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Abstract. Graph Neural Networks (GNNs) have achieved notable suc-
cess in various applications over graph data. However, recent research
has revealed that real-world graphs often contain noise, and GNNs are
susceptible to noise in the graph. To address this issue, several Graph
Structure Learning (GSL) models have been introduced. While GSL
models are tailored to enhance robustness against edge noise through
edge reconstruction, a significant limitation surfaces: their high reliance
on node features. This inherent dependence amplifies their susceptibility
to noise within node features. Recognizing this vulnerability, we present
DEGNN, a novel GNN model designed to adeptly mitigate noise in both
edges and node features. The core idea of DEGNN is to design two sep-
arate experts: an edge expert and a node feature expert. These experts
utilize self-supervised learning techniques to produce modified edges and
node features. Leveraging these modified representations, DEGNN sub-
sequently addresses downstream tasks, ensuring robustness against noise
present in both edges and node features of real-world graphs. Notably, the
modification process can be trained end-to-end, empowering DEGNN to
adjust dynamically and achieves optimal edge and node representations
for specific tasks. Comprehensive experiments demonstrate DEGNN’s ef-
ficacy in managing noise, both in original real-world graphs and in graphs
with synthetic noise.

Keywords: Graph Neural Networks - Graph Structure Learning - Graph
Self-Supervised Learning.

1 Introduction

Graphs are essential data structures for modeling a wide range of real-world
phenomena, such as social networks, transportation networks, and chemical
molecules. Graph Neural Networks (GNNs) have emerged as a powerful paradigm
for modeling such graphs, primarily due to their message-passing mechanism
that aggregates node representations via edges. These GNNs can be applied
to various tasks, including node classification [ITJ24], link prediction [37], node
ranking [7J3], community detection [29], and graph classification [4].



2 T. Hasegawa et al.

Cora dataset Citeseer dataset
— —t———

b
o \
e °.

— 65

80 / R

9 X T

78

47 || -E- GON -m- GON

\.
|

~@- Pro-GNN A\ ~@- Pro-GNN
A

3
8

Accuracy
o
&

Accuracy

Rw-GNN 50 Rwl-GNN
—A— STABLE —A— STABLE

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
Node feature noise ratio Node feature noise ratio

Fig. 1. A comparison of semi-supervised node classification between GCN and GSL
models on Cora and Citeseer dataset when there is noise in the node features.

Despite their success, it is well known that the quality of real-world graph
data is often unreliable [8]. In other words, real-world graphs are known to
contain noise. For instance, in citation networks, references to unrelated papers
can introduce noise in the form of inaccurate edges. Recent studies on adversarial
attacks and defenses have highlighted the susceptibility of GNNs to noise within
graphs [9I0]. In response, Graph Structure Learning (GSL) has been developed
as a method to optimize graph structure, thus improving graph representations
and ensuring more resilient predictions amidst edge noise.

Besides edge noise, node features can also contain noise. For instance, in
social networks, users might provide inconsistent, overstated, or even false in-
formation about their interests or attributes, which introduces noise into the
node features. GSL models often struggle with such node feature noises. The
vulnerability of GSL models against node feature noise arises as these models
disseminate noisy node features via message passing scheme. Additionally, their
reliance on node features to rewire edges compounds the challenge. As illustrated
in Figure [1| (refer to Section [ for the experiment details), recent GSL models
such as Pro-GNN [18], Rwl-GNN [35], and STABLE [20] tend to underperform in
prediction accuracy when compared to traditional GNN model, GCN [I1] when
the node feature noise increases. Although Pro-GNN marginally surpasses the
performance of GCN, there remains ample scope for improvements.

In this paper, we introduce Dual Experts Graph Neural Network (DEGNN)EL
a novel GNN model crafted to offer robust predictions irrespective of the presence
or absence of noise in edges, nodes, or both. At the heart of DEGNN is its
distinctive architecture, which employs specialized branches, termed "experts",
to individually learn and refine node features and edges. Using a self-supervised
learning approach, these experts are seamlessly integrated and co-trained end-
to-end, ensuring task-specific optimization. Our contributions are summarized
as follows:

— We highlight the susceptibility of GSL models to node feature noise based
on preliminary experiments.

— We introduce DEGNN, a novel GNN that offers robust predictions irrespec-
tive of the presence or absence of noise in nodes, edges, or both, by individ-
ually addressing these noises through a self-supervised learning approach.

4 Codes are available at: https://github.com/TaiHasegawa/DEGNN
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— Through comprehensive experiments on real-world datasets, we establish
that DEGNN consistently delivers stable predictions, outperforming state-
of-the-art models in the presence of either type of noise.

2 Related Work

2.1 Graph Neural Networks

GNNs have emerged as a powerful tool for learning from graph-structured data,
effectively capturing the complex relationships and interdependencies between
nodes [1]. Their successful development across numerous practical fields under-
scores their extensive applicability and effectiveness [2612728T6I17]. Generally,
GNNs can be classified into two categories: spectral-based methods [6/I1] and
spatial-based methods [12I13]. Spectral-based GNNs hinge upon spectral graph
theory [5] and employ spectral convolutional neural networks. To streamline the
intricacies of spectral-based GNNs, various techniques have emerged, including
ChebNet [6] and GCN [II].

On the other hand, spatial-based GNNs are engineered to tackle challenges re-
lated to efficiency, generality, and flexibility, as highlighted in [I5]. They achieve
graph convolution operation through neighborhood aggregation. For instance,
GraphSAGE [12] selectively samples a subset of neighbors to grasp local fea-
tures, while GAT [I3] employs an attention mechanism for adaptive neighbor
aggregation. However, these models are susceptible to edge noise.

2.2 Graph Structure Learning

The purpose of GSL is to improve prediction accuracy by modifying the given
graph into an optimal structure. In this paper, we primarily focus on GNN-based
graph structure learning models. LDS [14] jointly optimizes the probability for
each node pair and the parameters of GNNs in a bilevel way. Pro-GNN [I8] aims
to learn the optimal graph structure by incorporating several regularizations,
such as low-rank sparsity and feature smoothness. Gaug-M [19] directly computes
the edge weights by taking the inner product of node embeddings. STABLE [20]
utilizes self-supervised learning to acquire node embeddings and then modifies
the graph structure based on their similarities. These obtained node embeddings
and the modified graph structure are employed in downstream tasks. Each of
these models demonstrates the ability to robustly predict against edge noise,
as shown in their respective papers. However, as elucidated in Section [T} their
pronounced reliance on node features during edge rewiring inherently exposes
them to vulnerabilities in situations characterized by noisy node features.

3 The Proposed Model

In this section, we introduce our proposed approach, DEGNN. We begin by
formulating the problem definition, followed by an overview of the model, and
then provide a detailed description of its architecture and learning procedure.
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Fig. 2. The overview of DEGNN and the expert in its pre-training process.

3.1 Problem Definition

Let G = {V,&, X} represent an undirected graph, where V = {v;}¥, is the
set of N nodes, & is the set of edges, X = [71,...,zx] € RY*D indicates the
node feature matrix and each z; € RP is the feature vector of node v;. The
set of edges is represented by an adjacency matrix A € {0, 1}V*V where Ajj
denotes the connection between nodes v; and v;. Following the common semi-
supervised node classification setting, only a small portion of nodes Vy, = {v;}!_,
are associated with the corresponding labels YV;, = {y;}}_, while the rest of the
nodes Vy = {v;},,, are unlabeled.

Given graph G = {V,&, X} and the available labels Y;,, the goal of graph
structure learning, aimed at refining node features and graph structure, is to
learn optimal node embeddings H € RV*P " with hidden dimension D’ , @ modi-
fied adjacency matrix S € RV *N and the GNN parameters 6 in order to improve
the predictive accuracy of )>L. The objective function can be formulated as

min L(A, X, 90) = > U fo(H,S)iyi), (1)

v, EVL

where fp : Vp — Y is a function learned by downstream GNNs that maps
nodes to the set of labels, fy(H, S); is the prediction of node v;, and ¢ is the loss
measuring difference between prediction and true label such as cross-entropy.

3.2 Overview

The overview of DEGNN and the expert in its pre-training process are illus-
trated in Figure [2| The input graph is passed through both the node feature
expert and the edge expert. The node feature expert outputs node embeddings
H, while the edge expert produces the modified adjacency matrix S. Using the
obtained H and S, the downstream network makes predictions for a specific
task. Traditionally, models have primarily leaned on learned node embeddings
for edge reconstruction [20]. However, when these embeddings are derived from
noisy node features, the resulting in reconstructed edges often produce sub-
optimal outcomes, potentially that are unintended dependencies. Our proposed
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dual experts design aims to eliminate these dependencies and learn both node
representations and edges to be optimal. These two experts can be trained with
the downstream network end-to-end, allowing each of them to acquire represen-
tations suitable for the specific task. The details of the model are described in
the following sections.

3.3 Node Feature Expert

A straightforward approach to predict robustly against node feature noise is to
generate node embeddings H that capture node features more effectively than
the input node features X. To obtain the node embeddings H, we utilize self-
supervised learning, since it enables the model to achieve better performance,
generalization, and robustness across a wide range of downstream tasks [32].

Graph Augmentation Generating views is a key component of self-supervised
learning methods. For instance, in the field of computer vision [21], views are
created by rotating or cropping images. This allows for mitigating the impact of
differences in angles and scales on the model’s predictions. Similarly, for graph
data, we presume that by generating views and exposing the model to modified
edges and nodes, it can achieve enhanced generalizability, equipping it with a
stronger capacity to manage noise emanating from both edges and nodes during
predictions. Therefore, we generate graphs of positive view G; = (A,X ) with
noise added to the edges, Gy = (A,f( ) with noise added to the node features,
and G3 = (A, X) with noise added to both edges and node features, where
A € {0,13V*N and X € RV*P denote the noisy adjacency matrix and noisy
node features, respectively.

Our proposed model augments edges by randomly rewiring them. Formally,
we first create a mask matrix P € {0, 1}V *¥ to rewire edges, where P is obtained
from a Bernoulli distribution P;; ~ B(p) with a hyper-parameter p that controls
the rewiring probability. And then, A is calculated as follows:

A

1-A)eoP+Ac(1-P), (2)

where ® is the Hadamard product. For node feature augmentation, unlike other
studies that use node feature masking [2223], in this paper, we shuffle elements
in each row of X randomly with the probability ¢ to replicate scenarios where
there is noise in the node features.

Besides positive graphs, we generate a negative graph Gpeg = (Anegs Xneg)
that is entirely different from the original graph G, where A, € {0, 1}*" and
Xneg € RVXD denote the negative adjacency matrix and negative node features,
respectively. A,.q is given by Apeq = (1—A)©Ppeg, where P4 € {0, 1}VXN s a
mask matrix that is obtained from a Bernoulli distribution Pyeqi; ~ B (NQ”%\‘I‘EH)
Xpeg is obtained through row-wise shuffling of X.
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Encoder The encoder fy parameterized by ¢ learns embeddings for each of the
generated views. In this paper, we use a 1-layer GCN [I1] as the encoder, which
is formulated as follows:

fs(X,A) = a(D7Y2AD™Y2XW), (3)

where A = A + Iy, D =D+ In, D is the degree matrix of A, Iy is the
identity matrix, o is a non-linear activation function and W is weight matrix
transforming raw features to embeddings. The embeddings for the original graph
and each view H, Hy, Hy, H3, Hpey € RN*D' are obtained using the encoder as
follows:

= f4(X, A) (6)
H=Jo(%,4) @ = fo(X, A) (™)
= f¢(X7 A) (5) neg f(b(Xnega ney) (8)

Objective Function Following other graph contrastive learning methods [31I20],
we train the encoder to maximize the mutual information between the original
graph G and positive graphs G;, Go and G3 while minimizing agreement between
original graph G and negative graph G,.4. Formally, the objective function for
node feature expert can be formulated via using binary cross-entropy loss be-
tween positive samplos and negative samples as follows:

3
]. J neg
Ly = g ;:1 ZOQD hzah + log(]- - ’D(hzvhl ))))a (9)

where h;, hg, h}“9 are the embeddings of node v; in G, G; and G4, and D is the
discriminator built upon an inner product, i.e., D(a,b) = ab’". In conclusion, by
training the node feature expert, f4, we derive a noise-robust node embedding
H that subsequently serves as input for the downstream network.

3.4 Edge Expert

To differentiate between the impacts of node feature noise and edge noise, and to
adeptly address each situation, we further implement an edge expert. The edge
expert learns node embeddings H’ using self-supervised learning as with the
node feature expert. More precisely, H' is obtained through an encoder fy, with
different parameters from the node feature expert fy, and the objective function
for edge expert using the binary cross-entropy loss L can be formulated as
follows:
3 ’

> " (logD(hl, h]') + log(1 = D(A, hP*)))),  (10)

Jj=1

oo\H

&
:77]\[2

where h, hg/, h?eg/ are the embeddings of node v; in G, G; and G, obtained
with encoder fy.
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Reconstruction Once the high-quality embedding H’ from the edge expert is
obtained, it is used to reconstruct the graph structure. This reconstruction pro-
cess rewires the edges using the pairwise similarity in the embeddings H’ under
the homophily assumption [2], which posits that nodes with similar features are
more likely to be connected.

In the beginning, we compute the cosine similarity matrix B € RV*Y | where
B;; represents the cosine similarity between H, and H J’ Next, we remove the k%
(k is a hyper-parameter) of the edges with the smallest cosine similarity between
pairs of nodes from the original edge set &, resulting in a sparser adjacency matrix
S € {0,1}V*N as follows:

S=A06 M, (11)

where M; € {0,1}V*¥ represents the mask matrix for edge deletion, where M4
is 1 if its cosine similarity ranks over the smallest k%, and 0 otherwise.

Finally, to obtain the modified adjacency matrix S, we add the same number
of edges that were removed i.e., k|| with the highest cosine similarity between
pairs of nodes from the set of node pairs &' =V x V' \ £ that are not included
in the edge set £. Formally, S is obtained as follows:

S=S+Be Ms,, (12)

where My € {0,1}V*¥ is the mask matrix for edge addition, where My;; is
1 for the edges within top cosine similarity (k  |£|), and 0 otherwise. Here,
it is important that the encoder in the edge expert can be trained through
backpropagation from the downstream network, so the reconstruction needs to
be differentiable. Consequently, the value associated with newly introduced edges
in S is not clamped and retains its cosine similarity. To sum up, through training
edge expert, fy, we obtain a modified adjacency matrix, .S, which is then utilized
as input for the downstream network.

3.5 Downstream Network

Once we obtain the node embeddings H and the modified adjacency matrix .S,
we now use them as input for the downstream network (i.e., GNNs). It is worth
noting that our proposed method allows the use of any GNNs such as GCN [I1]
or GAT [13], and also can be applied to various tasks beyond node classification,
including link prediction [37] and graph classification [4]. In this paper, we use
a 2-layer GCN fy as the downstream network. To tackle node classification, the
model is trained to minimize the cross-entropy loss:

Lony = Z E(fB(Hvs)i’yi)v (13)

v, €EVL

where ¢(fo(H, S);, yi) is the cross-entropy between the prediction and the ground-
truth label for node v;.
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3.6 Training Methodology

In this paper, we propose two variants of DEGNN with different training meth-
ods: (i) the pre-training and fine-tuning model (referred to as DEGNN-I), and
(ii) the modular learning model (referred to as DEGNN-II). DEGNN-I first pre-
trains the node feature expert and edge expert separately. Then, all components
are jointly fine-tuned in an end-to-end manner. This is to enable each expert to
obtain the optimal node embeddings and graph structure for downstream tasks.
During the fine-tuning process, it is trained to minimize the following objective
function:

L=LonN+aLly+ BLE, (14)

where a and 3 are hyper-parameters to balance the contributions of node em-
bedding generation and edge reconstruction, respectively.

In contrast, DEGNN-II follows a two-step approach: initially training the
node feature expert and edge expert and subsequently freezing them during the
training of the downstream network. This methodology empowers each expert to
attain task-agnostic representations. This allows robust predictions in contexts
with limited labels or large biases, given that the approach does not depend on
the provided label during training—essentially, a self-supervised paradigm.

4 Experiments

In this section, we evaluate our proposed method, DEGNN, on a variety of noisy
graphs in the context of the semi-supervised node classification task.

4.1 Experimental Setup

Datasets We used four open datasets, including two citation networks (i.e.,
Cora [19], Citeseer [I9]) and two co-purchasing networks (i.e., Photo [33], Com-
puter [33]) Regarding the train/validation/test split, we prepared 20 training
labels for each class in all datasets. For validation and test, we used 500 and
1000 nodes, respectively.

Noisy Graphs To assess the robustness of our model across various graph
settings with noise, we compared models on graphs that included the following
types of noise:

— Clean Graphs: The original graphs of the datasets which may contain
inherent node feature noise and edge noise.

— Edge Noisy Graphs: We randomly remove a certain number of edges and
insert the same number of fake edges.

— Node Feature Noisy Graphs: As in [36], we added independent Gaussian
noise to the node features. Specifically, we obtained the reference amplitude
r by calculating the mean of the maximum value across each node’s fea-
tures. For each feature dimension of each node, we introduced independent
Gaussian noise A-r - ¢, where e ~ N(0,1), and A represents the feature noise
ratio.
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— Edge and Node Feature Noisy Graphs: We introduced both the edge
noise and node feature noise described above.

When adding these noises, we employed a poisoning attack, which initially pre-
pares a graph with noise added, and used it for both training and evaluation.

Baselines We compare the proposed DEGNN-I and DEGNN-II with two cate-
gories of baselines: classical GNN models (i.e., GCN [1I], GAT [I3] and RGCN [34])
and graph structure learning methods (i.e., Pro-GNN [Ig], Rwl-GNN [35] and
STABLE [20]).

Implementation Details All hyper-parameters are tuned on the clean graph.
All models are trained using Adam optimizer with a default learning rate of le-2
and a weight decay of 5e-4 when not explicitly specified. GCN [I1], GAT [13], and
RGCN [34] have a fixed number of layers at 2. For GCN and RGCN, the hidden
dimension is chosen from {16,32,64,128}. GAT’s number of heads and head
dimensions are selected from {1,2,4,8,16} and {8, 16,32, 64,128}, respectively,
with a total hidden dimension ranging from 16 to 128. Other baselines follow
hyper-parameter combinations specified in their respective papers. For DEGNN,
a and B are tuned from {0,0.1,1.0,10}, the hidden dimension D’ is tuned from
{128,256,512}. k is searched in {1,5,10,15,20,25}, p and ¢ are searched in
{0.2,0.4,0.6}. The learning rate in the pre-training process is tuned from {le-2,
5e-3, le-3}.

4.2 Semi-supervised Node Classification

Performance Comparison In this section, we evaluate the proposed DEGNN
on semi-supervised node classification on original graphs. The average accuracy
and standard deviation of the model across 10 runs are summarized in Table [Il
OOM indicates out of memory. Based on the experiment, our proposed approach
outperformed other models in citation networks (Cora, Citeseer), demonstrating
the highest predictive accuracy. This suggests that the experts successfully ob-
tain superior representations for both edges and node features to eliminate latent
noise within these graphs. However, in co-purchasing networks (Photo, Com-
puter), our model achieved competitive results but was marginally surpassed by
the traditional GCN. Considering that other GSL models also lagged behind
GCN in accuracy and the fact that GCN’s predictive accuracy in co-purchasing
networks is significantly higher than in citation networks, it is conceivable that
the co-purchasing networks may contain less inherent noise within the original
graphs, and the GSL models might be unnecessarily altering the graph.

Robustness Evaluation In this experiment, we evaluate the robustness of the
models by comparing their performance on graphs with noise added to either
or both of the edge and node features. The nature of these noise is described
in Section Specifically, we added edge noise with noise ratio 0.05, 0.1 and
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Table 1. The results (accuracy(%) =+ std) of semi-supervised node classification on
clean graphs. The top two performance is highlighted in bold and underline.

Dataset GCN GAT RGCN ‘Pro-GNN Rwl-GNN STABLE|DEGNN-I DEGNN-II

Cora |80.8+0.9 79.54+0.8 79.6+0.7|81.7+0.7 80.8£0.7 79.3+1.1/83.0£0.9 81.6£1.0
Citeseer | 68.84+0.7 66.7+1.7 65.7£1.5/69.3+£0.6 68.0+0.6 68.2+0.5| 70.94+1.9 71.6+1.4
Photo {91.8+0.2 85.54+17.3 91.7+0.5/91.840.7 86.4+2.9 OOM |91.3+0.4 91.6%0.6
Computers|85.0+0.9 77.24+22.7 81.6+2.6| OOM  74.6+1.4 OOM |83.5+0.9 82.8+0.8
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Fig. 4. Accuracy on Cora with noise added to either or both of edge and node features.

0.15, while the parameter A for node feature perturbation is also set to 0.05, 0.1,
and 0.15. All experiments were conducted 10 times, and the average accuracy
on Citeseer and Cora dataset are shown in Figures [3] and Figure [d] respectively.
From this experiment, we can obtain the following observation:

— When node feature noise is added, DEGNN-I or DEGNN-II demonstrated
the highest accuracy among the compared models in all settings.

— When noise is introduced in only the edge and in both edge and node fea-
tures, DEGNN demonstrated the best or competitive results compare to the
baselines especially when the noise ratio is 0, 0.05 or 0.1.

— The smallest accuracy gap between edge noise ratio of 0 and 0.15 was ob-
served in STABLE. However, it is highly vulnerable when node features are
perturbed.

— GCN and Pro-GNN follow a similar trend, with Pro-GNN slightly outper-
forming GCN by a small margin. In many settings, their accuracy fell below
that of DEGNN.
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4.3 Edge Expert Analysis

To evaluate the edge expert, we compared the edge homophily ratio [25] and
node homophily ratio [30] between the noisy graph and the graphs refined by
the edge expert (referred to as the DEGNN graph) on various edge noise added
settings. In this experiment, we used DEGNN-II, and we set the hyper-parameter
k, which controls the number of edge rewires, to 10%. Figure [5| shows the edge
homophily ratio and node homophily ratio as edge noise is gradually added.
The solid lines represent the results for the Cora dataset, while the dashed lines
represent the results for the Citeseer dataset. This experiment reveals that the
edge expert consistently promotes high edge homophily and node homophily in
all scenarios.

4.4 Node Feature Expert Analysis

In this experiment, we compared the effectiveness of the node feature expert by
comparing the models’ accuracy when node features have noise added. Figure [0]
shows the average of accuracy of 10 runs of GCN and DEGNN-I only having
node feature expert (without edge expert) on Cora and Citeseer dataset with
added node feature noise. Empirical results confirm that employing node embed-
dings derived from the node feature expert markedly elevates prediction accuracy
across a majority of scenarios. This underscores both the indispensability and
efficacy of the node feature expert.

5 Conclusion

In this paper, we identified the vulnerability of recent GSL methods to node
feature noise and proposed a novel GNN model, DEGNN, to address this issue.
DEGNN refines both edges and node features using two carefully designed ex-
perts via self-supervised learning, allowing it to robustly perform predictions in
the presence of both edge and node feature noise. Extensive experiments verify
the effectiveness of the experts in handling graphs with various noise scenarios.
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Fig. 6. Comparison of GCN and DEGNN-I without edge expert on Cora and Citeseer
with added node feature noise.

In this paper, we employed GCN as both the encoder and downstream net-
work. Additionally, simple methods were used for augmentation and edge re-
construction techniques. As future work, we plan to explore more specialized
networks in the encoder and downstream network, as well as investigate differ-
ent augmentation and edge reconstruction techniques.
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