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Abstract. A human author can write any length of story without los-
ing coherence. Also, they always bring the story to a proper ending, an
ability that current language models lack. In this work, we present the
LongStory for coherent, complete, and length-controlled long story gen-
eration. LongStory introduces two novel methodologies: (1) the long and
short-term contexts weight calibrator (CWC) and (2) long story struc-
tural positions (LSP). The CWC adjusts weights for long-term context
Memory and short-term context Cheating, acknowledging their distinct
roles. The LSP employs discourse tokens to convey the structural posi-
tions of a long story. Trained on three datasets with varied average story
lengths, LongStory outperforms other baselines, including the strong
story generator Plotmachine, in coherence, completeness, relevance, and
repetitiveness. We also perform zero-shot tests on each dataset to assess
the model’s ability to predict outcomes beyond its training data and val-
idate our methodology by comparing its performance with variants of
our model.

Keywords: Long Story generation · Completeness · CWC · LSP

1 Introduction

The story generation task is one of the most challenging problems in natural lan-
guage processing since it requires writing long lengths with a consistent context.
Existing studies have tried to solve this problem but have failed to generate
variable lengths of stories since they have only considered fixed lengths when
generating stories.

Longformer[2] has tried to solve this problem of handling longer sequences
by combining global and local attention in sliding windows. However, they only
focused on increasing the input context window size. Their maximum generation
length is only 1,024 tokens. Short-length problems in text generation also occur
in recent large language models such as GPT-4[5]. Plug-and-blend[3] has also
covered a similar problem, but the length limitation remains since it only aimed
to control a few sentences.

To address this challenge, a recursive paragraph generation approach is nec-
essary to compose long stories, given the length limitations imposed by existing
language models. However, this recursive generation of stories may cause unde-
sirable forgetting of the previous context since the information leak may occur
in the recursive process of information transfer (coherence)[15]. Also, existing
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studies have mentioned that language models tend to repeat the same story in
a recursive generation setting. (variety and repetitiveness)[40,8].

Thus, previous works [14,15,8] have tried to define coherence and repetitive-
ness metrics and used them to measure the ability of story generators. However,
their attempts are also limited only to short sentence generation problems and
have never considered completeness. Completeness is the ability to conclude
a story of any length properly. It is a significant metric not only for evaluating
story generation but also for a wide range of open-domain generation and di-
alogue system tasks. Therefore, in our model evaluation, we consider not only
coherence and repetitiveness but also prioritize completeness as a critical mea-
sure of performance.

In this paper, we tackle this challenging problem by introducing a novel long
story generator, Coherent, Complete and Length Controlled Long story Genera-
tor(LongStory), which covers from a few hundred tokens to 10k tokens length,
not limited to only a few sentences. The LongStory utilizes two novel meth-
ods: (1) long and short-term contexts weight calibrator (CWC) and (2) long
story structural positions (LSP) to tackle coherence and completeness. Specifi-
cally, we implement the CWC using BERT-tiny to calibrate the weight to which
long-term and short-term contexts are utilized since both contexts contribute
differently in every paragraph when writing a story. For the LSP, we use dis-
course tokens, which means the order of paragraphs, to give information about
the structural positions of paragraphs to the story generator (e.g., < front >,
< middle >,< ending >, < next is ending >). Our model uses more abundant
discourse tokens than the previous study [8] since a detailed understanding of
story structure is essential to generate much longer posts.

We use three diverse story generation datasets with varying average lengths
to train our model on representations of different story lengths. We introduce
quantitative metrics for coherence, completeness, and repetitiveness, evaluating
the model’s performance against other baselines, including the established story
generator Plotmachine[8]. The experimental results for three story generation
datasets demonstrate that our model outperforms the other baselines in co-
herence, completeness, and relevance. Surprisingly, our model also shows better
results in repetitiveness, suggesting that our methods are effective for the variety.
Furthermore, we performed zero-shot tests on each dataset to assess how well
our model predicts outcomes in settings beyond its training data. Additionally,
our analysis of the augmented CWC version suggests that elevating relevance
does not always translate to improvements in coherence and completeness.

The main contributions of this paper are (1). a new open-domain met-
ric called completeness. (2) a new challenge, Coherent, Complete and Length
Controlled Long story Generation (LongStory), incorporating CWC and LSP
methodologies, and (3) the presentation of datasets with varying average docu-
ment lengths along with zero-shot tests for them.

2 Related Works
Many contemporary automatic story generation models have employed prompt
engineering strategies, manipulating input prompts for large pretrained language
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models like GPT-3[9,3,15]. Despite the effectiveness of these black-box models,
they could not directly enhance the internal structure for optimized performance.
In contrast, our approach focuses on directly improving the structural aspects
of existing language models.

2.1 Neural Story Generation

Story generators using neural networks have been developed in various ways
[4,11,30,20,37]. The main approaches have included outline-based generation
[4,8,9,15,30,32], event graph-based [10,17], goal-oriented methodologies [18,19],
and common sense reasoning [20,21,39]. Outline-based generation methods often
involve interpolating plot keywords[8,30]. Our model also uses keywords to plan
plots and create relevant stories. Event graph-based approaches have proven
highly effective, but only if given a detailed plot of the entire article. Our model
uses keywords for the entire story but not the plot of the story, thus perform-
ing a more challenging task. Goal-oriented methodologies have aimed to make
the story’s characters achieve given goals, akin to controlling the ending of a
story[6,14]. Common sense inference methods have focused on generating realis-
tic texts by training on common sense datasets.

Length-Controllable Story Generation. Many models have generated text within
a fixed range of length. The length has been mostly determined when select-
ing the training datasets. For example, Plotmachine [8] has fixed the number
of paragraphs it generates, while EtriCA [10] and Fusion [4] also have set their
generation lengths by their training dataset. Re3 [9] has generated narratives by
applying pre-trained GPT-3 [11], and the length has been adjusted by manipu-
lating the prompts to GPT-3. However, Re3 has not solely focused on controlling
length. As such, it has not been specifically designed to ensure that the models
generate without losing coherence and completeness with various lengths.

2.2 Recursive Models

Due to finite parameters, there has always been a limit to the length a language
model can generate at once. While Longformer[2] and GPT-4[5] have introduced
5K or even 100K context windows, their output length remains only a few thou-
sand tokens at most. In contrast, human writers can produce thousands of pages
without encountering such limitations. This reality implies the necessity of em-
ploying a language model recursively [8,9,30].

2.3 Autometic metrics

In NLP generation tasks, traditional evaluation methods commonly involve met-
rics such as ROUGE [25], BLEU [26]. These metrics predominantly rely on
n-gram matching between labels and predictions. However, applying these eval-
uation methods to the story generation task may not be sufficient. The reason
lies in the fact that a well-crafted story may not necessarily exhibit similarity
to the label; in fact, a story resembling the label might score poorly in terms of
diversity and creativity [28,31]. In our case, we additionally employ coherence,
completeness, and repetitiveness as the primary evaluation metrics along with
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the ROUGE scores. While coherence and repetitiveness is a well-established met-
ric in many natural language generation tasks[6,8,9,15,29,30], we are the first to
use completeness as a metric.

3 Methodology

Fig. 1. Model architecture. LongStory takes the keywords of the entire story and the
discourse tokens(LSP) representing the order of the target paragraphs as input. The
BERT-tiny serves as the long and short-term context weight calibrator (CWC), deter-
mining the degree to which long-term and short-term contexts are employed. The CWC
takes the discourse tokens and the last generated paragraph as inputs and outputs the
optimal β and γ(defined as 1-α-β) for every paragraph. While the α is a hyperparam-
eter applied to input embedding, β is a learnable parameter for the long-term context
Memory(M t) and short-term context Cheating(Ct)

3.1 Task Description

Our challenge can be described as follows : Given keywords K=(k1,k2,k3...),
discourse tokens Dt=(dt1,d

t
2,d

t
3...) (each ki,d

t
i is a token), and a separation to-

ken [SEP], an input Xt=(k1,[SEP],k2,[SEP],k3,...,[SEP],d
t
1,d

t
2,d

t
3...). The model

should generate each t-th paragraph recursively: Y t=(yt1,y
t
2,y

t
3,...) (each yti is a

sentence, a set of tokens) from given contexts of previous paragraphs and the in-
put Xt, which is coherent and completive. The model should minimize negative
log-likelihood loss LLM of each paragraph t :

LLM = −
n∑

i=1

logP (ytj |yt<j , X
t) (1)

logP (ytj |yt<j , X
t) = softmax(Ht

jW + b) (2)

Ht
j = LM(Xt,M t, Ct) (3)

where LM is an attention-based language model, Ht
j is the j-th position

of the language model’s last hidden state, M t is the Memory which saves the
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long-term context by the t-th paragraph, and Ct is Cheating which keeps the
short term context from the very last paragraphs it generated. The M t ensures
a sustained understanding of the broader context, while Ct contributes to short-
term continuity.

3.2 Long and short term contexts weight calibrator(CWC)

BERT-tiny is inserted into our model as a calibrator and trained on the same
negative log likelihood loss, LLM . The pooler output of BERT-tiny is used for
the determination of the context weight, β, γ.

Bt
k = Bert(Dt, Y t−1) (4)

β = (1− α) · σ(Bt
1W + b), γ = 1− α− β (5)

where α ∈ [0, 1] is a hyperparameter1, β is a learnable parameter for the
long-term context Memory(M t) and short-term context Cheating(Ct), σ is the
sigmoid function, Bt

k is the k-th position of the last hidden state of BERT-tiny,
and Bt

1 is the position of [CLS] token of it, often called the ‘pooler output.’ The
long and short-term contexts, M t and Ct, are computed as :

gt = σ(W1M
t−1 +W2h

t−1), M̂ t = tanh(W3M
t−1 +W4h

t−1) (6)

M t = (1− gt)⊙M t−1 + gt ⊙ M̂ t (7)

Ct = tanh(Emb(yt−1
n−c, ..., y

t−1
n−1, y

t−1
n )) (8)

where Emb denotes a positional embedding layer that involves the element-
wise sum of word embeddings and positional encoding vectors, ht−1 is the aver-
age embedding of Y t−1, and c is a hyperparameter determining the size of the
cheating window. We utilized the same computation process of initializing and
updating M t as introduced in Plotmachine. Finally, we define the computation
of an attention block within a LM as follows :

LM(Xt,M t, Ct) = αAttention(Q,K, V ) + βAttention(Q,M t,M t)

+ γAttention(Q,Ct, Ct)
(9)

where Q=Emb(Xt)WQ, K=Emb(Xt)WK , V=Emb(Xt)WV , and Attention
is a typical transformer attention block[24]. By weighting the two contexts, the
model can generate cohesive and contextually connected text.

3.3 Long story structural positions (LSP)

We must provide structural positional information for each paragraph[38]. All
discourse tokens are of the following types < intro >, < body >, < tail >,
< front >, < middle >, < ending >, < next is ending >. < intro > corre-
sponds to the first paragraph, < tail > to the last paragraph, and < body >

1 We covered a test where alpha is also a learnable parameter rather than a constant
hyperparameter in sec.4.3.2. In this test, the BERT-tiny determines α, β, and γ
independently, and finally divides by their sum, so that each variable adds up to 1.
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to everything in between as introduced in the previous work[8]. However, since
our task is to generate much more paragraphs, < body > token is not suffi-
cient to give representation to our model. Therefore, four tokens (< front >,
< middle >, < ending >, < next − is − ending >) are added : < front > for
the first 1/3, < middle > for the next 1/3, and < ending > for the last 1/3.
< next− is− ending > is for the paragraph immediately before the end, as its
name implies.

3.4 Base Pretrained Model

We finetune a Pretrained Language Model(PLM) based on Transformer[24] for
this task. Although our algorithm is model-agnostic so that it can apply any of
PLM, we choose BART[12] because (1) it had learned denoising sequences to
efficiently extract information from a given input, appropriate for our task as
the model should extract representations of the inputs and contexts. (2) it is free
to download from online2. However, our model holds the potential for even more
excellent performance when applied to larger language models in the future.

4 Experiments
4.1 Experiments Set-up

4.1.1 Datasets. We train our models on Writing Prompts[4], Booksum[16],
and Reedsy Prompts3 datasets. For Booksum, we use the ‘Chapter’ column as
a dataset. Since our task is to generate various lengths of stories with coher-
ence and completeness, we must prepare datasets of different lengths. We use
the same train/valid/test split from the original papers[4,16], but since Reedsy
Prompts is not used in any other works, we split it into train/valid/test sets
of 60k/4k/4k. The NLTK library’s sentence tokenizer is utilized for document
segmentation into sentences during truncation, with each sentence sequentially
compiled into a paragraph, ensuring a maximum length of 200 tokens per para-
graph. For each dataset, we extract keywords using the RAKE algorithm[13] to
make keyword-story pairs. These keywords are used as input for the model to
write each paragraph of a story.

Avg # of Tokens Avg # of Paragraphs # of documents
WritingPrompts 768 3.4 300k
Booksum 6065 27.7 12k
ReedsyPrompts 2426 12.3 68k

Table 1. The average number of tokens, paragraphs per document, and the number
of documents used in experiments.

4.1.2 Baselines. We mainly compare our model to Plotmachine, the only
model that performs paragraph-level recursive story generation. We also com-
pare the performance of our model against GPT-2 and BART with the recursive

2 https://huggingface.co/facebook/bart-large
3 We crawl this dataset from https://blog.reedsy.com/short-stories/.

https://huggingface.co/facebook/bart-large
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generation setting, no applied memory, and cheating contexts; thus, it does not
utilize the CWC. Plotmachine receives only the discourse tokens from the origi-
nal paper, while other baselines are given the same as ours. We also compare our
model with the ablated version. The LongStory with no memory (LongStory¬M ),
LongStory with no cheating (LongStory¬C) and LongStory with no new discourse
(LongStory¬D) show the effectiveness of context vectors and newly added dis-
course tokens.
4.1.3 Implementation Details. Experiments are run on an NVIDIA RTX
A5000 GPU server. For training steps, we use the teacher-forcing method so each
label is used for not only Yt but also contexts. We set the hyperparameter α = 1

2
because providing the model with sufficient inductive bias for input embeddings
was beneficial for coherence and completeness. We also configured the size of the
cheating window c up to the last three paragraphs it generated. For generation,
we use beam sampling with top k=50, top p=0.95, no repeat ngram size=3 and
repetition penalty=3.5[20] for every length of paragraphs. To reproduce Plotma-
chine, we refer to the author’s github repository.4.

4.2 Experimental Results

4.2.1 Coherence and Completeness. For the Coherence scorer, we divide
two consecutive paragraphs into true pairs and two randomly selected para-
graphs into fake pairs. We then train GPT-2 to use these constructed datasets
on a classification task to distinguish whether the two paragraphs are true or
fake folds[14,20], and convert the result of it into a score ∈ [0, 1] using sigmoid
function, as a Coherence score. We do the same for Completeness scorer, except
for defining the true fold with the last paragraphs and the fake fold with the
non-last paragraphs. It’s important to highlight that the reported Complete-
ness scores are calculated as the last paragraph’s Completeness score minus the
average Completeness scores of non-last paragraphs. This approach is chosen be-
cause an ideal story should generate a last paragraph appropriately and treat
the body distinctly. Regarding Coherence, as shown in table 2, our model is
the best or second best in the 5,10,19,30 paragraph length sample. Plotmachine
had a higher Coherence score than BART but lower than our model or GPT-2.
In the ablated analysis, LongStory¬C almost always outperforms LongStory¬M

and LongStory¬D on Coherence. This suggests that Memory is central to cap-
turing the natural flow between paragraphs. In the Completeness, our model
is the best for all lengths. LongStory¬M and LongStory¬C have no absolute
advantage in this column, so it is difficult to know exactly how Memory and
Cheating affect Completeness. Still, since our model performs the best, we can
say that a balanced mix of the two contexts improves performance. The re-
sults for LongStory¬D also suggest that the newly added discourse tokens help
improve Completeness.

4.2.2 Relevance. We also show the average ROUGE scores between the gen-
erated documents and the golden labels to evaluate how well the model repro-
duces the golden label from the keywords. This serves as a metric to assess the

4 https://github.com/hrashkin/plotmachines

https://github.com/hrashkin/plotmachines
https://github.com/hrashkin/plotmachines
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5 Paragraphs
R-1 R-2 R-L B2 B-3 B-4 B-5 Coherence Completeness AvgL

Golden Label 0.28 0.15 0.07 0.03 82.62 62.5 161
Plotmachine 29.85 7.15 28.16 0.47 0.33 0.23 0.16 60.19 2.47 192
BART 38.77 13.64 37.35 0.61 0.49 0.41 0.33 54.93 2.39 167
GPT-2 33.41 9.25 31.82 0.55 0.42 0.32 0.24 63.08 1.13 193
LongStory 39.41 13.50 37.84 0.49 0.36 0.27 0.20 65.13 21.15 158
LongStory¬M 39.69 13.66 38.20 0.51 0.38 0.29 0.22 59.38 -3.04 167
LongStory¬C 39.35 14.02 37.90 0.62 0.51 0.42 0.35 62.59 8.53 170
LongStory¬D 39.69 13.67 38.08 0.50 0.37 0.28 0.21 62.27 9.21 166

10 Paragraphs
R-1 R-2 R-L B2 B-3 B-4 B-5 Coherence Completeness AvgL

Golden Label 0.37 0.19 0.08 0.03 80.44 55.5 164
Plotmachine 30.34 7.74 28.87 0.62 0.47 0.34 0.25 64.17 3 195
BART 36.28 11.71 34.83 0.67 0.53 0.43 0.34 60.46 2.65 172
GPT-2 32.32 8.84 30.74 0.64 0.49 0.36 0.27 66.06 3.85 196
LongStory 37.46 12.11 35.82 0.59 0.43 0.31 0.23 64.8 21.15 166
LongStory¬M 37.32 12.05 35.72 0.61 0.45 0.34 0.25 58.4 3.59 171
LongStory¬C 37.06 12.11 35.49 0.67 0.53 0.43 0.34 63.24 6.56 170
LongStory¬D 37.54 12.30 35.86 0.60 0.44 0.33 0.25 63.4 11.12 171

20 Paragraghs
R-1 R-2 R-L B2 B-3 B-4 B-5 Coherence Completeness AvgL

Golden Label 0.45 0.24 0.12 0.05 80.13 57.66 166
Plotmachine 31.45 9.49 29.96 0.71 0.57 0.44 0.34 64.26 4.75 194
BART 35.43 12.29 34.02 0.74 0.62 0.51 0.42 61.37 -1.53 169
GPT-2 33.28 10.52 31.60 0.72 0.58 0.46 0.35 65.8 0.7 198
LongStory 36.85 12.69 35.22 0.68 0.53 0.40 0.31 64.6 6.73 169
LongStory¬M 36.72 12.78 35.17 0.70 0.55 0.43 0.33 58.3 -1.96 170
LongStory¬C 35.44 12.35 33.89 0.74 0.62 0.51 0.46 64.51 0.23 170
LongStory¬D 37.03 12.81 35.35 0.69 0.54 0.41 0.32 61.14 6.38 170

30 Paragraphs
R-1 R-2 R-L B2 B-3 B-4 B-5 Coherence Completeness AvgL

Golden Label 0.48 0.25 0.11 0.04 80.19 58.64 164
Plotmachine 28.85 8.89 27.58 0.75 0.62 0.49 0.38 63.24 6.7 193
BART 30.62 10.53 29.25 0.78 0.67 0.55 0.46 61.65 -0.61 164
GPT-2 29.43 9.78 28.06 0.76 0.62 0.49 0.37 65.13 -0.26 199
LongStory 32.24 10.97 30.90 0.73 0.58 0.45 0.35 65 23.9 163
LongStory¬M 31.81 10.96 30.23 0.74 0.60 0.47 0.37 57.76 19.43 167
LongStory¬C 29.96 10.16 28.76 0.79 0.67 0.56 0.46 64.32 -0.1 165
LongStory¬D 32.42 10.95 31.02 0.73 0.59 0.47 0.48 60.4 11.58 168

50 Paragraph
R-1 R-2 R-L B2 B-3 B-4 B-5 Coherence Completeness AvgL

Golden Label 0.53 0.30 0.15 0.06 78.06 52.4 166
Plotmachine 29.01 9.92 28.14 0.81 0.70 0.59 0.49 67.95 -9.08 167
BART 27.83 10.07 27.05 0.84 0.75 0.65 0.56 66.73 -5.66 167
GPT-2 28.03 9.94 27.17 0.84 0.73 0.62 0.52 67.73 3.9 198
LongStory 31.81 11.65 30.87 0.79 0.66 0.54 0.43 63.67 31.76 161
LongStory¬M 30.97 11.51 29.84 0.81 0.69 0.58 0.48 63.06 -10.47 168
LongStory¬C 27.87 9.94 27.12 0.84 0.74 0.64 0.54 68.99 20 170
LongStory¬D 30.99 10.80 30.09 0.81 0.69 0.58 0.48 63.25 21.68 167

Table 2. ROUGE-1,2,L scores, in-self-BLEU n-gram scores, Coherence, Completeness
scores, and the average length of a paragraph per 5,10,20,30,50 number of paragraphs.
These are results from the combined test datasets of Writing Prompts, Reedsy Prompts,
and Booksum. We bold the highest model scores in each column and underline the
second highest model scores.
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relevance of the keywords to the predictions. As shown in table 2, our model is
best for results with 50 paragraph lengths and second best in many cases. Our
model outperforms Plotmachine, GPT-2, and BART for all lengths of results.
In the ablated analysis, LongStory¬D scores the best, for the most part. This
shows that the newly added order tokens have little or even a negative effect on
relevance. However, in the repeatability test in the next section, LongStory¬D

performed worse than our model, which suggests that it reproduced the over-
all repetitive n-gram. For the most part, LongStory¬M performed better than
LongStory¬C , which means that Cheating was more effective than Memory in
relevance.

4.2.3 Repetitiveness. To see how much repetition occurs within a single
output, we calculate the n-gram BLEU score by taking one paragraph as a
hypothesis and the rest as a reference and averaging the results. We call the
averaged results the in-SELF BLEU score5. The higher in-SELF BLEU score
means that there are greater repetitions within the text and less diversity. As
shown in table 2, Our model performs best on the in-self-BLEU score for all
but five paragraphs length. For five paragraph lengths, Plotmachine performs
best, and ours is second highest. However, for longer results, our model is always
better. In the ablated analysis, LongStory¬M outperforms LongStory¬C and
BART. This suggests that Cheating prevented the model from over-attending
to past context or repeating n-grams irrelevant to the overall context. The better
performance of our model over LongStory¬D suggests that the order tokens we
added positively affected reducing repetition.

4.3 Further Analysis

4.3.1 Zero-shot test. To see how well LongStory can have representations
of the others, we do zero-shot tests on three models: WP,BK, and RP. As shown
in table 3, Writing Prompt is large enough to have some representation on other
types of test datasets, while Booksum and ReedsyPrompts are not. Total outper-
forms all others, underscoring the effectiveness of our methodology in integrating
these diverse datasets.

Writing Prompts Booksum Reedsy Prompts
RP BK Total WP RP Total WP BK Total

Coherence 38.55 43.75 65.78 56.84 48.62 58.70 57.56 47.79 62.11
Completeness -0.1 1.51 27.06 1.67 -4.03 12.37 7.75 0.93 21.29

Table 3. Zero-shot test results averaged across test datasets of 5, 10, 20, 30, and 50
paragraphs. WP, RP, and BK are our models trained on Writing Prompts, Reedsy
Prompts, and Booksum only, respectively. Total is the model trained on all three
datasets combined. We bold the best results for each dataset.

5 Note that in-self-BLEU score is not the same as self-BLEU score[8]. The self-BLEU
score has taken one whole generated document as a hypothesis and the others as
references, which cannot represent inner repetitiveness.
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4.3.2 Augmented CWC. We experiment with calibrating not only memory
and cheating but also the proportion of input embeddings in the attention block.
Table 4 shows that the augmented version is better than ours on ROUGE-1,2,
L scores but worse on Coherence and Completeness. This indicates that models
excelling in relevance may not necessarily outperform in natural flow.

R-1 R-2 R-L Coherence Completeness
Aug-LongStory 38.25 13.06 36.65 61.01 5.25
LongStory 38.04 12.90 36.46 64.92 18.36

Table 4. A comparison of the Augmented version of our model with the averaged
scores of ROUGE-1, ROUGE-2, ROUGE-L, Coherence, and Completeness across test
datasets of 5, 10, 20, 30, and 50 paragraphs. We bold the best results for each dataset.

5 Conclusion
We introduce a novel task, Length Controllable Story Generation, aimed at re-
cursively producing paragraph-by-paragraph stories of considerable length while
ensuring coherence and completeness. To achieve this, we employ the long- and
short-term contexts weight calibrator (CWC) and long story structural posi-
tions (LSP). The model is trained on three distinct datasets with varying aver-
age lengths, enabling it to learn representations of different lengths. Quantitative
analysis demonstrates that our model excels in generating longer stories that ex-
hibit coherence, completeness, relevance, and reduced repetitiveness compared
to other baseline models.
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35. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-
decoder for statistical machine translation.arXiv preprint arXiv:1406.1078.

36. Welleck, S., Kulikov, I., Kim, J., Pang, R. Y., & Cho, K. (2020). Consistency
of a recurrent language model with respect to incomplete decoding.arXiv preprint
arXiv:2002.02492.

37. Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., & Choi,
Y. (2019). Defending against neural fake news. Advances in neural information
processing systems, 32.

38. Guan, J., Mao, X., Fan, C., Liu, Z., Ding, W., & Huang, M. (2021). Long text
generation by modeling sentence-level and discourse-level coherence. arXiv preprint
arXiv:2105.08963.

39. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Kiela,
D. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. Ad-
vances in Neural Information Processing Systems, 33, 9459-9474.

40. McCoy, R. T., Smolensky, P., Linzen, T., Gao, J., & Celikyilmaz, A. (2023). How
much do language models copy from their training data? evaluating linguistic nov-
elty in text generation using raven. Transactions of the Association for Computa-
tional Linguistics, 11, 652-670.


	LongStory: Coherent, Complete and Length Controlled Long story Generation 

