 Proposed Approach

We propose an Embedding generation method based on lossless compressors and Nor-
malized Compression Distance (NCD) metric. We start this section by discussing the
lossless compression methods below.

3.1 Compression Methods

Bz2 Compressor: Bz2 compressor is a general-purpose lossless compressor, based on
the Burrows-Wheeler transform (BWT) and Huffman coding [23]. The BWT is a per-
mutation of the letters of the text (in our case characters/nucleotides of the sequence).
After applying BWT to the input, an easily compressible form is generated as it groups
symbols into runs of similar units, more precisely the input is divided into blocks of
at most 900 kB, which is compressed separately, keeping in regard to the local simi-
larities in the data. The compression of the transform includes an initial move-to-front
encoding with run length encoding and then Huffman encoding.

Gzip Compressor: Gzip uses very few bits to represent information, which is based on
the lossless compression algorithm LZ77 (Lempel-Ziv 77 compression algorithm) [24]
and dynamic Huffman algorithm [4]. LZ77-Lempel-Ziv compression algorithm en-
codes a string based on sequential processing. If the present substring was encountered
earlier as well then it is encoded with reference to the previous one. A sliding window
is used for every new sequence encountered. Huffman coding is statistical-based com-
pression, where the symbols are encoded using statistical information such as frequency
distribution. There are two types of Huffman coding, dynamic and static. As the data
we use is not real-time we use the Dynamic Huffman algorithm, which is a two-pass
algorithm. In the first pass, the frequency distribution of symbols is calculated and in
the second pass, symbols are encoded. In this technique, depending on the occurrence
of the symbols variable length codes are assigned to symbols such that symbols with
less occurrence are encoded with more significant bits and symbols with high frequency
are encoded with fewer bits, as a result, a good compression ratio is obtained.

Remark 1. Note that our proposed method uses both the compression methods de-
scribed above separately.

3.2 Problem Formulation

Given a pair of sequences s1 and s2, where s1, s2 ∈ S (S is a set of all sequences),
we first encode s1 and s2 using UTF-8 encoding [25], which will give us Es1 and
Es2 . After encoding, the Es1 and Es2 are compressed using Gzip or Bz2. We will then
get the compressed form, denoted by Cs1 and Cs2 . In the next step, we compute the
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length Ls1 and Ls2 of the compressed sequences. In a similar way, we compute Ls1s2 ,
which denotes the length of compressed encoded form for the concatenated sequence
s1s2. We then use Ls1 , Ls2 , and Ls1s2 as input to Normalized Compression Distance
(NCD) approach to get the final distance value, which is calculated using the following
expression:

NCD(s1, s2) =
Ls1s2 −min{Ls1, Ls2}

max{Ls1, Ls2}
(1)

In the condition where s1 ̸= s2, the bytes B needed to encode s2 based on s1
information, i.e. B12 can be computed using the following expression:

B12 = Ls1s2 − Ls1 (2)

Similarly, for s1 and s3 sequences, we have

B13 = Ls1s3 − Ls1 (3)

where B13 represents the number of bytes needed to encode s3 based on s1 information.
Given a scenario where s1 and s2 belong to the same category but s3 belongs to a
different category than s1 and s2, we have the following expression:

B12 < B13 (4)

The formulation of the concept mentioned in Equation (4) can be linked to Kol-
mogorov complexity Zs (where s ∈ S) and its derived distance metric [22]. Zs is the
lower bound for measuring information as it represents the length of the shortest bi-
nary program that outputs s, but there is a limitation that it cannot be used to measure
the information content shared between two objects due to the incomputable nature
of Zs [1]. To overcome this limitation, Normalized Compression Distance (NCD) is
proposed [26], which is computable and uses compressed length Ls to approximate
Kolmogorov complexity Zs.

The underlying concept of using compressed length in Equation 1 is that the com-
pressed length is close to Zs. The general rule says, that the higher the compression
ratio, the closer Ls is to Zs. Using the NCD-based distance (from Equation 1), we com-
pute pairwise distances for a set of sequences to generate the required distance matrix.

3.3 Our Algorithm

In our algorithmic approach (i.e. in Algorithm 1), we take in a set of sequences (S) as
input and output a Distance Matrix (D). We iterate through the Set S, for every sequence
referred to as s in our data S and carry out the following steps:

1. Encoded form is generated and stored in a variable Es1 (line number 2 of Algo-
rithm 1 and step c(i) of Figure 1)

2. Encoded Es1 is further compressed using Gzip compressor and fed into Cs1 (line
number 3 of Algorithm 1 and step d(i) of Figure 1)

3. Calculate the length of the compressed Cs1 and store in a variable referred to as
Ls1.(line number 4 of Algorithm 1 and step e(i) of Figure 1)



6 Sarwan Ali+,∗, Tamkanat E Ali+, Prakash Chourasia, Murray Patterson

To save the Normalized Compression Distance (NCD) between every s and the rest of
the sequences in the Set S, we initialize an array termed as D local as shown in the line
number 5 of Algorithm 1.

In another sub-iterative loop, we repeat the steps from 1 to 3 mentioned above for
every other sequence in set S (line number 6 of Algorithm 1). To calculate NCD we
first require concatenation of s1 and s2 (line number 10 of Algorithm 1 and step (b) of
Figure 1), followed by encoding, compression, and calculating its length which is stored
in a variable Ls1s2 (line numbers 11-13 of Algorithm 1 and steps (c)-(e) of Figure 1).

Now using the length of the compressed encoded sequences Ls1, Ls2 and Ls1s2,
we calculate NCD (line number 14 of Algorithm 1 and step (f) of Figure 1) and store
in the list referred to as D local(line number 15 of Algorithm 1). At the end of the
inner iterative loop, this list is appended in a distance matrix D which would contain
the NCD values between every sequence in the set of sequences(S)(line number 17 of
Algorithm 1).

Fig. 1: Overview of the proposed approach.

The Figure 1 shows the overview of the proposed approach.

Remark 2. Our method is better than Deep Neural Networks as there is no need for
preprocessing or training, making it simpler. Secondly, fewer parameters with no GPU
resources are needed for distance matrix computation, making it lighter, and the absence
of underlying assumptions (e.g., assumptions about the data) makes it universal.

Remark 3. To further understand the idea of NCD-based pairwise distance computation
between text/molecular sequences, readers are referred to [1],

3.4 Distance Matrix Symmetry

The Distance matrix (D) obtained using Normalized Compression Distance (NCD) is
of size n×n where n represents the cardinality of the input set S. This Distance Matrix
D is non-symmetric, so to convert it to symmetric matrix D’ we take the average of
upper and lower triangle values and replace the original values of the matrix with the
average values.
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Algorithm 1 Distance matrix computation with Gzip
Input: Set of sequences(S)
Output: Distance Matrix(D)

1: for s1 in S do
2: Es1 ← encoded s1
3: Cs1 ← Gzip compressed Es1
4: Ls1 ← length of Cs1
5: D local← [ ]
6: for s2 in S do
7: Es2 ← encoded s2
8: Cs2 ← Gzip compressed Es2
9: Ls2 ← length of Cs2
10: s1s2 ← Concatenate(s1, s2)
11: Es1s2 ← encoded s1s2
12: Cs1s2 ← Gzip compressed Es1s2
13: Ls1s2 ← length of Cs1s2

14: NCD←
Ls1s2 −Min(Ls1, Ls2)

Max(Ls1, Ls2)

15: D local.append(NCD)
16: end for
17: D.append(D local)
18: end for
19: return D

3.5 Kernel Matrix Computation

We generate a Kernel matrix from the symmetric distance matrix (D’) of size n × n
using a Gaussian Kernel, where.

d′ij , d
′
ik ∈ D′ (5)

Euclidean Distance (E) between two pairs of distances d′ij and d′ik (i.e. distance
values computed from pairs of sequences) is calculated using the following equation:

Ed′
ij ,d

′
ik

= ||d′ij − d′ik|| (6)

The Gaussian Kernel (K) is defined as a measure of similarity between d′ij and d′ik.
It is represented by the equation below:

K(d′ij , d
′
ik) = exp(

−||d′ij − d′ik||2

σ2
) (7)

where σ2 represents the bandwidth of the kernel. The kernel value is computed as fol-
lows: {

K = 1 if d′ij and d′ik are identical (8)
K −→ 0 if d′ij and d′ik move further apart (9)

The kernel value is computed for each pair of distances in D′ to get the n × n di-
mensional kernel matrix. Once the kernel matrix is computed, we can leverage kernel
Principal Component Analysis (PCA) to derive a lower-dimensional representation of
the data. The resulting embeddings, known as kernel principal components, effectively
preserve the essential information while retaining the relationships among the molec-
ular sequences including non-linear relations. This representation proves valuable for
various downstream tasks, including classification.
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3.6 Experimental Setup

Here we describe dataset statistics and evaluation metrics in detail. The experiments are
performed on a computer running 64-bit Windows 10 with an Intel(R) Core i5 processor
running at 2.10 GHz and 32 GB of RAM. For experiments, we randomly split data
into 60-10-30% for training-validation-testing purposes. The experiments are repeated
5 times, and we report average results. Our code is available online for reproducibility 1.
We use real-world molecular sequence data comprised of nucleotide sequences. The
summary of the dataset used for experimentation is given in Table 1.

Name | Seq. | | Classes | Sequence Statistics
Reference Description

Max Min Mean

Human
DNA

4380 7 18921 5 1263.59 [27]
Unaligned nucleotide sequences to classify
gene family to which humans belong

Table 1: Dataset Statistics.

We used a variety of ML models for classification, including Support Vector Ma-
chine (SVM), Naive Bayes (NB), Multi-Layer Perceptron (MLP), K-Nearest Neigh-
bours (KNN), Random Forest (RF), Logistic Regression (LR), and Decision Tree (DT).
For performance evaluation, we used average accuracy, precision, recall, F1 (weighted),
F1 (macro), Receiver Operator Characteristic Curve (ROC), Area Under the Curve
(AUC), and training runtime. The baseline models we used for results comparisons
include PWM2Vec [10] which gives each amino acid in the k-mers a weight based on
where it is located in a k-mer position weight matrix (PWM), String Kernel [11] deter-
mines the similarity between the two sequences based on the total number of k-mers
that are correctly and incorrectly aligned between two sequences, WDGRL [15] a neural
network based unsupervised domain adoption technique that uses Wasserstein distance
(WD) for feature extraction from input data, Autoencoder [28] that uses a deep neural
network to encode data as features which involves iterative optimization of the objective
through non-linear mapping from data space X to a smaller-dimensional feature space
Z, SeqVec [12] an ELMO (Embeddings from Language Models) based method for rep-
resenting biological sequences as continuous vectors, and Protein Bert [29] which is
an end-to-end model that does not design explicit embeddings but directly performs
classification using a previously learned language model.

3.7 Justification of Employing the Kernel Matrix

The generation of a kernel matrix from the NCD-based distance matrix offers several
technical justifications and significant benefits:

1. Nonlinearity: Constructing a kernel matrix based on NCD distances implicitly
maps the data into a higher-dimensional feature space, enabling the capture of in-
tricate nonlinear relationships. This is particularly advantageous when dealing with
the complex non-linear interactions often present in molecular sequences.

1 https://github.com/sarwanpasha/Non-Parametric-Approach

https://github.com/sarwanpasha/Non-Parametric-Approach
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2. Capturing Complex Relationships: Utilizing the Gaussian kernel in generating
the kernel matrix allows for the capture of intricate relationships between sequences.
It assigns higher similarity values to similar sequences and lower values to dis-
similar ones. This capability enables the representation of complex patterns and
structures in the data, surpassing the limitations of linear methods.

3. Theoretical Properties of Gaussian Kernel: The use of the widely adopted Gaus-
sian kernel leverages several underlying theoretical properties. These include the
Reproducing Kernel Hilbert Space (RKHS) [30], enabling the application of effi-
cient kernel methods like support vector machines. The Universal Approximation
property [31] allows the kernel to approximate any continuous function arbitrarily
well, making it a powerful tool for modeling complex relationships and capturing
nonlinear patterns. Mercer’s Theorem [32] guarantees that the kernel matrix is pos-
itive semi-definite, while the smoothness, continuity, and sensitivity to variations
further enhance its ability to capture local relationships and adapt to variations in
the data distribution.

4. Flexibility and Generalization: The kernel matrix derived from the NCD-based
distance matrix can be effectively employed with various machine learning algo-
rithms that operate on kernel matrices. This flexibility allows for the application
of a wide range of techniques, including kernel PCA and kernel SVM. Leverag-
ing these algorithms enables the exploitation of the expressive power of the kernel
matrix to address diverse tasks, such as dimensionality reduction and classification.

5. Preserving Nonlinear Information: Applying kernel PCA to the kernel matrix
captures crucial nonlinear information embedded in the data. This process facili-
tates the extraction of low-dimensional embeddings that preserve the underlying
structure and patterns. Projecting the data onto the principal components retains
discriminative information while reducing dimensionality. This proves particularly
valuable for handling high-dimensional datasets.

6. Enhanced Performance: The utilization of the NCD-based distance matrix and
kernel matrix can lead to improved performance in various tasks. The incorpora-
tion of NCD distance and the capturing of complex relationships in the data en-
hance the discriminative power of the embeddings. This results in a more accurate
classification of the sequences.

4 Results And Discussion

The classification results that are averaged over 5 runs are reported in Table 2 for the
Human DNA dataset. For the evaluation metrics including average accuracy, precision,
recall, weighted and macro F1, and ROC-AUC, our proposed Gzip-based representation
outperformed all baselines. For classification training runtime, WDGRL with Naive
Bayes performs the best due to the minimum size of embedding compared to other
embedding methods.

To test the statistical significance of results, we used the student t-test and observed
the p-values using averages and SD results of 5 runs. We observed that the SD values
for all datasets and metrics are very small i.e. mostly < 0.002, we also noted that p-
values were < 0.05 in the majority of the cases (because SD values are very low). This
confirmed the statistical significance of the results.



10 Sarwan Ali+,∗, Tamkanat E Ali+, Prakash Chourasia, Murray Patterson

Embeddings Algo. Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.) ↑ F1 (Macro) ↑ ROC AUC ↑ Train Time (sec.) ↓

PWM2Vec

SVM 0.302 0.241 0.302 0.165 0.091 0.505 10011.3
NB 0.084 0.442 0.084 0.063 0.066 0.511 4.565
MLP 0.310 0.350 0.310 0.175 0.107 0.510 320.555
KNN 0.121 0.337 0.121 0.093 0.077 0.509 2.193
RF 0.309 0.332 0.309 0.181 0.110 0.510 65.250
LR 0.304 0.257 0.304 0.167 0.094 0.506 23.651
DT 0.306 0.284 0.306 0.181 0.111 0.509 1.861

String
Kernel

SVM 0.618 0.617 0.618 0.613 0.588 0.753 39.791
NB 0.338 0.452 0.338 0.347 0.333 0.617 0.276
MLP 0.597 0.595 0.597 0.593 0.549 0.737 331.068
KNN 0.645 0.657 0.645 0.646 0.612 0.774 1.274
RF 0.731 0.776 0.731 0.729 0.723 0.808 12.673
LR 0.571 0.570 0.571 0.558 0.532 0.716 2.995
DT 0.630 0.631 0.630 0.630 0.598 0.767 2.682

WDGRL

SVM 0.318 0.101 0.318 0.154 0.069 0.500 0.751
NB 0.232 0.214 0.232 0.196 0.138 0.517 0.004
MLP 0.326 0.286 0.326 0.263 0.186 0.535 8.613
KNN 0.317 0.317 0.317 0.315 0.266 0.574 0.092
RF 0.453 0.501 0.453 0.430 0.389 0.625 1.124
LR 0.323 0.279 0.323 0.177 0.095 0.507 0.041
DT 0.368 0.372 0.368 0.369 0.328 0.610 0.047

Autoencoder

SVM 0.621 0.638 0.621 0.624 0.593 0.769 22.230
NB 0.260 0.426 0.260 0.247 0.268 0.583 0.287
MLP 0.621 0.624 0.621 0.620 0.578 0.756 111.809
KNN 0.565 0.577 0.565 0.568 0.547 0.732 1.208
RF 0.689 0.738 0.689 0.683 0.668 0.774 20.131
LR 0.692 0.700 0.692 0.693 0.672 0.799 58.369
DT 0.543 0.546 0.543 0.543 0.515 0.718 10.616

SeqVec

SVM 0.656 0.661 0.656 0.652 0.611 0.791 0.891
NB 0.324 0.445 0.312 0.295 0.282 0.624 0.036
MLP 0.657 0.633 0.653 0.646 0.616 0.783 12.432
KNN 0.592 0.606 0.592 0.591 0.552 0.717 0.571
RF 0.713 0.724 0.701 0.702 0.693 0.752 2.164
LR 0.725 0.715 0.726 0.725 0.685 0.784 1.209
DT 0.586 0.553 0.585 0.577 0.557 0.736 0.24

Protein Bert 0.542 0.580 0.542 0.514 0.447 0.675 58681.57

Gzip (ours)

SVM 0.692 0.844 0.692 0.699 0.692 0.771 2.492
NB 0.464 0.582 0.464 0.478 0.472 0.704 0.038
MLP 0.831 0.833 0.831 0.830 0.813 0.890 7.546
KNN 0.773 0.792 0.773 0.776 0.768 0.856 0.193
RF 0.810 0.858 0.810 0.812 0.811 0.858 6.539
LR 0.621 0.822 0.621 0.616 0.581 0.712 0.912
DT 0.648 0.651 0.648 0.648 0.624 0.780 2.590

Bz2 (ours)

SVM 0.545 0.769 0.545 0.524 0.501 0.669 2.856
NB 0.403 0.577 0.403 0.411 0.410 0.653 0.034
MLP 0.696 0.702 0.696 0.698 0.670 0.809 7.601
KNN 0.697 0.715 0.697 0.699 0.677 0.813 0.215
RF 0.720 0.804 0.720 0.722 0.721 0.798 6.000
LR 0.488 0.721 0.488 0.449 0.401 0.626 0.899
DT 0.574 0.577 0.574 0.574 0.547 0.735 2.290

Table 2: Classification results (averaged over 5 runs) on Human DNA dataset for dif-
ferent evaluation metrics. The best classifier performance for every embedding is shown
with the underline. Overall best values are shown in bold.

From the overall average classification results, SD results, and statistical signifi-
cance results, we can conclude that the proposed NCD compression-based method can
outperform the SOTA for predictive performance on real-world molecular sequence
dataset. Moreover, even after fine-tuning the Large language model (LLM) such as Se-
qVec, the proposed parameter-free method significantly outperforms the LLM for all
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evaluation metrics. With the theoretical justifications and statistical significance of the
results, we can conclude that using the proposed method in a real-world scenario for
molecular sequence analysis can help biologists understand different viruses and deal
with future pandemics efficiently.

5 Conclusion

In conclusion, we propose lightweight and efficient compression-based models for clas-
sifying molecular sequences. By combining the simplicity of the compression methods
(e.g., Gzip and Bz2) with a powerful nearest neighbor algorithm, our method achieves
state-of-the-art performance without the need for extensive parameter tuning or pre-
trained models. The compression-based Model successfully overcomes the limitations
of neural network-based methods, offering a more accessible and computationally effi-
cient solution, especially in low-resource scenarios. In the future, we will be exploring
the applications of our model in other bioinformatics domains and investigating ways
to further optimize and tailor the approach for specific biological datasets.
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