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Abstract Privacy-preserving neural networks have attracted increasing attention
in recent years, and various algorithms have been developed to keep the balance
between accuracy, computational complexity and information security from the
cryptographic view. This work takes a different view from the input data and
structure of neural networks. We decompose the input data (e.g., some images)
into sensitive and insensitive segments according to importance and privacy. The
sensitive segment includes some important and private information such as hu-
man faces and we take strong homomorphic encryption to keep security, whereas
the insensitive one contains some background and we add perturbations. We
propose the bi-CryptoNets, i.e., plaintext and ciphertext branches, to deal with
two segments, respectively, and ciphertext branch could utilize the information
from plaintext branch by unidirectional connections. We adopt knowledge distil-
lation for our bi-CryptoNets by transferring representations from a well-trained
teacher neural network. Empirical studies show the effectiveness and decrease of
inference latency for our bi-CryptoNets.

Keywords: Neural network · Encryption · Privacy-preserving inference.

1 Introduction

Recent years have witnessed increasing attention on privacy-preserving neural networks
[14,4,25], which can be viewed as a promising security solution to the emerging Ma-
chine Learning as a Service (MLaaS) [30,13,15]. Specifically, some clients can upload
their encrypted data to the powerful cloud infrastructures, and then obtain machine
learning inference services; the cloud server performs inference without seeing clients’
sensitive raw data by cryptographic primitives, and preserve data privacy.

Privacy-preserving neural networks are accompanied with heavy computational costs
because of homomorphic encryption [12,2], and various algorithms and techniques
have been developed to keep the balance between accuracy, information security and
computation complexity. For example, Brutzkus et al. proposed the LoLa network for
fast inference over a single image based on well-designed packing methods [4], and
Lou and Jiang introduced the circuit-based network SHE with better accuracies [27],
implemented with the TFHE scheme [7]. Dathathri et al. presented the compiler CHET
to optimize data-flow graph of HE computations for privacy-preserving neural networks
[10] . Yin et al. presented a comprehensive survey on privacy-preserving networks [39].
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Figure 1: An illustration for input data (e.g.,
some images1), which consists of two segments
with different importance and privacy.

Previous studies mostly encrypted the
entire input data and treated indiscrim-
inately. In some applications, however,
input data may consist of sensitive and
insensitive segments according to differ-
ent importance and privacy. As shown in
Figure 1, a fighter is more sensitive than
background such as sky and mountains in
a military picture, and a human face is more private than landscape in a photo.

This work presents new privacy-preserving neural network from the view of input
data and network structure, and the main contributions can be summarized as follows:

– We decompose input data (e.g., images) into sensitive and insensitive segments
according to importance and privacy. We adopt strong homomorphic encryption
to keep the security of sensitive segment, yet mingle some perturbations [11,38] to
insensitive segment. This could reduce computational overhead and perform private
inference of low latency, without unnecessary encryption on insensitive segment.

– We propose the bi-CryptoNets, i.e., ciphertext and plaintext branches, to deal with
sensitive and insensitive segments, respectively. The ciphertext branch could use
information from plaintext branch by unidirectional connections, but the converse
direction does not hold because of the spread of ciphertexts. We integrate features
for the final predictions, from the outputs of both branches.

– We present the feature-based knowledge distillation to improve the performance of
our bi-CryptoNets, from a teacher of convolutional neural network trained on the
entire data without decomposition.

– We present empirical studies to validate the effectiveness and decrease of inference
latency for our bi-CryptoNets. We could improve inference accuracy by 0.2% ∼
2.1%, and reduce inference latency by 1.15× ∼ 3.43× on a single image, and
decrease the amortized latency by 4.59× ∼ 13.7× on a batch of images.

The rest of this work is organized as follows: Section 2 introduces relevant work.
Section 3 presents our bi-CryptoNets. Section 4 proposes the feature-based knowledge
distillation. Section 5 conducts experiments, and Section 6 concludes with future work.

2 Relevant Work

Homomorphic encryption. Homomorphic Encryption (HE) is a cryptosystem that
allows operations on encrypted data without requiring access to a secret key [12]. In
addition to encryption function E and decryption function D, HE scheme provides two
operators ⊕ and ⊗ such that, for every pair of plaintexts x1 and x2,

D(E(x1)⊕ E(x2)) = x1 + x2 , D(E(x1)⊗ E(x2)) = x1 × x2 ,

where + and × are the standard addition and multiplication, respectively. Hence, we
could directly perform private addition, multiplication and polynomial functions over
encrypted data, by using ⊕ and ⊗ operators without knowing true values in plaintexts.

1 Download from ILSVRC dataset [38].
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Figure 2: Counts of HE multiplications and
activations for decomposed and entire image.
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Figure 3: The fast spread of ciphertext via
CNN layers.

The commonly-used HE cryptosystems include CKKS [6], BGV [3] and TFHE [7]
for privacy-preserving machine learning. The BGV and TFHE schemes support integer
and bits computations, while the CKKS scheme supports fixed-point computations. For
CKKS, a ciphertext is an element in the ring R2

p, where Rp = Zp[x]/(x
N + 1) is the

residue ring of polynomial ring, with polynomial degree N . In addition to HE, a recent
study introduced a new data encryption scheme by incorporating crucial ingredients of
learning algorithm, specifically the Gini impurity in random forests [37].

Privacy-preserving neural networks. Much attention has been paid on the privacy-
preserving neural networks in recent years. For example, Gilad-Bachrach et al. pro-
posed the first CryptoNets to show the feasibility of private CNN inference by HE
scheme [14]. Brutzkus et al. proposed the LoLa to optimize the implementation of
matrix-vector multiplication by different packing methods, and achieve fast inference
for single image [4]. In those studies, the ReLU activation has been replaced by squared
activation because the used HE schemes merely support polynomial functions. Lou and
Jiang presented a circuit-based quantized neural network SHE implemented by TFHE
scheme, which could perform ReLU and max pooling by comparison circuits to obtain
good accuracies [27]. Recent studies utilized the CKKS scheme to avoid quantization
of network parameters for better accuracies [9,25].

Knowledge Distillation. Knowledge distillation focuses on transferring knowledge from
a pretrained teacher model to a student model [22,26]. Traditional methods aimed
to match the output distributions of two models by minimizing the Kullback-Leibler
divergence loss [22]. Subsequently, a variety of innovative distillation techniques have
been developed. Romero et al. proposed Fitnets [31], which matches the feature acti-
vations, while Zagoruyko and Komodakis suggested matching attention maps between
two models [40]. Gou et al. gave an extensive review on knowledge distillation [17].

Threat model. Our threat model follows previous studies on private inference [1,28,8].
A honest but curious cloud-based machine learning service hosts a network, which is
trained on plaintext data (such as public datasets) and hence the network weights are
not encrypted [14]. To ensure the confidentiality of client’s data, the client could encrypt
the sensitive segment of data by using HE scheme and send data to the cloud server for
performing private inference service without decrypting data or accessing the client’s
private key. Only the client could decrypt the inference result by using the private key.

3 Our bi-CryptoNets

In this section, we will present new privacy-preserving neural network according to
different-level privacy of input data. Our motivation is to decompose input data into



4 M.-J. Yuan et al.

sensitive and insensitive segments according to their privacy. The sensitive segment
includes some important and private information such as human faces in an image,
whereas the insensitive one contains some background information, which is not so
private yet beneficial to learning algorithm.

Based on such decomposition, we could take the strongest homomorphic encryp-
tion to keep data security for sensitive segment, while mingle with some perturbations
[11,38] to the data of insensitive segment. This is quite different from previous private
inference [14,25], where homomorphic encryption is applied to the entire input data.

Notice that we can not directly use some previous neural networks to tackle such de-
composition with much smaller computational cost, as shown in Figure 2. We compare
with three private networks LoLa [4], SHE [27], CryptoDL [20], and two conventional
networks VGG16 and ResNet18. Prior networks can not reduce HE operations because
ciphertexts could quickly spread over the entire image via several convolution and
pooling operations, as shown in Figure 3.

Our idea is quite simple and intuitive for the decomposition of input data. We
construct a bi-branch neural network to deal with the sensitive and insensitive segments,
which are called ciphertext and plaintext branch, respectively. The ciphertext branch
can make use of features from plaintext branch by unidirectional connections, while the
converse direction does not hold because of the quick spread of ciphertexts. We take the
feature integration for final predictions from the outputs of two branches of network.

Figure 4 presents an overview for our new privacy-preserving neural network, and
it is short for bi-CryptoNets. We will go to the details of bi-CryptoNets in the following.

3.1 The bi-branch of neural network

We construct ciphertext and plaintext branches to deal with the sensitive and insensi-
tive segments of an input instance, respectively. The plaintext branch deals with the
entire input instance, where the insensitive segment is mingled with some perturbations
[11,38], while the sensitive segment is simply filled with zero. The ciphertext branch
tackles the sensitive segment with the homomorphic encryption due to its privacy.

The HE operations are restricted in the ciphertext branch to avoid the ciphertext
spread on plaintext branch. This could keep the proportion of HE operations in a stable
level, rather than previous close approximation to 1 as depth increases [14]. Hence,
our bi-branch structure could decease HE operations. Moreover, plaintext branch can
be computed with full precision for performing inference, rather than quantized homo-
morphic ciphertext in prior privacy-preserving neural networks [20].

3.2 The unidirectional connections

It is well-known that one great success of deep learning lies in the strong features
or representations by plentiful co-adaptations of neural network [21,35,16]. Our bi-
branch neural network reduces some co-adaptations of features obviously, to restrict
the spread of ciphertexts. Hence, it is necessary to strengthen features’ representations
by exploiting some correlations in bi-branches.

Notice that the ciphertext branch can make use of features from plaintext branch,
while the converse direction does not hold because of the spread of ciphertexts. In
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Figure 4: The overview of our proposed bi-CryptoNets, where grey layers are computed with
encrypted inputs, and other layers are computed with plaintext inputs.

this work, we consider the simple addition to utilize features from plaintext branch
as convolutional neural network [19,36,29]. Concatenation is another effective way to
utilize features [24,23], while it yields more HE operations and computational costs.

Table 1: The comparisons of latency (ms) for
three schemes and four operations.

HE Scheme AddPC AddCC MulPC MulCC

BGV 0.049 0.077 2.055 3.379
CKKS 0.039 0.077 0.173 0.390
TFHE 56.03 256.8 1018 1585

One reason for addition is of small com-
putational costs, since it yields relatively
few homomorphic additions between plain-
text and ciphertext, as shown in Table 1. We
compare with addition (AddPC) and multi-
plication (MulPC) between a plaintext and a
ciphertext, as well as addition (AddCC) and
multiplication (MulCC) between two cipher-
texts. We compare with four operations under three popular HE schemes: BGV [3],
CKKS [6] and TFHE [7], and it is evident that the AddPC has the smallest latency.

For unidirectional connections, we first resize the feature map of plaintext branch to
fit the addition with ciphertext branch, and then introduce a channel-rotation for cipher-
text channel to extract some information from multiple plaintext channels. Specifically,
suppose there are L layers in ciphertext and plaintext branches, and denote by Fc,l and
Fp,l their respective l-th layer. For every l ∈ [L], we consider the following two steps:

i) Resizing feature map of plaintext branch
We begin with the resizing function

yp,l = Resizel(xp,l) : Rhp,l×wp,l×chp,l → Rhc,l×wc,l×chp,l

where xp,l ∈ Rhp,l×wp,l×chp,l denotes the output feature maps from the l-th plaintext
layer Fp,l with hp,l rows, wp,l columns and chp,l channels, and hc,l and wc,l denote the
number of row and column in ciphertext branch.

For resizing function, a simple yet effective choice is the cropping [32], which
maintains the center features of size hc,l×wc,l×chp,l because those features can capture
more important information around the sensitive segment. We can also select pooling
or convolution operations for resizing function [19].

ii) Channel-rotation for ciphertext channel
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We now introduce the channel-rotation function as follows:

zp,l = CRotl(yp,l) =
[
CRot1l (yp,l), · · · ,CRotil(yp,l), · · · ,CRotchc,l

l (yp,l)
]

where chc,l is number of channels in ciphertext branch, and CRotil(yp,l) denotes the i-th
channel of CRotl(x), that is,

CRotil(yp,l) =

chp,l∑
j=1

W i,j
CRot,l · y

j
p,l for i ∈ [chc,l] .

Here, yj
p,l ∈ Rhc,l×wc,l denotes the j-th channel of yp,l for j ∈ [chp,l], and WCRot,l =

(W i,j
CRot,l)chc,l×chp,l is the weight matrix for channel-rotation in the l-th layer.
The channel-rotation is helpful for ciphertext channels to extract useful information

automatically from plaintext channels. This is because channel-rotation could com-
press, rotate and scale different channels of plaintext feature maps, without the require-
ments of channel-wise alignments and identical numbers and magnitudes of channels.
Moreover, each channel, in connection with ciphertext branch, can be viewed as a
linear combination of multiple plaintext channels, rather than one plaintext channel.
Therefore, the ciphertext branch can get better information from plaintext branch and
achieve better performance with the help of channel-rotation.

After resizing and channel-rotation, the ciphertext branch can make use of features
from plaintext branch by addition. The unidirectional connections can be written as

xc,l+1 = Fc,l+1 (xc,l + zp,l) = Fc,l+1 (xc,l + CRotl (Resizel(xp,l))) ,

where xc,l ∈ Rhc,l×wc,l×chc,l denotes the output feature maps of Fc,l with hc,l rows,
wc,l columns and chc,l channels.

Finally, it is feasible to improve computational efficiency by implementing plain-
text and ciphertext branches in parallel, because computing the plaintext branch and
unidirectional connections is much faster than that of ciphertext branch.

3.3 The feature integration

We now design a two-layer neural network to integrate the outputs from ciphertext and
plaintext branches. In the first layer, we split all neurons into two halves, one half for
ciphertext yet the other for plaintext. The plaintext neurons are only connected with the
outputs from plaintext branch, whereas the ciphertext neurons have full connections.
We take full connections in the second layer.

Specifically, there are n1 (even) and n2 neurons in the first and second layer, re-
spectively. Let xc ∈ Rnc and xp ∈ Rnp denote the flattened outputs from ciphertext and
plaintext branches with nc and np features, respectively. Then, the outputs of ciphertext
and plaintext neurons in the first layer can be given by, respectively,

x⟨1⟩
p = σ(W ′

p,1xp + b′1) , x⟨1⟩
c = σ(Wc,1xc +Wp,1xp + b1) ,
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where σ(·) is an activation function, b1, b′1 ∈ Rn1/2 are bias vectors, Wc,1 ∈ Rnc×n1/2

and Wp,1 ∈ Rnp×n1/2 are the weight for ciphertext neurons, yet W ′
p,1 ∈ Rnp×n1/2 is

the weight for plaintext neurons. The final output in the second layer can be given by

xout = σ(Wc,2x
⟨1⟩
c +Wp,2x

⟨1⟩
p + b2) ,

where b2 ∈ Rn2 is a bias vector, and Wc,2 ∈ Rn1/2×n2 and Wp,2 ∈ Rn1/2×n2 are the
weight matrices for ciphertext and plaintext neurons, respectively. Here, we consider
two-layer neural network for simplicity, and similar constructions could be made for
deeper neural networks based on the splitting of plaintext and ciphertext neurons.

4 Knowledge Distillation for bi-CryptoNets
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Figure 5: The overview of our feature-based
knowledge distillation.

Knowledge distillation has been an effec-
tive way to improve learning performance
by distilling knowledge from a teacher
network [22,17]. This section develops a
feature-based knowledge distillation for
bi-CryptoNets, as shown in Figure 5. The
basic idea is to supplement the represen-
tations of two branches of bi-CryptoNets
by imitating a teacher network.

For the teacher network, we learn
a classical convolutional neural network
from training data over the entire images without decomposition. Hence, the teacher
network has plentiful connections between different neurons, and strengthens the
intrinsic correlations for better performance.

We learn the representations of our two branches from the corresponding inter-
mediate representations of teacher network, and also learn the final outputs of our bi-
CryptoNets from that of teacher network. This is partially motivated from previous
knowledge distillations on internal representations [31].

Specifically, we first pad the output of ciphertext branch with 0 to match the size
of plaintext output and add them together, as in convolutional neural network literature
[16,18]. We then train two branches of bi-CryptoNets to learn teacher’s intermediate
representations by minimizing the following loss function:

LIR(W
h
T ,Wc,Wp) =

∥∥Fh
T (x,W

h
T ) − (Pad(Fc(x,Wc)) + Fp(x,Wp))

∥∥2
2
, (1)

where Fh
T (·;W h

T ) is the first h layers of teacher network of parameter W h
T , and Fc(·;Wc)

and Fp(·;Wp) denote the ciphertext and plaintext branches of parameter Wc and Wp,
respectively, and Pad(·) is the zero-padding function.

Here, we denote by h the corresponding h-th layer in the teacher network that has
the same output size as plaintext branch’s output. Such loss can help the sum of outputs
from two branches to approximate the teacher’s intermediate output. In this manner,
two branches could obtain stronger representations, and this makes it much easier for
further learning in the following layers of our bi-CryptoNets.
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After training two branches, we then perform knowledge distillation to the whole
network. The student network is trained such that its output is similar to that of the
teacher and to the true labels. Given bi-CryptoNets’ output aS and teacher’s output aT ,
we first get softened output as

pτ
T = softmax(aT /τ) and pτ

S = softmax(aS/τ) ,

where τ > 1 is a relaxation parameter. We try to optimize the following loss function:

LKD(WT,WBCN) = H(yTrue,ps) + λH(pτ
T ,p

τ
s ) , (2)

where yTrue is the true label, ps = softmax(aS), H refers to the cross-entropy, WT
and WBCN are the parameters of teacher network and our bi-CryptoNets, respectively,
and λ ∈ [0, 1] is a hyperparameter balancing two cross-entropies. With our proposed
method, two branches in our bi-CryptoNets can learn better representations, enhancing
overall performance. More details can be found in Appendix G.

5 Experiments

This section presents empirical studies on datasets2 MNIST, CIFAR-10 and CIFAR-
100, which have been well-studied in previous private inference studies [4,27,25]. We
develop different backbones for our bi-CryptoNets according to different datasets. We
adopt the 3-layer CNN [14,4] as backbone for MNIST, and we take 11-layer CNN [5],
VGG-16 [34] and ResNet-18 [19] for CIFAR-10 and CIFAR-100. Figure 4 presents
our bi-CryptoNets with VGG-16 backbone, and more details are shown in Appendix C.

We take the CKKS scheme for sensitive segment with polynomial degree N = 214,
and mingle with Gaussian noise for insensitive segment. We further improve packing
method for our bi-CryptoNets to perform inference for multiple images simultaneously.

For simplicity, we focus on the regular images, where the area of sensitive segment
is restricted to a quarter in the center of every image, and we could take some techniques
of zooming, stretching and rotating to adjust those irregular images.

Ablation studies
We conduct ablation studies to verify the effectiveness of feature-based knowledge

distillation and the structures of our bi-CryptoNets. Table 2 presents the details of
experimental results of inference accuracies on three datasets.

We first exploit the influence of feature-based knowledge distillation in our bi-
CryptoNets. We consider two different methods: bi-CryptoNets without knowledge
distillation and bi-CryptoNets with conventional knowledge distillation. As can be seen
from Table 2, it is observable that our feature-based knowledge distillation could ef-
fectively improve the inference accuracy by 0.54% ∼ 8.39%, in comparison to bi-
CryptoNets without knowledge distillation; it also achieves better inference accuracy
by 1.45% ∼ 10.27% than that of conventional knowledge distillation, which fails to
stably improve accuracy with our bi-branch structure.

2 Downloaded from yann.lecun.com/exdb/mnist and www.cs.toronto.edu/~kriz/cifar

yann.lecun.com/exdb/mnist
www.cs.toronto.edu/~kriz/cifar
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Table 2: The accuracies (%) on MNIST, CIFAR-10 and CIFAR-100 datasets (KD refers to the
conventional knowledge distillation; FKD refers to our feature-based knowledge distillation).

Models
Knowledge MNIST CIFAR-10 CIFAR-100

Distillation CNN-3 CNN-11 VGG-16 ResNet-18 VGG-16 ResNet-18

Backbone network (w/o decomposition) w/o KD 99.21 90.99 93.42 94.30 72.23 74.00

bi-CryptoNets w/o KD 98.60 81.91 90.36 92.04 64.85 69.46

bi-CryptoNets KD 98.61 80.03 88.91 92.43 64.96 65.67

bi-CryptoNets (w/o uni. connections) FKD 98.89 84.69 91.78 91.73 70.61 70.29

bi-CryptoNets (w/o channel-rotations) FKD 98.90 90.09 92.14 91.86 71.43 71.40

bi-CryptoNets FKD 99.15 90.30 93.27 93.91 72.35 73.33

We then study the influence of unidirectional connections in bi-CryptoNets, and
consider two variants: our bi-CryptoNets without unidirectional connections and bi-
CryptoNets with resizing yet without channel-rotations. As can be seen from Table 2,
the unidirectional connections are helpful for ciphertext branch to extract useful in-
formation from plaintext branch. This is because the unidirectional connections with
only resizing can enhance inference accuracy by 0.13% ∼ 5.40%, and it could further
improve accuracy by 0.26% ∼ 5.61% with both resizing and channel-rotations.

We finally compare the inference accuracies of our bi-CryptoNets with the back-
bone network, which is trained and tested on the entire input images without decompo-
sition. From Table 2, it is observable that our bi-CryptoNets with feature-based knowl-
edge distillation achieves comparable or even better inference accuracies than the cor-
responding backbone networks without data decomposition; therefore, our proposed
bi-CryptoNets could effectively compensate for the information loss of plaintext and
ciphertext branches under the help of feature-based knowledge distillation.

Experimental comparisons

We compare our bi-CryptoNets with the state-of-the-art schemes on privacy-preserving
neural networks [8,20,4,27,9,25]. We also implement the structure of backbone network
with square activation for fair comparisons. We take the batch size 20 and 32 for MNIST
and CIFAR-10, respectively. We employ commonly-used criteria in experiments, i.e.,
inference accuracy, inference latency and the number of homomorphic operations as in
[8,28]. We also consider the important amortized inference latency in a batch of images
[25], and concern the number of activations for ciphertexts [27,4,9]. Tables 3 and 4
summarize experimental comparisons on MNIST and CIFAR-10, respectively. Similar
results could be made for CIFAR-100, presented in Appendix E.

From Table 3, our bi-CryptoNets can reduce HE operations by 2.35× and inference
latency by 3.43× in contrast to backbone network. Our bi-CryptoNets could decrease
the amortized latency by 13.7×, and achieve better accuracy (about 0.2%) than back-
bone because of our knowledge distillation and precise inference in the plaintext branch.

From Table 4, our bi-CryptoNets reduces HE operations by 1.43×, and inference
latency by 1.15× in contrast to backbone network. Our bi-CryptoNets could decrease
the amortized latency by 4.59× and improve accuracy by 2.1%. We also implement our
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Table 3: The experimental comparisons on MNIST.

Scheme HEOPs AddCC MulPC ActC Latency(s) Amortized Latency(s) Acc(%)

FCryptoNets [8] 63K 38K 24K 945 39.1 2.0 98.71

CryptoDL [20] 4.7M 2.3M 2.3M 1.6K 320 16.0 99.52

LoLa [4] 573 393 178 2 2.2 2.2 98.95

SHE [27] 23K 19K 945 3K 9.3 9.3 99.54

EVA [9] 8K 4K 4K 3 121.5 121.5 99.05

VDSCNN [25] 4K 2K 2K 48 105 105 99.19

Backbone CNN-3 1962 973 984 5 7.2 1.4 98.95

bi-CryptoNets (CNN-3) 830 406 418 6 2.1 0.1 99.15

Table 4: The experimental comparisons on CIFAR-10.

Scheme HEOPs AddCC MulPC ActC Latency(s) Amortized Latency(s) Acc(%)

FCryptoNets [8] 701M 350M 350M 64K 22372 1398 76.72

CryptoDL [20] 2.4G 1.2G 1.2G 212K 11686 731 91.50

LoLa [4] 70K 61K 9K 2 730 730 76.50

SHE [27] 4.4M 4.4M 13K 16K 2258 2258 92.54

EVA [9] 135K 67K 67K 9 3062 3062 81.50

VDSCNN [25] 18K 8K 9K 752 2271 2271 91.31

Backbone CNN-11 1.0M 493K 521K 246 1823 228 88.21

bi-CryptoNets (CNN-11) 709K 341K 368K 246 1587 49 90.30

bi-CryptoNets (VGG-16) 3.4M 1.5M 1.9M 1.1K 2962 92 93.27

bi-CryptoNets (ResNet-18) 15.5M 6.9M 8.6M 2.8K 6760 211 93.91

bi-CryptoNets with VGG-16 and ResNet-18 as backbones, and deeper networks yield
better inference accuracies, i.e., 93.27% for VGG-16 and 93.91% for ResNet-18.

From Tables 3 and 4, our bi-CryptoNets takes a good balance between inference
accuracies and computation cost in comparison with other neural networks. Our bi-
CryptoNets achieves lower inference latency and amortized latency than other methods
except for LoLa, where light-weight neural network is implemented with complicated
packing method and smaller HE operations. Our bi-CryptoNets takes relatively-good
inference accuracies except for SHE, CryptoDL and VDSCNN, where deeper neural
networks are adopted with larger computational overhead. Based on deeper backbones
such as VGG-16 and ResNet-18, our bi-CryptoNets could achieve better inference
accuracy, comparable inference latency and smaller amortized latency.

6 Conclusion

Numerous privacy-preserving neural networks have been developed to keep the balance
between accuracy, efficiency and security. We take a different view from the input
data and network structure. We decompose the input data into sensitive and insensi-
tive segments, and propose the bi-CryptoNets, i.e., plaintext and ciphertext branches,
to deal with two segments, respectively. We also introduce feature-based knowledge
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distillation to strengthen the representations of our network. Empirical studies verify
the effectiveness of our bi-CryptoNets. An interesting future work is to exploit multiple
levels of privacy of input data and multiple branches of neural network, and it is also
interesting to generalize our idea to other settings such as multi-party computation.
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Supplementary Material (Appendix)

A CKKS Scheme

In this section, we will describe CKKS scheme in more details. CKKS is a HE scheme
that supports fixed-point arithmetic operations on encrypted data. The ciphertext of the
CKKS scheme is an element c ∈ R2, where R denotes the polynomial ring RN

p =

Zp[x]/(x
N + 1), Zp[x] = Z/pZ, and p =

∏l
i=1 qi is a product of l prime numbers,

N is the polynomial degree. In CKKS scheme, we can encrypt n = N/2 plaintext in
N/2 slots of a single ciphertext, and perform Single Instruction Multiple Data (SIMD)
operations at no extra cost. Let E(·) and D(·) denote the encryption and decryption
function respectively. Let c, c1, c2, cadd, cmult, crot denote ciphertext, and u denotes a
plaintext vector in Rn. CKKS scheme supports following homomorphic operations:

– Homomorphic addition:

Add(c,u) → cadd , s.t. D(cadd) = D(c1) + u ,

Add(c1, c2) → cadd , s.t. D(cadd) = D(c1) +D(c2) .

– Homomorphic multiplication:

Mult(c,u) → cmult , s.t. D(cmult) = D(c1) · u ,

Mult(c1, c2) → cmult , s.t. D(cmult) = D(c1) ·D(c2) ,

where · is the element-wize multiplication between two vectors.
– Homomorphic rotation:

Rot(c, r) → crot , s.t. D(crot) = ⟨D(c)⟩r ,

where r ∈ Z, ⟨·⟩r denotes cyclically shifting a vector by r to the left when r > 0,
and shifting by −r to the right when r < 0.

Gilad-Bachrach et al. performed single instruction multiple data operations without
additional costs by packing multiple plaintext into one ciphertext for HE [14]. Specif-
ically, a vector of N/2 fixed-point numbers can be packed into N/2 slots of a single
ciphertext for CKKS [6], and element-wize multiplication and addition between two
vectors can be performed with only one HE operation. Such technique has been used
to reduce HE computations in privacy-preserving neural networks, such as packing
multiple channels of input data or multiple neurons into one ciphertext [4,9].

B Experiment Details

Datasets. We conduct experiments on MNIST, CIFAR-10 and CIFAR-100 datasets.
MNIST has 10 output classes with 60, 000 training images and 10, 000 testing images,
and each image’s size is 28 × 28 × 1. CIFAR-10 and CIFAR-100 have 10 and 100
output classes respectively, and both of them consist of 50, 000 training images and
10, 000 testing images, and each image’s size is 32× 32× 3.
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Parameter settings. Datasets have been preprocessed by image centering, that is, sub-
tracting mean and dividing standard deviation, and images have been augmented by us-
ing the random horizontal flips and random crops. We also adopt the squared activation
in ciphertext branch and feature integration, since CKKS only supports homomorphic
addition and multiplication. In training, we use Adam optimizer to train our network
with batch size of 256. We adopt the learning rate of 0.0001 with cosine decay. For
feature-based knowledge distillation, the teacher network takes backbone network with
ReLU activation and hyper-parameters τ = 4 and λ = 0.9. Our experiments are
conducted on the HE scheme library SEAL [33] on AMD Ryzen Threadripper 3970X
at 2.2 GHz with 256GB of RAM, running the Ubuntu 20.04 operating system.

State-of-the-art privacy-preserving neural networks.

– FCryptoNets [8]: A privacy-preserving neural network that leverages sparse rep-
resentations in the underlying cryptosystem to accelerate inference. It develops
a pruning and quantization approach that achieves maximally-sparse encodings
and minimizes approximation error. Such approach can reduce the number of HE
operations, and achieve short inference latency.

– CryptoDL [20]: A privacy-preserving neural network with polynomial activations.
It use low degree polynomials to approximate ReLU activations, and implement
deeper networks, achieving better performance in accuracy.

– LoLa [4]: A privacy-preserving neural network with well-designed packing meth-
ods. It can pack one image into several ciphertext, and achieve fast inference for
one single image with much fewer HE operations. On the other hand, it can only
perform inference for one image every time.

– SHE [27]: A privacy-preserving neural network implemented with TFHE scheme.
It use boolean circuit to implement neural network by quantizing network weights
into powers of 2, and it can support ReLU activation and max pooling. Therefore,
it can reach higher accuracy.

– EVA [9]: A privacy-preserving neural network that implemented by a compiler for
HE with CKKS scheme. The compiler can optimize the hyperparameters and the
computation graph for HE. Therefore, it can decrease the HE computation depth
and shorten the inference latency for private-preserving neural networks.

– VDSCNN [25]: A privacy-preserving neural network implemented with CKKS
scheme. It uses polynomial activations and it also packs multiple channels of the
image into one ciphertext. Therefore, it can perform inference with fewer HE addi-
tions and multiplications.

C Network Architectures

In this section, we will present the structure for other variants of our bi-CryptoNets in
details.

Figure 6 presents the overview structure of our proposed bi-CryptoNets that takes
11-layer CNN as backbone. Each branch has the following layout: (i) 2 layers of 3× 3
convolution with stride of (1, 1), padding of (1, 1) and 32 output maps; (ii) 2×2 average
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Figure 6: The structure of our proposed bi-CryptoNets taking 11-layer CNN as backbone.
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Figure 7: The structure of our proposed bi-CryptoNets taking ResNet-18 as backbone.

pooling with (2, 2) stride; (iii) 2 layers of 3×3 convolution with stride of (1, 1), padding
of (1, 1) and 64 output maps; (iv) 2× 2 average pooling with (2, 2) stride; (v) 2 layers
of 3 × 3 convolution with stride of (1, 1), padding of (1, 1) and 128 output maps; (vi)
2× 2 average pooling with (2, 2) stride. We build unidirectional connections after each
convolutional layers in the plaintext branch. Following two branches, we have a 2-
layer feature integration: In the first layer, we have two fully connected layers with 128
plaintext outputs and 128 ciphertext outputs, respectively; in the second layer, we have
fully connected layer with 10 ciphertext outputs.

Figure 7 presents the overview structure of our proposed bi-CryptoNets that takes
ResNet-18 as backbone. Each branch has the following layout: (i) 3×3 convolution with
stride of (1, 1), padding of (1, 1) and 64 output maps; (ii) 2 layers of 3× 3 convolution
with stride of (1, 1), padding of (1, 1) and 64 output maps; (iii) skip connection by
adding the outputs from (i) and (ii) together; (iv) 3× 3 convolution with stride of (2, 2)
and 128 output maps; (v) 3 × 3 convolution with stride of (1, 1), padding of (1, 1)
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Figure 8: Homomorphic vector-matrix multiplication.

and 128 output maps; (vi) skip connection by a 3 × 3 convolution with stride of (2, 2)
and 128 output maps with (iii) as input, and adding the results with (v); (vii) 3 × 3
convolution with stride of (2, 2) and 256 output maps; (viii) 3 × 3 convolution with
stride of (1, 1), padding of (1, 1) and 256 output maps; (ix) skip connection by a 3× 3
convolution with stride of (2, 2) and 256 output maps with (vi) as input, and adding the
results with (viii); (x) 3× 3 convolution with stride of (2, 2) and 512 output maps; (xi)
3 × 3 convolution with stride of (1, 1), padding of (1, 1) and 512 output maps; (xii)
skip connection by a 3 × 3 convolution with stride of (2, 2) and 512 output maps with
(viii) as input, and adding the results with (xi). We build unidirectional connections
after each convolutional layers in the plaintext branch. After two branches, we have a
2-layer feature integration: In the first layer, we have two fully connected layers with
256 plaintext outputs and 256 ciphertext outputs, respectively; in the second layer, we
have fully connected layer with 10 ciphertext outputs.

D Implementation Details

In this section, we will introduce our implementation for bi-CryptoNets with CKKS
scheme in more details. A privacy-preserving neural network mainly consists of three
types of layers: fully connected layer, convolutional layer and pooling layer.

Homomorphic fully connected layer

For an input x ∈ Rn1 , weight matrix W ∈ Rn1×n2 and bias vector k ∈ Rn2 , the fully
connected layer can be written as

y = σ(xTW + k) ,

where σ(·) is the activation function.
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Figure 9: Homomorphic convolution of one channel by HW packing with a 2x2 filter.

As shown in Figure 8, we can implement vector-matrix multiplication by homomor-
phic rotations and multiplications. The multiplication between x and W can be written
as

bj =

n1∑
i=1

aiwi,j for j ∈ [n2] .

First, we transform the plaintext weight matrix W into a group of vectors wi, for i ∈
[n1 + n2 − 1]. Then we perform rotations on x from n2 − 1 to 1− n1 as

xi = Rot(x, n2 − i) for i ∈ [n1 + n2 − 1] .

Next, we homomorphically multiply xi with wi respectively, and sum the results to-
gether. To save calculation depth, we can perform summation in pairs. This would only
lead to ⌈log(n2)⌉ of operation depth.

Finally, after adding bias k with prior result and perform activation function, we can
get the output ciphertext of fully connected layers.

Homomorphic convolutional layer

Similar to homomorphic fully connected layer, we can implement the homomorphic
convolutional layer by rotations and multiplications. As shown in Figure 9, given an
input channel A ∈ Rh×w and convolution kernel f ∈ Rhc×wc , the convolution can be
written as

bx,y =
∑
i,j

ax+i,y+jfi,j for i ∈ [h], j ∈ [w] .

For each input channel, it will be flattened into a one-dimensional vector and packed
as a ciphertext. To perform the convolution on ciphertext, we recursively rotate it and
multiply it by corresponding plaintext weight in the convolution kernel respectively.
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After adding them together, it will finally be multiplied by a mask vector, to only keep
the values in the slots we need. We also can compute multiple convolution kernels for
multiple input channels in parallel.

Homomorphic pooling layer

Similar to prior works in private inference, we adopt sum pooling in our network. The
implementation of pooling layer is similar to that of homomorphic convolutional layer.
Nevertheless, we do not need to multiply weights in convolution kernels.

BHW Packing

For inference, we could implement our bi-CryptoNets by packing method for speed
on multiple images simultaneously, motivated by [10]. We introduce the new BHW
packing for our bi-CryptoNets without extra costs, and the basic idea is to pack multiple
segments into one ciphertext for decomposed images. Specifically, we pack n of h×w
matrices into one ciphertext for a batch of n images and their sensitive segments with
channel c, height h and width w. It requires c ciphertext for n images with our BHW
packing.
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Figure 10: A simple demonstration for three
packing methods.

Batch packing [14,8] presents an ef-
ficient method for a large number of im-
ages, to pack the same pixels in a batch
of images into one ciphertext. Another
relevant HW packing tries to pack one
channel of pixels in an image into one
ciphertext [10,25], which could greatly
reduce HE computations and inference
latency for single image.

Figure 10 presents a simple demon-
stration for three packing methods. Our
BHW packing could achieve low inference latency as that of HW packing over one
single image, and take comparable inference latency as that of batch packing on
multiple images of smaller batch size. This is because our BHW packing method could
pack more segments into one ciphertext for the decomposed images, and only small
sensitive segments are required to be encrypted.

E Results on CIFAR-100

In this section, we will present our experiment results on CIFAR-100 dataset. As shown
in Table 5, our bi-CryptoNets can achieve similar results on CIFAR-100 as on CIFAR-
10 dataset, since the network structure are similar to each other. Our bi-CryptoNets
with CNN as backbone can could also decrease the amortized latency by 4.67× and
improve accuracy by 2.48% in comparison with backbone network. Our bi-CryptoNets
with VGG-16 and ResNet-18 as backbones still can achieve better inference accuracy,
comparable inference latency and smaller amortized latency.
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Table 5: The experimental comparisons on CIFAR-100, and abbreviations are similar to Table 3.

Scheme HEOPs AddCC MulPC ActC Latency(s) Amortized Latency(s) Acc(%)

VDSCNN [25] 18K 8K 9K 752 3942 3942 69.43

Backbone CNN-11 1.0M 493K 521K 246 1829 229 66.30

bi-CryptoNets with CNN-11 709K 341K 368K 246 1588 49 68.78

bi-CryptoNets with VGG-16 3.4M 1.5M 1.9M 1.1K 2969 93 72.35

bi-CryptoNets with ResNet-18 15.5M 6.9M 8.6M 2.8K 6765 212 73.33

Table 6: The accuracies(%) on MNIST, CIFAR-10 and CIFAR-100 datasets.

Models
MNIST CIFAR-10 CIFAR-100

CNN-3 CNN-11 VGG-16 ResNet-18 VGG-16 ResNet-18

Backbone network without decomposition 99.21 90.99 93.42 94.30 72.35 74.00

bi-CryptoNets (Convolution resizing) 98.96 89.69 92.24 92.05 71.51 70.79

bi-CryptoNets (Cropping resizing) 99.15 90.30 93.27 93.91 72.23 73.33

F Unidirectional Connections

In Section 3.2, we use cropping as resizing function for simplicity. Another way is to
use a convolutional layer with strides as resizing function. In this section, we will show
that cropping is a more effective way.

Similar to the skip connections of ResNet, we can simply use a convolutional layer
as resizing functions. For example, if both the height and width of the sensitive segment
is a half of that of insensitive segment, we can use a 3 × 3 convolution with stride of
(2, 2) as resizing functions. However, such approach has following disadvantages.

First, extra convolutional layers would introduce more parameters, which would
make the network harder to train, and it would also lead to larger computation over-
head. Second, when using cropping as resizing functions, it can bring representation
from the plaintext branch at similar depth to the corresponding layers in ciphertext
branch, whereas convolutions will bring higher orders representation to the layers in
ciphertext branch. Intuitively, it is more natural to adding representations from similar
depth together, compared with adding a high-order representation with low-order repre-
sentation. Finally, cropping is an easier and more flexible way for resizing feature maps
with various shapes, compared with convolution. Therefore, we simply use cropping as
resizing functions in this paper.

Moreover, to compare the effectiveness of two resizing functions, we conduct exper-
iments on MNIST, CIFAR-10 and CIFAR-100 with different network structures. We
replace the cropping resizing function in our bi-CryptoNets with 3 × 3 convolution by
stride of (2, 2). We train both networks with feature-based knowledge distillation, and
compare their accuracy. As shown in table 6, using cropping as resizing function can
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Figure 11: Attention maps in different layers of teacher network (CNN-11), bi-CryptoNets
with feature-based knowledge distillation and bi-CryptoNets without knowledge distillation on
CIFAR-10 images.

reach better accuracies in all datasets and with all variants of bi-CryptoNets structures,
which is consistent with our analysis.

G Visualization for the effectiveness of feature-based knowledge
distillation

In this section, we will show the effectiveness of feature-based knowledge distillation
for bi-CryptoNets by drawing the attention maps at each layer. We compare our bi-
CryptoNets trained by feature-based knowledge distillation with the teacher network
and the bi-CryptoNets trained without knowledge distillation. Figure 11 presents the
attention maps of each layer for bi-CryptoNets that takes 11-layer CNN as backbone
on CIFAR-10 images, and Figure 11 presents the attention maps of each layer for bi-
CryptoNets that takes VGG-16 as backbone. We can observe that the attention maps of
bi-CryptoNets with feature-based knowledge distillation is very close to those of teach-
ers, whereas bi-CryptoNets without knowledge distillation fails to capture the important
patterns in the images, resulting the wrong predictions. Therefore, our feature-based
knowledge distillation is an effective way to improve the performance of bi-CryptoNets,
so that our bi-CryptoNets can achieve comparable performance as teacher network.
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Figure 12: Attention maps in different layers of teacher network (VGG-16), bi-CryptoNets
with feature-based knowledge distillation and bi-CryptoNets without knowledge distillation on
CIFAR-10 images.
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