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ABSTRACT

In this paper, we introduce a novel Distributed Markov Chain Monte Carlo (MCMC) infer-
ence method for the Bayesian Non-Parametric Latent Block Model (DisNPLBM), employing
the Master/Worker architecture. Our non-parametric co-clustering algorithm divides observa-
tions and features into partitions using latent multivariate Gaussian block distributions. The
rows are evenly distributed among workers, which exclusively communicate with the master
and not among themselves. DisNPLBM demonstrates its impact on cluster labeling accuracy
and execution times through experimental results. Moreover, we present a real-use case apply-
ing our approach to co-cluster gene expression data. The code source is publicly available at
https://github.com/redakhoufache/Distributed-NPLBM.

Keywords Co-clustering · Bayesian non-parametric · Distributed computing

1 Introduction

Given a data matrix, where rows represent observations and columns represent variables or features, co-clustering, also
known as bi-clustering aims to infer a row partition and a column partition simultaneously. The resulting partition
is composed of homogeneous blocks. When a dataset exhibits a dual structure between observations and variables,
co-clustering outperforms conventional clustering algorithms which only infers a row partition without considering the
relationships between observations and variables. Co-clustering is a powerful data mining tool for two-dimensional
data and is widely applied in various fields such as bioinformatics [1].

To tackle the co-clustering problem, the Latent Block Model (LBM) was introduced by [2]. This probabilistic model
assumes the existence of hidden block components, such that elements that belong to the same block independently
follow identical distribution. A Bayesian Non-Parametric extension of the LBM (NPLBM) was introduced in [3].
This model makes two separate priors on the proportions and a prior on the block component distribution, which
allows to automatically estimate the number of co-clusters during the inference process. In [4], the authors present a
BNP Functional LBM which extends the recent LBM [5] to a BNP framework to address the multivariate time series
co-clustering.

To infer parameters of NPLBM, the Collapsed Gibbs sampler introduced in [6], is a Markov Chain Monte Carlo
(MCMC) algorithm that iteratively updates the column partition, given the row partition, and vice versa. It samples row
and column memberships sequentially based on their respective marginal posterior probabilities. The collapsed Gibbs
sampler is an efficient MCMC algorithm because the co-cluster parameters are analytically integrated away during the
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sampling process. MCMC methods have the good property of producing asymptotically exact samples from the target
density. However, these techniques are known to suffer from slow convergence when dealing with large datasets.

Distributed computing consists of distributing data across multiple computing nodes (workers), which allows parallel
computations to be performed independently. Distributed computing offers the advantage of accelerating computations
and overcoming memory limitations. Existing programming paradigms for distributed computing, such as Map-Reduce
consist of a map and reduce functions. The map function applies the needed transformations on data and produces
intermediate key/value pairs. The reduce function merges the map’s function results to form the output value. The
Map-Reduce job is executed on master/workers architecture, where the master coordinates the job execution, and
workers execute the map and reduce tasks in parallel.

This paper proposes a new distributed MCMC-based approach for NPLBM inference when the number of observations
is too large. We summarize our contributions: (1) We have developed a new distributed MCMC inference of the NPLBM
using the Master/Worker architecture. The rows are evenly distributed among the workers which only communicate
with the master. (2) Each worker infers a local row partition given the global column partition. Then, sufficient
statistics associated with each local row cluster are sent to the master. (3) At the master, the global row partition is
estimated. Then, given the global row partition, the column partition is estimated. This allows the estimation of the
global co-clustering structure. (4) Theoretical background and computational details are provided.

2 Related Work

Numerous scalable co-clustering algorithms have been proposed in the literature. The first distributed co-clustering
(DisCo) using Hadoop is introduced in [7]. In [8], authors devised a parallelized co-clustering approach, specifically
designed to tackle the high-order co-clustering problem with heterogeneous data. Their methodology extends the
approach initially proposed in [9], enabling the computation of co-clustering solutions in a parallel fashion, leveraging a
Map-Reduce infrastructure. In [10], a parallel simultaneous co-clustering and learning (SCOAL) approach is introduced,
also harnessing the power of Map-Reduce. This work focuses on predictive modeling for bi-modal data. In [11],
introduces a distributed framework for data co-clustering with sequential updates (Co-ClusterD). The authors propose
two distinct approaches to parallelize sequential updates for alternate minimization co-clustering algorithms. However,
it’s worth noting that these approaches are parametric and assume knowing a priori the true numbers of row and
column clusters, respectively, which are unknowable in real-life applications. One of the main challenges in distributing
Bayesian Non-Parametric co-clustering lies in efficiently handling and discovering new block components.

3 Bayesian Non-Parametric Latent Block Model

3.1 Model definition

Let n, p, and d be positive integers, and let X = (xi,j)n,p ∈ Rn×p×d be the observed dataset. Here, n represents the
number of rows, p is the number of columns, and d denotes the dimension of the observation space. Let z = (zi)n be
the row membership vector (row partition), where each zi is a latent variable such that zi = k signifies that the i-th row
xi,· belongs to the row cluster k. Similarly, let w = (wj)p be the column membership vector (column partition), where
wj = l indicates that the j-th column x·,j belongs to the column cluster l. The NPLBM is defined as follows:

xi,j | {zi, wj , θzi,wj} ∼ F
(
θzi,wj

)
,

θzi,wj
∼ G0, zi |π ∼ Mult(π), wj | ρ ∼ Mult(ρ),

π ∼ SB(α), ρ ∼ SB(β).

According to this definition, the observation xi,j is sampled by first generating the row proportions π ∼ SB(α) and
column proportions ρ ∼ SB(β) according to the Stick-Breaking (SB) process [12] parameterized by concentration
parameters α > 0 and β > 0 respectively. Secondly, sampling the row and column memberships z and w from the
Multinomial distribution (Mult) parameterized by π and ρ, respectively. Then, sampling the block component parameter
θzi,wj from the base distribution G0. Finally, drawing the cell value xi,j that belongs to the block (zi, wj) from the
component distribution F (θzi,wj

). We assume that F is the multivariate Gaussian distribution (i.e, θk,l = (µk,l,Σk,l),
with µ ∈ Rd and Σk,l ∈ Rd×d a positive semi-definite matrix), and G0 is the Normal Inverse Wishart [13] (NIW)
conjugate prior with hyper-parameters (µ0, κ0,Ψ0, ν0).
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3.2 Inference

The goal is to estimate the row and column partitions z and w given the dataset X , the prior G0, and the concentration
parameters α and β, by sampling from the joint posterior distribution p(z,w|X,G0, α, β). However, direct sampling
from this distribution is intractable but can be achieved using the collapsed Gibbs Sampler introduced in [6]. Given
initial row and column partitions. The inference process consists of alternating between updating the row partition
given the column partition and then updating the column partition given the row partition. At each iteration, to update
the row partition z, each zi is updated sequentially by sampling from p(zi|z−i,w, X,G0, α), where z−i = {zr|r ̸= i}.
The column partition update is similar to the row partition update. The complete algorithm and computation details of
the inference process are given in [14].

4 Proposed inference

The main objective of our method is to make the inference scalable when the number of observations becomes too large.
The rows are distributed evenly over the workers. At each iteration, we alternate between two levels:

4.1 Worker level

Let E be the number of workers, ne be the number of rows in worker e, Xe = (xe
i,j)ne×p ∈ Rne×p×d the local dataset

in worker e, each cell xe
i,j is a d-dimensional vector. Let ze = (zei )ne be the local row partition (i.e. zei = k means

that the i-th row of e-th worker belongs to the k-th local row cluster). At this level, each local row membership zei is
updated given other local row memberships ze−i = {zer |r ̸= i} by sampling from p(zei |ze−i,w, Xe, G0, α) ∝:{

ne
kp

(
xe
i,· | w,xe

k,., G0

)
existing row cluster k, (1a)

αp
(
xe
i,· | w, G0

)
, new row cluster, (1b)

where ne
k is the size of local row cluster k in worker e, xe

i,· is the i-th row of worker e, and xe
k,. = {xe

i,·|zei = k} the
content of local row cluster k in worker e. Since G0 is a prior conjugate to F , the joint prior and posterior predictive
distributions needed in 1a and 1b are computed analytically [4]. After having updated the local row partition, for a
given row cluster k in worker e, for each column j, we compute the following sufficient statistics:

T e
k,j =

1

ne
k

ne∑
i=1,ze

i =k

xe
i,j ∈ Rd, (2)

Se
k,j =

ne∑
i=1,ze

i =k

(xe
i,j − T e

k,j)(x
e
i,j − T e

k,j)
T ∈ Rd×d, (3)

where (·)T denotes the transpose operator. We let Se =
{
(T e

k,j , S
e
k,j) | (k, j) ∈ {1, · · · ,Ke} × {1, · · · , p}

}
, the set

of sufficient statistics, where Ke is the number of row clusters inferred in worker e. Finally, the sufficient statistics
and sizes of each cluster are sent to the master. The DisNPLBM inference process at the worker level is described in
Algorithm 1, which represents the Map function.

Algorithm 1 DisNPLBM inference at worker level
1: Input: Xe

ne×p×d, α, G0, ze, and w.
2: For i← 1 to ne do:
3: Remove xe

i,. from the its local row cluster.
4: Sample zei according to Eq. 1a and Eq. 1b.
5: Add xe

i,. to its new local row cluster.
6: For k ← 1 to Ke do:
7: For j ← 1 to p do:
8: Compute T e

k,j and Se
k,j as defined in Eq. 2 and Eq. 3, respectively.

9: Output: Updated row partition ze, sufficient statistics Se, sizes of each cluster.

4.2 Master level

At this level, the objective is to estimate the global row and column partition given sufficient statistics, local cluster
sizes, and the prior. In the following, we detail these two steps:
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4.2.1 Global row partition estimation

The global row membership z is estimated by clustering the local row clusters. Instead of assigning the rows sequentially
and individually to their row cluster, we assign the batch of rows that already share the same local row cluster to a
global row cluster. Hence, the rows assigned to the same global row cluster will share the same global row membership.
Since the workers operate asynchronously, the results are joined in a streaming way using the Reduce function without
waiting for all workers to finish their tasks.

Let Se1 , Se2 ,Ke1 and Ke2 be the sets of sufficient statistics and the number of local row clusters returned by two workers
e1 and e2 respectively. The goal is to cluster the local row clusters {xe1

1,·, · · · ,x
e1
Ke1 ,·} and {xe2

1,·, · · · ,x
e2
Ke2 ,·}. To

perform such clustering, we proceed as follows: we first set the initial cluster partition equal to the local partition inferred
in cluster e1. Then, for each h ∈ {1, · · · ,Ke2}, we sample ze2h , the membership of xe2

h,· from p(ze2h | z
e2
−h, X,G0, α) ∝{

nkp(x
e2
h,· | z

e2
h = k,Xk,·, G0), existing row cluster k, (4a)

αp(xe2
h,· | G0) new row cluster, (4b)

where nk is the size of global row cluster k, Xk,· the content of global row cluster k, and ze2−h = {ze2h′ |h′ ̸= h}. The
joint posterior and the joint prior predictive distributions (Eq 4a, and Eq 4b respectively) are computed analytically by
only using sufficient statistics, i.e., without having access to the content of local and global clusters:

p
(
xe
h,· | G0

)
= π−ne

h
d
2 · κ

d/2
0

(κe
h)

d/2
· Γd (ν

e
h/2)

Γd (ν0/2)
· |Ψ0|ν0/2

|Ψe
h|

νe
h/2

where | · | is the determinant, Γ denotes the gamma function, and the hyper-parameter (µe
h, κ

e
h,Ψ

e
h, ν

e
h) are updated

using the sufficient statistics:

µe
h =

κ0µ0 + ne
hT

e
h

κe
h

, κe
h = κ0 + ne

h, νeh = ν0 + ne
h,

Ψe
h = Ψ0 + Se

h +
κ0n

e
h

κe
h

(µ0 − T e
h) (µ0 − T e

h)
T
,

where T e
h = 1

p

∑p
j=1 Th,j and Se

h = 1
p

∑p
j=1 S

e
h,j . Moreover, we have

p(xe
h,· | zeh = k,Xk,·, G0) = π

−dne
h

2 ·
κ
d/2
k

(κe
h)

d/2
· Γd (ν

e
h/2)

Γd (νk/2)
· |Ψk|νk/2

|Ψe
h|

νe
h/2

where the posterior distribution parameters (µk, κk,Ψk, νk) associated to the global cluster k are updated from the
prior as follows:

µk =
κ0µ0 + nkTk

κk
, κk = κ0 + nk, νk = ν0 + nk,

Ψk = Ψ0 + Sk +
κ0nk

κk
(µ0 − Tk) (µ0 − Tk)

T
,

with Tk and Sk the aggregated sufficient statistics when local clusters are assigned to the same global cluster. They are
given by:

Tk = 1
nk

∑
e,h| ze

h=k n
e
h · T e

h , (5)

Sk =
∑

e,h| ze
h=k S

e
h +

∑
e,h| ze

h=k

(
nh
e · T e

h · T e
h
T
)
− nk · Tk · TT

k . (6)

This step consists of joining workers’ local row clusters in a streaming way. The recursive joining process stops when
the global row partition is estimated. If K(e1,e2) is the number of inferred global row clusters, then the process stops
when

∑K(e1,e2)

k=1 nk = n. The procedure is detailed in the algorithm 2.

4.2.2 Column memberships estimation

Given the sufficient statistics S1,S2, · · · ,SE , the global row partition z, the prior G0, and the concentration parameter
β, the objective is to update the column partition w = (wj)p, each wj is drawn according to p(wi|w−j , z, X,G0, β) ∝{

pkp(x·,j | z,w−j , X−j , G0, β), existing column cluster l, (7a)
βp(x·,j | z, G0) new column cluster, (7b)
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Algorithm 2 Join workers results (Reduce Function)
1: Input: Se1 , Se2 , α and prior G0.
2: Initialize global membership z according to ze1 .
3: For each h ∈ Ke2 do:
4: Sample ze2h according to Eq. 4a and Eq. 4a.
5: Add xe2

h to its new global row cluster.
6: Update the membership vector z.
7: For k ← 1 to K(e1,e2)do:
8: Compute Sk and Tk according to Eq. 5 and Eq 6.
9: Output: Updated row partition z, aggregated sufficient statistics and clusters sizes.

with x.,j the j-th column and X−j the dataset without column j. Similarly, the joint posterior predictive and the joint
prior predictive distributions (Eq 7a, and Eq 7b respectively) are computed analytically without having access to the
columns, but only by using sufficient statistics. In fact, we have:

p (x·,j | z, G0) =

K∏
k=1

p (xk,j |G0)

with K the global number of inferred row clusters, and xk,j the element of column j that belong to the row cluster k.
We have:

p (xk,j |G0) = π−pk,j× d
2 · κ

d/2
0

κ
d/2
k,j

· Γd(νk,j/2)

Γd(ν0/2)
· |Ψ0|ν0/2

|Ψk,j |νk,j/2

with pk,j the cardinal of xk,j . The updated hyper-parameters are obtained with:

µk,j =
κ0µ0 + pk,jTk,j

κk,j
, κk,j = κ0 + pk,j , νk,j = ν0 + pk,j ,

Ψk,j = Ψ0 + Sk,j +
κ0pk,j
κk,j

(µ0 − Tk,j) (µ0 − Tk,j)
T
.

Moreover, the posterior predictive distribution is computed as follows:

p(x·,j | z,w−j , X−j , G0, β) =

K∏
k=1

p (xk,j |Gk,l)

with Gk,l the posterior distribution associated with block (k, l) (i.e., row cluster k and column cluster l). We have:

p (xk,j |Gk,l) = π−pk,j× d
2 ·

κ
d/2
k,l

κ
d/2
k,j

· Γd(νk,j/2)

Γd(νk,l/2)
· |Ψk,l|νk,l/2

|Ψk,j |νk,j/2

with (µk,l, κk,l,Ψk,l, νk,l) the block posterior distribution parameters given by:

µk,l =
κ0µ0 + pk,lTk,l

κk,l
, κk,l = κ0 + pk,l, νk,l = ν0 + pk,l,

Ψk,l = Ψ0 + Sk,l +
κ0pk,l
κk,l

(µ0 − Tk,l) (µ0 − Tk,l)
T
.

With Tk,l and Sk,l, the aggregated sufficient statistics obtained when local clusters are assigned to the same global block
(k, l), and they are computed as follows:

Tk,l =
1

pk,l

∑
e,h| ze

h=k,w=l

peh,l · T e
h,l

Sk,l =
∑

e,h| ze
h=k,w=l

Se
h,l +

∑
e,h| ze

h=k,w=l

(
peh,l · T e

h,l · T e
h,l

T
)
− pk,l · Tk,l · TT

k,l

where pk,l is the number of cells in the global cluster (k, l). The column partition update is detailed in algorithm 3.
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Algorithm 3 Column clustering
1: Input: Sufficient statistics, row partition, β and prior G0.
2: For j ← 1 to p do:
3: Remove x.,j from its column cluster.
4: Sample wj according to Eq 7a, and Eq 7b.
5: Add x.,j to its new column cluster.
6: Output: Column-partition w.

5 Experiments

To evaluate our approach, we conducted several experiments. Firstly, we compare our distributed algorithm with
other state-of-the-art co-clustering and clustering algorithms in terms of row clustering performance on synthetic
and real-world datasets. Secondly, we compare the execution time and clustering performance of our distributed
algorithm DisNPLBM and the centralized NPLBM [4] on synthetic datasets with different row sizes. Lastly, we
investigate the scalability of DisNPLBM by increasing the number of nodes while keeping the number of rows fixed.
The clustering performance is evaluated using the clustering metrics Adjusted Rand Index (ARI) [15] and Normalized
Mutual Information (NMI) [16].

5.1 Experiment settings

In the following experiments, we use an uninformative prior NIW as in [4]. Therefore, we set the NIW hyper-parameters
as follows: µ0, and the matrix precision Ψ0 are respectively set to be empirical mean vector and covariance matrix of
all data. κ0 and ν0 are set to their lowest values, which are 1 and d+ 1, respectively, where d is the dimension of the
observation space. The initial partition consists of a single cluster, and the algorithms run for 100 iterations.

The distributed algorithm is executed on the Neowise machine (1 CPU AMD EPYC 7642, 48 cores/CPU) and Gros
machines (1 CPU Intel Xeon Gold 5220, 18 cores/CPU), both hosted by Grid50001. For enhanced portability and
deployment flexibility, DisNPLBM is containerized using the Docker image bitnami/spark 3.3.0. We employ Kubernetes
for orchestrating Docker images and deploy the Kubernetes cluster on Grid5000 using Terraform2.

5.2 Clustering performance

We first evaluate the row clustering performance of our algorithm on both synthetic and real-world datasets; we compare
its results with two co-clustering algorithms, NPLBM [4] and LBM [2], and two clustering algorithms, K-means and
Gaussian mixture model (GMM). We applied the algorithms to 4 datasets: Synthetic dataset of size 150×150, generated
from 10×3 Gaussian components. Wine dataset [17] represents a chemical analysis of three types of wines grown in the
same region. The dataset consists of 178 observations, 12 features, and 3 clusters. We also apply the algorithms to two
bioinformatics datasets Chowdary (104 samples, 182 genes, and 2 clusters) [18] and Nutt (22 samples, 1152 genes, and
2 clusters) [19]. Each sample’s gene expression level is measured using the Affymetrix technology leading to strictly
positive data ranging from 0 to 16000. we apply the Box-Cox transformation [20], to make the data Gaussian-like.
Since the number of Genes is much greater than the number of samples we distribute the columns across the workers to
achieve scalability, this is legitimate since the row and column clustering are symmetric in our case.

Table 1 presents the mean and standard deviation of ARI and NMI across 10 launches for each method on each
dataset. Our method outperformed other approaches in the Bioinformatics datasets. Additionally, it has estimated
the true clustering structure in the synthetic dataset. While NPLBM and LBM slightly outperform our method on the
Wine dataset, our approach still yields satisfying results, surpassing traditional methods like GMM and K-means. It’s
crucial to note that this experiment focuses on comparing clustering performance, without considering execution times
due to different inference algorithms. Figure 1 illustrates the Heatmaps of Chowdary data before DisNPLBM and
reordered data after DisNPLBM. In the recorded data, there is a visible checkerboard pattern distinguishing co-clusters.
Co-clustering simultaneously clusters samples and genes, revealing groups of highly correlated genes with distinct
correlation structures among different sets of individuals, such as between disease and healthy individuals or different
types of disease. This may allow to identify which genes are responsible for some diseases.

1https://www.grid5000.fr/
2https://www.terraform.io/

6

https://www.grid5000.fr/
https://www.terraform.io/


Distributed NPLBM

Dataset DisNPLBM NPLBM LBM GMM K-means

Synthetic ARI 1.00± 0.00 1.00± 0.00 0.42± 0.03 0.38± 0.05 0.39± 0.01
NMI 1.00± 0.00 1.00± 0.00 0.78± 0.02 0.70± 0.02 0.71± 0.01

Wine ARI 0.52± 0.03 0.56± 0.04 0.56± 0.07 0.51± 0.07 0.50± 0.04
NMI 0.59± 0.02 0.65± 0.03 0.64± 0.03 0.64± 0.03 0.64± 0.02

Chowdary ARI 0.78± 0.01 0.07± 0.01 0.65± 0.00 0.74± 0.01 0.75± 0.01
NMI 0.68± 0.02 0.11± 0.01 0.58± 0.01 0.63± 0.01 0.64± 0.01

Nutt ARI 0.58± 0.01 0.56± 0.02 0.54± 0.04 0.08± 0.00 0.11± 0.04
NMI 0.74± 0.01 0.74± 0.01 0.68± 0.02 0.28± 0.02 0.30± 0.00

Table 1: The mean and the standard deviation of ARI and NMI over 10 runs on different datasets. The best result within
each row is marked as bold.

Figure 1: Heatmaps of Chowdary data. The first row represents the original data. The second row represents the
reordered data after DisNPLBM.

5.3 Comparison of the distributed and centralized approaches

We compare the execution times and clustering performance of the distributed and the centralized NPLBM. We execute
both algorithms on synthetic datasets of sizes n× p× d, where n ∈ {20K, · · · , 100K}, p = 90 and d = 1 generated
from K × L Gaussian components, with K = 10 and L = 3 (i.e., K = 10 row clusters and L = 3 column clusters).
We stop at n = 100K because the centralized version is too slow; running over 100K observations would take too much
time. The distributed algorithm is executed on the Neowise machine in local mode using 24 cores. The centralized
algorithm is executed on the same machine using one core.

n
ARI NMI K̂ × L̂ Running time (s)

Dis. Cen. Dis. Cen. Dis. Cen. Dis. Cen.

20K 1.0 1.0 1.0 1.0 30 30 400.21 2265.69
40K 1.0 1.0 1.0 1.0 30 30 693.02 6452.78
60K 1.0 1.0 1.0 1.0 30 30 1122.80 10511.01
80K 1.0 1.0 1.0 1.0 30 30 1373.04 19965.01
100K 1.0 1.0 1.0 1.0 30 30 1572.90 41897.12

Table 2: ARI, NMI, number of inferred block clusters (K̂ × L̂), and the running time in seconds achieved by the
distributed (Dis.) and centralized (Cen.) algorithms.

Table 2 reports the clustering metrics ARI, NMI, number of inferred block clusters (K̂ × L̂), and the running times
obtained by the centralized and distributed inference algorithms on datasets with different row sizes. The results show
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Cores ARI NMI K̂ × L̂ Running time (s)

2 1.0 1.0 30 88943.45
4 1.0 1.0 30 27964.73
8 0.99 0.99 30 16202.15
32 0.98 0.99 33 2715.80
64 0.98 0.99 33 1861.85

Table 3: ARI, NMI, number of inferred block clusters (K̂ × L̂), and the running time in seconds achieved by the
distributed approach when distributing on different number of cores.

that our approach considerably reduces the execution time. For example, it is reduced by a factor of 26 for a dataset with
100K rows. On the other hand, we remark that both the cen distributed and centralized methods performed very well in
terms of clustering with values of 1 indicating perfect clustering. Moreover, both methods inferred the true number of
clusters. Overall, the distributed approach runs much faster than the centralized method without compromising the
clustering performance which makes it more efficient in terms of computational time.

5.4 Distributed Algorithm Scalability

We now investigate the scalability of our approach by increasing the number of cores up to 64 in a distributed computing
environment. We employ a dataset with n = 500K rows, p = 20 columns, and d = 1 (representing the observation
space dimension). The dataset is generated from K × L Gaussian components, where K = 10 is the number of row
clusters and L = 3 is the number of column clusters. To conduct this evaluation, we deploy a Kubernetes cluster using
up to 6 Gros Machines. Table 3 presents clustering metrics ARI and NMI, the number of inferred block clusters, and
running time as the number of cores increases. The running time significantly decreases with an increasing number of
cores, with the execution time reduced by a factor of 48 when using 64 cores compared to two cores. This demonstrates
the efficient scalability of our algorithm with the number of workers. It’s worth noting a slight overestimation of the
number of clusters with more cores. Additionally, there is a slight decrease in ARI and NMI scores. Nevertheless, our
approach still achieves very high clustering metrics and accurately estimates the number of clusters.

6 Conclusion

This article presents a novel distributed MCMC inference for NPLBM. NPLBM has the advantage of estimating the
number of row and column clusters. However, the inference process becomes too slow when dealing with large datasets.
Our proposed method achieves high scalability without compromising the clustering performance. Our future research
will explore the potential extension of this method to the multiple Coclustering model.
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