
Probabilistic Guarantees of Stochastic Recursive

Gradient in Non-Convex Finite Sum Problems

Yanjie Zhong1, Jiaqi Li∗1, and Soumendra Lahiri1

1Department of Statistics and Data Science, Washington University in St. Louis

January 31, 2024

Abstract

This paper develops a new dimension-free Azuma-Hoeffding type bound on summation norm of a

martingale difference sequence with random individual bounds. With this novel result, we provide high-

probability bounds for the gradient norm estimator in the proposed algorithm Prob-SARAH, which is

a modified version of the StochAstic Recursive grAdient algoritHm (SARAH), a state-of-art variance

reduced algorithm that achieves optimal computational complexity in expectation for the finite sum

problem. The in-probability complexity by Prob-SARAH matches the best in-expectation result up

to logarithmic factors. Empirical experiments demonstrate the superior probabilistic performance of

Prob-SARAH on real datasets compared to other popular algorithms.

Keywords: machine learning, variance-reduced method, stochastic gradient descent, non-convex opti-

mization

∗Corresponding author: Jiaqi Li, lijiaqi@wustl.edu

1

ar
X

iv
:2

40
1.

15
89

0v
1

 [
st

at
.M

L
]

 2
9

Ja
n

20
24

1 Introduction

We consider the popular non-convex finite sum optimization problem in this work, that is, estimating x∗ ∈

D ⊆ Rd minimizing the following loss function

f(x) =
1

n

n∑
i=1

fi(x), x ∈ D, (1)

where fi : Rd 7→ R is a potentially non-convex function on some compact set D. Such non-convex problems lie

at the heart of many applications of statistical learning James et al. (2013) and machine learning Goodfellow

et al. (2016).

Unlike convex optimization problems, in general, non-convex problems are intractable and the best we

can expect is to find a stationary point. Given a target error ε, since ∇f(x∗) = 0, we aim to find an estimator

x̂ such that roughly ∥∇f(x̂)∥ ≤ ε, where ∇f(·) denotes the gradient vector the loss function f and ∥ · ∥ is

the operator norm. With a non-deterministic algorithm, the output x̂ is always stochastic, and the most

frequently considered measure of error bound is in expectation, i.e.,

E∥∇f(x̂)∥2 ≤ ε2. (2)

There has been a substantial amount of work providing upper bounds on computational complexity needed

to achieve the in-expectation bound. However, in practice, we only run a stochastic algorithm for once and

an in-expectation bound cannot provide a convincing bound in this situation. Instead, a high-probability

bound is more appropriate by nature. Given a pair of target errors (ε, δ), we want to obtain an estimator x̂

such that with probability at least 1− δ, ∥∇f(x̂)∥ ≤ ε, that is

P
(
∥∇f(x̂)∥ ≤ ε

)
≥ 1− δ. (3)

Though the Markov inequality might help, in general, an in-expectation bound cannot be simply converted

to an in-probability bound with a desirable dependency on δ. It would be important to prove upper bounds

on high-probability complexity, which ideally should be polylogorithmic in δ and with polynomial terms

comparable to the in-expectation complexity bound.

Gradient-based methods are favored by practitioners due to simplicity and efficiency and have been

widely studied by researchers in the non-convex setting (Nesterov 2003; Ghadimi and Lan 2013; Allen-Zhu

and Hazan 2016; Reddi et al. 2016; Fang et al. 2018; Wang et al. 2019). Among numerous gradient-based

methods, the StochAstic Recursive grAdient algoritHm (SARAH) (Nguyen et al. 2017a; Nguyen et al. 2017b;

2

Wang et al. 2019) is the one with the best first-order guarantee as given an in-expectation error target, in

both of convex and non-convex finite sum problems. It is worth noticing that Li (2019) attempted to show

that a modified version of SARAH is able to approximate the second-order stationary point with a high

probability. However, we believe that their application of the martingale Azuma-Hoeffding inequality is

unjustifiable because the bounds are potentially random and uncontrollable. In this paper, we shall provide

a correct dimension-free martingale Azuma-Hoeffding inequality with rigorous proofs and leverage it to show

in-probability properties for SARAH-based algorithms in the non-convex setting.

1.1 Related Works

• High-Probability Bounds: While most works in the literature of optimization provide in-expectation

bounds, there is only a small fraction of works discussing bounds in the high probability sense. Kakade

and Tewari (2009) provide a high-probability bound on the excess risk given a bound on the regret. Jain

et al. (2019), Harvey et al. (2019a) and Harvey et al. (2019b) derive some high-probability bounds for

SGD in convex online optimization problems. Zhou et al. (2018) and Li and Orabona (2020) prove high-

probability bounds for several adaptive methods, including AMSGrad, RMSProp and Delayed AdaGrad

with momentum. All these works rely on (generalized) Freedman’s inequality or the concentration

inequality given in Lemma 6 in Jin et al. (2019). Different from them, our high-probability results are

built on a novel Azuma-Hoeffding type inequality proved in this work and Corollary 8 from Jin et al.

(2019). In addition, we notice that Li (2019) provide some probabilistic bounds on a SARAH-based

algorithm. However, we believe their use of the plain martingale Azuma-Hoeffding inequality is not

justifiable. Fang et al. (2018) show in-probability upper bound for SPIDER. Nevertheless, SPIDER’s

practical performance is inferior due to its accuracy-dependent small step size Tran-Dinh et al. (2019)

and Wang et al. (2019).

• Variance-Reduced Methods in Non-Convex Finite Sum Problems: Since the invention of

the variance-reduction technique in Le Roux et al. (2012), Johnson and Zhang (2013), and Defazio

et al. (2014), there has been a large amount of work incorporating this efficient technique to methods

targeting the non-convex finite-sum problem. Subsequent methods, including SVRG (Allen-Zhu and

Hazan 2016; Reddi et al. 2016; Li and Li 2018), SARAH (Nguyen et al. 2017a; Nguyen et al. 2017b),

SCSG (Lei and Jordan 2017; Lei et al. 2017; Horváth et al. 2020), SNVRG (Zhou et al. 2018), SPIDER

(Fang et al. 2018), SpiderBoost (Wang et al. 2019) and PAGE (Li et al. 2021), have greatly reduced

computational complexity in non-convex problems.

3

1.2 Our Contributions

• Dimension-Free Martingale Azuma-Hoeffding inequality: To facilitate our probabilistic analy-

sis, we provide a novel Azuma-Hoeffding type bound on the summation norm of a martingale difference

sequence. The novelty is two-fold. Firstly, same as the plain martingale Azuma-Hoeffding inequality,

it provides a dimension-free bound. In a recent paper, a sub-Gaussian type bound has been developed

by Jin et al. (2019). However, their results are not dimension-free. Our technique in the proof is built

on a classic paper by Pinelis (1992) and is completely different from the random matrix technique used

in Jin et al. (2019). Secondly, our concentration inequality allows random bounds on each element of

the martingale difference sequence, which is much tighter than a large deterministic bound. It should

be highlighted that our novel concentration result perfectly suits the nature of SARAH-style methods

where the increment can be characterized as a martingale difference sequence and it can be further

used to analyze other algorithms beyond the current paper.

• In-probability error bounds of stochastic recursive gradient: We design a SARAH-based

algorithm, named Prob-SARAH, adapted to the high-probability target and provably show its good

in-probability properties. Under appropriate parameter setting, the first order complexity needed to

achieve the in-probability target is Õ
(

1
ε3 ∧

√
n

ε2

)
, which matches the best known in-expectation upper

bound up to some logarithmic factors (Zhou et al. 2018; Wang et al. 2019; Horváth et al. 2020). We

would like to point out that the parameter setting used to achieve such complexity is semi-adaptive

to ε. That is, only the final stopping rule relies on ε while other key parameters are independent of ε,

including step size, mini-batch sizes, and lengths of loops.

• Probabilistic analysis of SARAH for non-convex finite sum: Existing literature on the bounds

of SARAH is mostly focusing on the strongly convex or general convex settings. We extend the case to

the non-convex scenarios, which can be considered as a complimentary study to the stochastic recursive

gradient in probability.

1.3 Notation

For a sequence of sets A1,A2, . . ., we denote the smallest sigma algebra containing Ai, i ≥ 1, by σ
(⋃∞

i=1Ai

)
.

By abuse of notation, for a random variable X, we denote the sigma algebra generated by X by σ(X). We

define constant Ce =
∑∞

i=0 i
−2. For two scalars a, b ∈ R, we denote a∧ b = min{a, b} and a∨ b = max{a, b}.

When we say a quantity T is Oθ1,θ2(θ3) for some θ1, θ2, θ3 ∈ R, there exists a g ∈ R polylogarithmic in θ1

and θ2 such that T ≤ g · θ3, and similarly Õ(·)(·) is defined the same but up to a logarithm factor.

4

2 Prob-SARAH Algorithm

The algorithm Prob-SARAH proposed in our work is a modified version of SpiderBoost (Wang et al. 2019)

and SARAH (Nguyen et al. 2017a; Nguyen et al. 2017b). Since the key update structure is originated from

(Nguyen et al. 2017a), we call our modified algorithm Prob-SARAH. In fact, it can also be viewed as a

generalization of the SPIDER algorithm introduced in (Fang et al. 2018).

We present the Prob-SARAH in Algorithm 1, and here, we provide some explanation of the key steps.

Following other SARAH-based algorithms, we adopt a similar gradient approximation design with nested

loops, specifically with a checkpoint gradient estimator ν
(j)
0 using a large mini-batch size Bj in Line 4 and

a recursive gradient estimator ν
(j)
k updated in Line 9. When the mini-batch size Bj is large, we can regard

the checkpoint gradient estimator ν
(j)
0 as a solid approximation to the true gradient at x̃j−1. With this

checkpoint, we can update the gradient estimator ν
(j)
k with a small mini-batch size bj while maintaining a

desirable estimation accuracy.

To emphasize, our stopping rules in Line 11 of Algorithm 1 is newly proposed, which ensures a critical

enhancement of the performance compared to previous literature. In particular, with this new design, we

can control the gradient norm of the output with high probability. For a more intuitive understanding of

these stopping rules, we will see in our proof sketch section that the gradient norm of iterates in the j-th

outer iteration, ∥∇f∥, can be bounded by a linear combination of
{
ν
(j)
k

}Kj

k=1
with a small remainder. The

first stopping rule, therefore, strives to control the magnitude of the linear combination of
{
ν
(j)
k

}Kj

k=1
, while

the second stopping rule is specifically designed to control the size of remainder terms. For this purpose,

εj should be set as a credible controller of the remainder term, with an example given in Theorems 3.1. In

this way, with small preset constants ε̃ and ε, we guarantee that the output has a desirably small gradient

norm, dependent on ε̃ and ε, when the designed stopping rules are activated. Indeed, Proposition B.1 in

Appendix B offers a guarantee that the stopping rule will be definitively satisfied at some point. More

refined quantitative results regarding the number of steps required for stopping will follow in Theorems 3.1

and Appendix D.3.

3 Theoretical Results

This section is devoted to the main theoretical result of our proposed algorithm Prob-SARAH. We provide

the stop guarantee of the algorithm along with the upper bound of the steps. The high-probability error

bound of the estimated gradient is also established. The discussion of the dependence of our algorithm on

the parameters is available after we introduce our main theorems.

5

Algorithm 1 Probabilistic Stochastic Recursive Gradient (Prob-SARAH)

1: Input: sample size n, constraint area D, initial point x̃0 ∈ D, large batch size {Bj}j≥1, mini batch size
{bj}j≥1, inner loop length {Kj}j≥1, auxiliary error estimator {εj}j≥1, errors ε̃

2, ε2

2: for j = 1, 2, . . . do
3: Uniformly sample a batch Ij ⊆ {1, . . . , n} without replacement, |Ij | = Bj ;

4: ν
(j)
0 ← 1

Bj

∑
i∈Ij
∇fi(x̃j−1);

5: x
(j)
0 ← x̃j−1;

6: for k = 1, 2, . . . ,Kj do

7: x
(j)
k ← Proj

(
x
(j)
k−1 − ηjν

(j)
k−1,D

)
, project the update back to D;

8: Uniformly sample a mini-batch I(j)k ⊆ {1, . . . , n} with replacement and |I(j)k | = bj ;

9: ν
(j)
k ← 1

bj

∑
i∈I(j)

k

∇fi(x(j)
k)− 1

bj

∑
i∈I(j)

k

∇fi(x(j)
k−1) + ν

(j)
k−1;

10: end for
11: if 1

Kj

∑Kj−1
k=0

∥∥ν(j)
k

∥∥2 ≤ ε̃2 and εj ≤ 1
2ε

2 then

12: k̂ ← argmin0≤k≤Kj−1

∥∥ν(j)
k

∥∥2;
13: Return x̂ ← x

(j)

k̂
;

14: end if
15: x̃j ← x

(j)
Kj

;
16: end for

3.1 Technical Assumptions

We shall introduce some necessary regularized assumptions. Most assumptions are commonly used in the

optimization literature. We have further clarifications in Appendix A.

Assumption 3.1 (Existence of achievable minimum). Assume that for each i = 1, 2, . . . , n, fi has continuous

gradient on D and D is a compact subset of Rd. Then, there exists a constant αM <∞ such that

max
1≤i≤n

sup
x∈D
∥∇fi(x)∥ ≤ αM . (4)

Also, assume that there exists an interior point x∗ of the set D such that

f(x∗) = inf
x∈D

f(x).

Assumption 3.2 (L-smoothness). For each i = 1, 2, . . . , n, fi : D → R is L-smooth for some constant

L > 0, i.e.,

∥∇fi(x)−∇fi(x′)∥ ≤ L∥x− x′∥, ∀ x,x′ ∈ D.

Assumption 3.3 (L-smoothness extension). There exists a L-smooth function f̃ : D → R such that

f̃(x) = f(x), ∀ x ∈ D, and f̃(Proj(x,D)) ≤ f̃(x), ∀ x ∈ Rd,

6

where Proj(x,D) is the Euclidean projection of x on some compact set D.

Assumption 3.4. Assume that the following conditions hold.

1. ε ≤ 1
e and α2

M ≥ 1
10240 , where ϵ is the target error bound in (3) and αM is defined in (4).

2. The diameter of D is at least 1, i.e. d1 ≜ max{∥x− x′∥ : x,x′ ∈ D} ≥ 1.

Assumption 3.1 also indicates that there exists a positive number ∆f such that supx∈D
[
f(x)− f(x∗)

]
≤

∆f . Assumptions 3.1–3.3 are commonly used in the optimization literature, and Assumption 3.4 can be

easily satisfied in practical use as long as the initial points are not too far from the optimum. See more

comments on assumptions in Appendix A.

3.2 Main Results on Complexity

According to the definition given in Lei and Jordan (2020), an algorithm is called ε-independent if it can

guarantee convergence at all target accuracies ε in expectation without explicitly using ε in the algorithm.

This is a very favorable property because it means that we no longer need to set the target error beforehand.

Here, we introduce a similar property regarding the dependency on ε.

Definition 3.1 (ε-semi-independence). An algorithm is ε-semi-independent, given δ, if it can guarantee

convergence at all target accuracies ε with probability at least δ and the knowledge of ε is only needed in

the post-processing. That is, the algorithm can iterate without knowing ε and we can select an appropriate

iterate out afterwards.

The newly introduced property can be perceived as the probabilistic equivalent of ε-independence. As

stated in the succeeding theorem, under the given conditions, Prob-SARAH can achieve ε-semi-independence,

given δ.

Theorem 3.1. Suppose that Assumptions 3.1, 3.2, 3.3 and 3.4 are valid. Given a pair of errors (ε, δ), in

Algorithm 1 (Prob-SARAH), set hyperparameters

ηj =
1
4L , Kj =

√
Bj =

√
j2 ∧ n, bj = ljKj , εj = 8L2τj + 2qj , ε̃2 = 1

5ε
2, (5)

for j ≥ 1, where

τj =
1
j3 , δ

′
j =

δ
4Cej4

, lj = 18
(
log(2

δ′j
) + log log(2d1

τj
)
)
, qj =

128α2
M

Bj
log(3

δ′j
)1 {Bj < n} .

7

Then,

Comp(ε, δ) = ÕL,∆f ,αM

(1

ε3
∧
√
n

ε2

)
,

where Comp(ε, δ) represents the number of computations needed to get an output x̂ satisfying ∥∇f(x̂)∥2 ≤ ε2

with probability at least 1− δ.

More detailed results can be found in Appendix C. In appendix C, we also introduce another hyper-

parameter setting that can lead to a complexity with better dependency on α2
M , which could be implicitly

affected by the choice of constraint region D.

3.3 Proof Sketch

In this part, we explain the idea of the proof of Theorem 3.1. Same proofing strategy can be applied

to other hyper-parameter settings. First, we bound the difference between ν
(j)
k and ∇f

(
x
(j)
k

)
by a linear

combination of {∥ν(j)
m ∥}k−1

m=0 and small remainders, with which we can have a good control on ∥∇f
(
x
(j)
k

)
∥

when the stopping rules are met. Second, we bound the number of steps we need to meet the stopping rules.

Combining these 2 key components, we can smoothly get the final conclusions.

Let us firstly introduce a novel Azuma-Hoeffding type inequality, which is key to our analysis.

Theorem 3.2 (Martingale Azuma-Hoeffding Inequality with Random Bounds). Suppose z1, . . . , zK ∈ Rd is

a martingale difference sequence adapted to F0, . . . ,FK . Suppose {rk}Kk=1 is a sequence of random variables

such that ∥zk∥ ≤ rk and rk is measurable with respect to Fk, k = 1, . . . ,K. Then, for any fixed δ > 0, and

B > b > 0, with probability at least 1− δ, for 1 ≤ t ≤ K, either

∃1 ≤ t ≤ K,
t∑

k=1

r2k ≥ B or
∥∥∥ t∑

k=1

zk

∥∥∥2 ≤ 9max
{ t∑

k=1

r2k, b
}(

log(2δ) + log log(Bb)
)
.

Remark 3.1. It is noteworthy that this probabilistic bound on large-deviation is dimension-free, which

is a nontrivial extension of Theorem 3.5 in Pinelis (1994). If r1, r2, . . . , rK are not random, we can let

B =
∑K

k=1 r
2
k + ζ1 and b = ζ2B with ζ1 > 0, 0 < ζ2 < 1. Since ζ1 can be arbitrarily close to 0 and ζ2 can

be arbitrarily close to 1, we can recover Theorem 3.5 in Pinelis (1994). Compared with Corollary 8 in Jin

et al. (2019), which can be viewed as a sub-Gaussian counterpart of our result, a key feature of our Theorem

3.2 is its dimension-independence. We are also working towards improving the bound in Corollary 8 from

Jin et al. (2019) to a dimension-free one.

The success of Algorithm 1 is largely because ∇f(x(j)
k) is well-approximated by ν

(j)
k , and meanwhile ν

(j)
k

can be easily updated. We can observe that ν
(j)
k − ∇f(x

(j)
k) is actually sum of a sequence of martingale

8

difference as

ν
(j)
k −∇f(x

(j)
k) =

[1

bj

∑
i∈I(j)

k

∇fi(x
(j)
k)−

1

bj

∑
i∈I(j)

k

∇fi(x
(j)
k−1) +∇f(x

(j)
k−1)−∇f(x

(j)
k)

]

+
[
ν
(j)
k−1 −∇f(x

(j)
k−1)

]
=

k∑
m=1

[1

bj

∑
i∈I(j)

m

∇fi(x
(j)
m)−

1

bj

∑
i∈I(j)

m

∇fi(x
(j)
m−1)

+∇f(x
(j)
m−1)−∇f(x

(j)
m)

]
+

[
ν
(j)
0 −∇f(x

(j)
0)

]
. (6)

To be more specific, let F0 = {∅,Ω}, and iteratively define Fj,−1 = Fj−1, Fj,0 = σ
(
Fj−1 ∪ σ(Ij)

)
,

Fj,k = σ
(
Fj,0 ∪ σ(I(j)k)

)
, Fj = σ

(∞⋃
k=1

Fj,k

)
, j ≥ 1, k ≥ 1. We also denote ϵ

(j)
0 ≜ ν

(j)
0 − ∇f

(
x
(j)
0

)
, ϵ

(j)
m ≜

1
bj

∑
i∈I(j)

m

∇fi(x(j)
m) − ∇f(x(j)

m) +∇f(x(j)
m−1) − 1

bj

∑
i∈I(j)

m

∇fi(x(j)
m−1), m ≥ 1. Then, we can see that {ϵ(j)m }km=0

is a martingale difference sequence adapted to {Fj,m}km=−1. With the help of our new Martingale Azuma-

Hoeffding inequality, we can control the difference between ν
(j)
k and ∇f

(
x
(j)
k

)
by a linear combination of

{∥ν(j)
m ∥}k−1

m=0 and small remainders, with details given in Appendix D.1. Then, given the stopping rules

in line 11 and selection method specified in line 12 of Algorithm 1, it would be not hard for us to obtain

∥∇f(x̂)∥2 ≤ ε2 with a high probability. More details can be found in Appendix D.2.

Another key question needed to be resolved is, when the algorithm can stop? The following analysis can

build some intuitions for us. Given a T ∈ Z+, with the bound given in Proposition F.1 in Appendix F, with

a high probability,

−∆f ≤ f (x̃2T)− f (x̃T) ≤ AT −
1

16L

2T∑
j=T+1

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 , (7)

where AT is upper bounded by a value polylogorithmic in T . As for the second summation, if εj ≤ 1
2ε

2 for

j = T, T +1, . . . , 2T (which is obviously true when T is moderately large) and our algorithm doesn’t stop in

2T outer iterations,

1

16L

2T∑
j=T+1

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2

≥ ε̃2

16L

2T∑
j=T+1

Kj ≥ ε̃2

16L

2T∑
j=T+1

(
T ∧

√
n
)
=

ε̃2

16L
T 2 ∧ (

√
nT),

which grows at least linear in T . Consequently, when T is sufficiently large, the RHS of (7) can be smaller

than −∆f , which leads to a contradiction. Roughly, we can see that the stopping time T cannot exceed the

order of Õ
(
1
ε ∨

1√
nε2

)
. More details can be found in Appendix D.3.

9

Figure 1: Comparison of convergence with respect to (1 − δ)-quantile of square of gradient norm
(
∥∇f∥2

)
and δ-quantile of validation accuracy on the MNIST dataset for δ = 0.1 and δ = 0.01. The second (fourth)
column presents zoom-in figures of those in the first (third) column. Top: δ = 0.1. Bottom: δ = 0.01. ’bs’
stands for batch size. ’sj=x’ means that the smallest batch size ≈ x log x.

4 Numerical Experiments

In order to validate our theoretical results and show good probabilistic property for the newly-introduced

Prob-SARAH, we conduct some numerical experiments where the objectives are possibly non-convex.

4.1 Logistic Regression with Non-Convex Regularization

In this part, we consider to add a non-convex regularization term to the commonly-used logistic regression.

Specifically, given a sequence of observations (wi, yi) ∈ Rd × {−1, 1}, i = 1, 2, . . . , n and a regularized

parameter λ > 0, the objective is

f(x) =
1

n

n∑
i=1

log
(
1 + e−yiw

T
i x
)
+

λ

2

d∑
j=1

x2
j

1 + x2
j

.

Such an objective has also been considered in other works like Horváth et al. (2020) and Ji et al. (2020).

Same as other works, we set the regularized parameter λ = 0.1 across all experiments. We compare the

newly-introduced Prob-SARAH against three popular methods including SGD (Ghadimi and Lan 2013),

SVRG (Reddi et al. 2016) and SCSG (Lei et al. 2017). Based on results given in Theorem 3.1, we let the

length of the inner loop Kj ∼ j ∧
√
n, the inner loop batch size bj ∼ log j (j ∧

√
n), the outer loop batch size

Bj ∼ j2 ∧ n. For fair comparison, we determine the batch size (inner loop batch size) for SGD (SCSG and

SVRG) based on the sample size n and the number of epochs needed to have sufficient decrease in gradient

10

norm. For example, for the w7a dataset, the sample size is 24692 and we run 60 epochs in total. In the 20th

epoch, the inner loop batch size of Prob-SARAH is approximately 67 log 67 ≈ 281. Thus, we set batch size

256 for SGD, SCSG and SVRG so that they can be roughly matched. In addition, based on the theoretical

results from Reddi et al. (2016), we also consider a large inner loop batch size comparable to n2/3 for SVRG.

In addition, we set step size η = 0.01 for all algorithms across all experiments for simplicity.

Results are displayed in Figure 2, from which we can see that Prob-SARAH has superior probabilistic

guarantee in controlling the gradient norm in all experiments. It is significantly better than SCSG and

SVRG under our current setting. Prob-SARAH can achieve a lower gradient norm than SGD at the early

stage while SGD has a slight advantage when the number of epochs is large.

Figure 2: Comparison of convergence with respect to (1 − δ)-quantile of square of gradient norm
(
∥∇f∥2

)
over 3 datasets for δ = 0.1 and δ = 0.01. Top: δ = 0.1. Bottom: δ = 0.01. Datasets: mushrooms, ijcnn1,
w7a (from left to right). ’bs’ stands for batch size.

4.2 Two-Layer Neural Network

We also evaluate the performance of Prob-SARAH, SGD, SVRG and SCSG on the MNIST dataset with a

simple 2-layer neural network. The two hidden layers respectively have 128 and 64 neurons. We include a

GELU activation layer following each hidden layer. We use the negative log likelihood as our loss function.

Under this setting, the objective is possibly non-convex and smooth on any given compact set. The step

size is fixed to be 0.01 for all algorithms. For Prob-SARAH, we still have the length of the inner loop

Kj ∼ j ∧
√
n, the inner loop batch size bj ∼ log j (j ∧

√
n), the outer loop batch size Bj ∼ j2 ∧ n. But to

reduce computational time, we let j start from 10, 30 and 50 respectively. Based on the same rule described

in the previous subsection, we let the batch size (or inner loop batch size) for SGD, SVRG and SCSG be

512.

11

Results are given in Figure 1. In terms of gradient norm, Prob-SARAH has the best performance among

algorithms considered here when the number of epochs is relatively small. With increasing number of epochs,

SVRG tends to be better in finding first-order stationary points. However, based on the 3rd and 4th columns

in Figure 1, SVRG apparently has an inferior performance on the validation set, which indicates that it could

be trapped at local minima. In brief, Prob-SARAH achieves the best tradeoff between finding a first-order

stationary point and generalization.

We also consider another set of experiments by replacing the GELU activation function with ReLU,

resulting in a non-smooth objective. The results are shown in Appendix G, which resemble those in Figure

1 and the similar conclusions can be drawn.

5 Conclusion

In this paper, we propose a SARAH-based variance reduction algorithm called Prob-SARAH and provide

high-probability bounds on gradient norm for estimator resulted from Prob-SARAH. Under appropriate

assumptions, the high-probability first order complexity nearly match the one in the in-expectation sense.

The main tool used in the theoretical analysis is a novel Azuma-Hoeffding type inequality. We believe that

similar probabilistic analysis can be applied to SARAH-based algorithms in other settings.

A Remarks and Examples for Assumptions

A.1 More comments on Assumptions 3.1–3.4

Remark A.1 (Convexity and smoothness). It is worth noticing that Assumption 3.1 is widely used in many

non-convex optimization works and can be met for most applications in practice. Assumption 3.2 is also

needed in deriving in-expectation bound for many non-convex variance-reduced methods, including state-of-

art ones like SPIDER and SpiderBoost. As for Assumption 3.3, it is a byproduct of the compact constraint

and can be satisfied with some commonly-seen f and usual choices of D. For more discussions on Assumption

3.3, please see Appendix A.2.

Remark A.2 (Compact set D). Compared with other works in the literature of non-convex optimization, the

compact constraint region D ∈ Rd imposed in the finite sum problem (1) may seem somewhat restrictive. In

fact, such constraint is largely due to technical convenience and it can be removed with additional condition

on gradients. We will elaborate on this point in subsection C.1. Besides, in many practical applications, it

is reasonable to restrict estimators to a compact set when certain prior knowledge is available.

12

A.2 An Example of Assumption 3.3

Let us consider the logistic regression with non-convex regularization where the object function can be

characterized as

f(x) =
1

n

n∑
i=1

log (1 + exp (−yi⟨wi,x⟩)) +
λ

2
Φ(x),

where Φ(x) =
d∑

j=1

(x2
j)

1
4 , xj is the jth element of x, λ > 0 is the regularization parameter, {yi}ni=1 are labels

and {wi}ni=1 are normalized covariates with norm 1. In fact, for any fixed λ > 0, Assumption 3.3 holds with

f̃ = f and D = {x : ∥x∥ ≤ R} when R is sufficiently large. Since smoothness is easy to show, we focus on

the second part of Assumption 3.3. To show that

f (Proj(x,D)) ≤ f(x)

holds for any x ∈ Rd, since the projection direction is pointed towards the origin, it suffices to show that for

any ν ∈ Rd with ∥ν∥ = 1,

d

dt
fi(tν) =

d

dt

(
log
(
1 + exp(−tyi⟨wi,ν⟩)

)
+

λ

2

d∑
j=1

√
t(ν2j)

1
4

)
≥ 0,

when t ≥ R for i = 1, 2, . . . , n, where νj is the jth element of ν. To see this,

d

dt
fi(tν)

=
−yi⟨wi,ν⟩exp (−tyi⟨wi,ν⟩)

1 + exp (−tyi⟨wi,ν⟩)
+

λ

2

d∑
j=1

(ν2j)
1
4

2
√
t

=
−yi⟨wi,ν⟩

1 + exp (tyi⟨wi,ν⟩)
+

λ

2

d∑
j=1

(ν2j)
1
4

2
√
t

≥ −yi⟨wi,ν⟩
1 + exp (tyi⟨wi,ν⟩)

+
λ

2

d∑
j=1

ν2j

2
√
t

=
−yi⟨wi,ν⟩

1 + exp (tyi⟨wi,ν⟩)
+

λ

4
√
t
.

If yi⟨wi,ν⟩ ≤ 0, we can immediately know that d
dtfi(tν) ≥ 0 for any t > 0.

If yi⟨wi,ν⟩ > 0, let us consider an auxiliary function

g(b) =
−b

1 + etb
.

13

Then,

g′(b) ∝ −
(
1 + etb

)
+ btebt,

from where we can know the minimum of g(b) is achieved for some b∗ ∈ [1t ,
2
t]. Thus,

g(b) ≥ g(b∗) ≥ −2
(1 + etb)t

≥ −2
(1 + e)t

.

Therefore,

d

dt
fi(tν) ≥

−2
(1 + e)t

+
λ

4
√
t
,

which is positive when t ≥
(

8
(1+e)λ

)2
.

If we consider other non-convex regularization terms in logistic regression, such as Φ(x) =
d∑

j=1

x2
j

1+x2
j
, we

may no longer enjoy Assumption 3.3 because monotony may not hold for a few projection directions even

when the constraint region is large. Nevertheless, such theoretical flaw can be easily remedied by adding an

extra regularization term like λe

2 ∥x∥
2 with appropriate λe > 0.

B Stop Guarantee

We would like to point out that, under appropriate parameter setting, Prob-SARAH is guaranteed to stop.

Actually, we can have the stopping guarantee under more general conditions than those stated in the following

proposition. But for simplicity, we only present conditions naturally matched parameter settings given in

the next two subsections.

Proposition B.1 (Stop guarantee of Prob-SARAH). Suppose that Assumptions 3.1, 3.2, 3.3 and 3.4 are

satisfied. Let step size ηj ≡ 1/(4L) and suppose that bj ≥ Kj, j ≥ 1. The large batch size {Bj}j≥1 is set

appropriately such that Bj = n when j is sufficiently large. If the limit of {εj}j≥1 is 0, then, for any fixed ε̃

and ε, with probability 1, Prob-SARAH (Algorithm 1) stops. In settings where we always have εj ≤ 1
2ε

2, we

also have the result that Prob-SARAH (Algorithm 1) stops with probability 1.

C Detailed Results on Complexity

Theorem C.1. Suppose that Assumptions 3.1, 3.2, 3.3 and 3.4 are valid. Given a pair of errors (ε, δ), in

Algorithm 1 (Prob-SARAH), set hyperparameters

ηj =
1
4L , Kj =

√
Bj =

√
j2 ∧ n, bj = ljKj , εj = 8L2τj + 2qj , ε̃2 = 1

5ε
2, (8)

14

for j ≥ 1, where

τj =
1
j3 , δ

′
j =

δ
4Cej4

, lj = 18
(
log(2

δ′j
) + log log(2d1

τj
)
)
, qj =

128α2
M

Bj
log(3

δ′j
)1 {Bj < n} .

Then, with probability at least 1− δ, Prob-SARAH stops in at most

2(T1 ∨ T2 ∨ T3 ∨ T4) = ÕL,∆f ,αM

(
1

ε
+

1√
nε2

)

outer iterations and the output satisfies ∥∇f(x̂)∥2 ≤ ε2. Detailed definitions of T1, T2, T3 and T4 can be

found in Propositions D.3 and D.4.

Corollary C.1. Under parameter settings in Theorem C.1,

Comp(ε, δ) = ÕL,∆f ,αM

(
1

ε3
∧
√
n

ε2

)
.

We introduce another setting that can help to reduce the dependence on α2
M , which could be implicitly

affected by the choice of constraint region D. We should also notice that, under such setting, the algorithm

is no longer ε-semi-independent.

Theorem C.2. Suppose that Assumptions 3.1, 3.2, 3.3 and 3.4 are valid. We denote ∆0
f ≜ f (x̃0)− f (x∗).

Given a pair of errors (ε, δ), in Algorithm 1 (Prob-SARAH), set parameters

ηj =
1

4L
, Kj =

√
Bj =

√
n, bj = ljKj , εj =

1

2
ε̃2 =

1

10
ε2, (9)

for j ≥ 1, where

τj =
1

40L2
ε2, δ′j =

δ

4Cej4
, lj = 18

(
log(

2

δ′j
) + log log(

2d1
τj

)
)
.

Then, with probability at least 1− δ, Prob-SARAH stops in at most

T5 =
160L(∆0

f + 1)
√
nε2

= OL,∆0
f

(
1√
nε2

)

outer iterations and the output satisfies ∥∇f(x̂)∥2 ≤ ε2.

Corollary C.2. Under parameter settings in Theorem C.2,

Comp(ε, δ) = ÕL,∆0
f

(√
n

ε2

)
.

15

Comparing the complexities in Corollary C.1 and Corollary C.2, we can notice that under the second

setting, we can get rid of the dependence on αM at the expense of losing some adativity to ε. We would also

like to point out that, in the low precision region, i.e. when 1
ε = o (

√
n), the second complexity is inferior.

C.1 Dependency on Parameters

To apply our newly-introduce Azuma-Hoeffding type inequality (see Theorem 3.2), it is necessary to impose

a compact constraint region D. Therefore, let us provide a delicate analysis on how D can affect the

convergence guarantee.

Dependency on d1: d1, the diameter of D, is a parameter directly related to the choice of D. Shown in

theoretical results presented above, the in-probability first-order complexities always have a polylogorithmic

dependency on d1, which implies that as long as d1 is polynomial in n or 1
ε , it should only have a minor effect

on the complexity. With certain prior knowledge, we should be able to control d1 at a reasonable scale.

Dependency on ∆f and ∆0
f : Under the setting given in Theorem 3.1, the first-order complexity is

polynomial in ∆f . Such dependency implicates that the complexity would not deteriorate much if ∆f is of a

small order, which is definitely true when the loss function is bounded. As for the setting given in Theorem

C.2, the first-order complexity is polynomial in ∆0
f , which is conventionally assumed to be O(1) and will not

be affected by D.

D Postponed Proofs for the Results in Section 3

D.1 Bounding the Difference between ν
(j)
k and ∇f

(
x
(j)
k

)
Proposition D.1. For k ≥ 0, j ≥ 1, denote

(
σ̃
(j)
k

)2
≜

4L2η2j
bj

k∑
m=1

∥∥ν(j)
m−1

∥∥2.
Under Assumptions 3.2 and 3.4, for any prescribed constant δ′ ∈ (0, 1), τ ∈ (0, 1), k ≥ 0, j ≥ 1,

∥∥ν(j)
k −∇f

(
x
(j)
k

)∥∥2
≤ 18

((
σ̃
(j)
k

)2
+

4L2τk

bj

)(
log

2

δ′
+ log log

2d21
τ

)
(10)

+
128α2

M

Bj
log

3

δ′
1 {Bj < n}

with probability at least 1− 2δ′.

16

Remark D.1. Let us briefly explain this high-probability bound on ∥ν(j)
k − ∇f(x

(j)
k)∥2. When k = o(bj)

and L = O(1), by letting τ be of appropriate n−1-polynomial order, 4L2τk/bj will be roughly o(1). If further

we have d1 be of n-polynomial order and let δ′ be of n−1-polynomial order, log(2/δ′) + log log(2d21/τ) will be

Õ(1). As a result, the upper bound is roughly (σ̃
(j)
k)2 = (4L2η2j /bj)

∑k
m=1 ∥ν

(j)
m−1∥2 when Bj is sufficiently

large so that the last term in the bound (10) is negligible. Bounding ∥ν(j)
k −∇f(x

(j)
k)∥2 by linear combination

of {∥ν(j)
m ∥}∞m=0 is the key to our analysis.

D.2 Analysis on the Output x̂

Under parameter setting specified in Theorem 3.1, if we suppose that the algorithm stops at the j-th outer

iteration, i.e.

1

Kj

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 ≤ ε̃2, εj ≤
1

2
ε, (11)

there must exist a 0 ≤ k′ ≤ Kj − 1, such that
∥∥∥ν(j)

k′

∥∥∥2 ≤ ε̃2.

Then, on the event

Ωj ≜

{
ω :
∥∥∥ν(j)

k −∇f
(
x
(j)
k

)∥∥∥2 ≤ lj

((
σ̃
(j)
k

)2
+

4L2τjk

bj

)
+ qj , 0 ≤ k ≤ Kj

}
, (12)

where lj = 18
(
log 2

δ′j
+ log log

2d2
1

τj

)
and qj =

128α2
M

Bj
log 3

δ′j
1 {Bj < n}, we can easily derive an upper bound

on
∥∥∥∇f(x(j)

k′)
∥∥∥2,

∥∥∥∇f(x(j)
k′)
∥∥∥2

≤ 2∥ν(j)
k′ ∥2 + 2

∥∥∥ν(j)
k′ −∇f

(
x
(j)
k′

)∥∥∥2
≤ 2ε̃2 + 2lj

((
σ̃
(j)
k′

)2
+

4L2τjk
′

bj

)
+ 2qj

= 2ε̃2 + 2lj

4L2η2j
bj

k′∑
m=1

∥∥∥ν(j)
m−1

∥∥∥2 + 4L2τjk
′

bj

+ 2qj

≤ 2ε̃2 + 2lj

4L2η2j
bj

Kj∑
m=1

∥∥∥ν(j)
m−1

∥∥∥2 + 4L2τjKj

bj

+ 2qj

≤ 2ε̃2 + 2lj

(
4L2η2jKj

bj
ε̃2 +

4L2τjKj

bj

)
+ 2qj

= 2ε̃2 + 2lj

(
Kj

4bj
ε̃2 +

4L2τjKj

bj

)
+ 2qj

= 2.5ε̃2 + 8L2τj + 2qj = 2.5ε̃2 + εj ≤ ε2,

17

where the 2nd step is based on (10) with definitions of lj and qj given in Theorem 3.1, the 5th step is based

on (11), the 6th step is based on the choice of ηj =
1
4L and the 7th step is based on the choice of bj = ljKj .

In addition, based on Proposition D.1, the union event
∞⋃
j=1

Ωj occurs with probability at least

1− 2

∞∑
j=1

Kj∑
k=0

δ′j ≥ 1−
∞∑
j=1

δKj

2Cej4
≥ 1−

∞∑
j=1

δ

Cej2
= 1− δ.

In one word, it is highly likely to control the norm of gradient at our desired level when the algorithm stops.

The above results can sufficiently explain our choice of stopping rule imposed in Algorithm 1. We can

summarize them as the following proposition.

Proposition D.2. Suppose that Assumptions 3.2 and 3.4 are true. Under the parameter setting given in

Theorem 3.1, the output of Algorithm 1 satisfies

∥∇f(x̂)∥2 ≤ ε2,

with probability at least 1− δ.

D.3 Upper-bounding the Stopping Time

Proposition D.3 (First Stopping Rule). Suppose that Assumptions 3.2, 3.3 and 3.4 are valid. Let

T1 =

⌈√
320L(c1 +∆f)

ε
+

320L(c1 +∆f)√
nε2

⌉
,

T2 =

⌈
3

(√
320Lc2
ε

log

√
320Lc2
ε

+
640Lc2√

nε2
log

320Lc2
ε2

+ 1

)⌉
, (13)

where

c1 =
CeL

4
+

16α2
M

L
log

192Ce

δ
, c2 =

64α2
M

L
.

Under the parameter setting given in Theorem 3.1, on Ω, when T ≥ T1 ∨ T2, there exists a T + 1 ≤ j ≤ 2T

such that

1

Kj

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 ≤ ε̃2.

Proposition D.4 (Second Stopping Rule). Let

T3 =

⌈
2
√
c3
ε

⌉
, T4 =

⌈
6
√
c4
ε

log
2
√
c4
ε

⌉
, (14)

18

where

c3 = 8L2 + 256α2
M log

12Ce

δ
, c4 = 1024α2

M .

Under the parameter setting given in Theorem 3.1, on Ω, when T ≥ T3 ∨ T4,

εT ≤
1

2
ε2.

Proposition D.5 (Stop Guarantee). Under the parameter setting and assumptions given in Theorem 3.1,

on Ω, when T ≥ T1 ∨ T2 ∨ T3 ∨ T4, Algorithm 1 stops in at most 2T outer iterations.

Proof. If Algorithm 1 stops in T outer iterations, our conclusion is obviously true. If not, according to

Proposition D.3, there must exist a j ∈ [T + 1, 2T] such that the first stopping rule is met, i.e.

1

Kj

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 ≤ ε̃2.

According to Proposition D.4, the second stopping rule is also met, i.e. εj ≤ 1
2ε

2.

Consequently, the algorithm stops at the j-th outer iteration.

E Technical Lemmas

Lemma E.1 (Theorem 4 in Hoeffding (1963)). Let {ϵ1, ϵ2, . . . , ϵn} be a set of fixed vectors in Rd. I,J ⊆

{1, 2, . . . , n} are 2 random index sets sampled respectively with replacement and without replacement, with

size |I| = |J | = k. For any continuous and convex function f : Rd → R,

Ef
(∑

j∈J
ϵj

)
≤ Ef

(∑
i∈I

ϵi

)
.

Lemma E.2 (Proposition 1.2 in Boucheron et al. (2013)1). Let X be real random variable such that EX = 0

and a ≤ X ≤ b for some a, b ∈ R. Then, for all t ∈ R,

logEetX ≤ t2(b− a)2

8
.

1See also Lemma 1.3 in Bardenet and Maillard (2015).

19

Lemma E.3 (Theorem 3.5 in Pinelis (1994)2). Let {ϵk}Kk=1 ⊆ Rd be a vector-valued martingale difference

sequence with respect to Fk, k = 0, 1, . . . ,K, i.e. for k = 1, . . . ,K, E [ϵk|Fk−1] = 0. Assume ∥ϵk∥2 ≤ B2
k,

k = 1, 2, . . . ,K. Then,

P

(∥∥∥ K∑
k=1

ϵk

∥∥∥ ≥ t

)
≤ 2exp

(
− t2

2
K∑

k=1

B2
k

)
,

∀t ∈ R.

Proposition E.1 (Norm-Hoeffding, Sampling without Replacement). Let {ϵ1, ϵ2, . . . , ϵn} be a set of n fixed

vectors in Rd such that ∥ϵi∥2 ≤ σ2, ∀1 ≤ i ≤ n, for some σ2 > 0. Let J ⊆ {1, 2, . . . , n} be a random index

sets sampled without replacement from {1, 2, . . . , n}, with size |J | = k. Then,

P

(∥∥∥1
k

∑
j∈J

ϵj −
1

n

n∑
j=1

ϵj

∥∥∥ ≥ t

)
≤ 3exp

(
− kt2

64σ2

)
,

∀t ∈ R. In addition,

E
∥∥∥1
k

∑
j∈I

ϵj −
1

n

n∑
j=1

ϵj

∥∥∥2 ≤ 16σ2

k
.

Proof. Firstly, we start with developing moment bounds. Let I be a random index sets sampled with

replacement from {1, 2, . . . , n}, independent of J , with size |I| = k. For any p ∈ Z+,

E
∥∥∥1
k

∑
j∈J

ϵj −
1

n

n∑
j=1

ϵj

∥∥∥p
≤E
∥∥∥1
k

∑
j∈I

ϵj −
1

n

n∑
j=1

ϵj

∥∥∥p

=

∫ ∞

0

P

(∥∥∥1
k

∑
j∈I

ϵj −
1

n

n∑
j=1

ϵj

∥∥∥p ≥ r

)
dr

=

∫ ∞

0

P

(∥∥∥1
k

∑
j∈I

ϵj −
1

n

n∑
j=1

ϵj

∥∥∥ ≥ r1/p

)
dr

≤

∫ ∞

0

2exp

(
− kr2/p

8σ2

)
dr

=p ·
(
8σ2

k

)p/2

· Γ
(p
2

)
,

2See also Theorem 3 in Pinelis (1992) and Proposition 2 in Fang et al. (2018).

20

where the 1st step is based on Lemma E.1 and the 4th step is based on the fact that
∥∥ϵj − 1

n

n∑
i=1

ϵi
∥∥ ≤ 2σ, ∀j

and Lemma E.3.

Then, for any s > 0,

Eexp

(
s
∥∥∥1
k

∑
j∈J

ϵj −
1

n

n∑
j=1

ϵj

∥∥∥)

≤ 1 +

∞∑
p=1

spE
∥∥∥ 1
k

∑
j∈J

ϵj − 1
n

n∑
j=1

ϵj

∥∥∥p
p!

≤ 1 +

∞∑
p=2

spE
∥∥∥ 1
k

∑
j∈J

ϵj − 1
n

n∑
j=1

ϵj

∥∥∥p
p!

+ s

√
8πσ2

k

= 1 + s

√
8πσ2

k
+

∞∑
p=1

(
8σ2s2

k

)p
· (2p) · Γ(p)

(2p)!

+

∞∑
p=1

(
8σ2s2

k

) 2p+1
2 · (2p+ 1) · Γ

(
p+ 1

2

)
(2p+ 1)!

= 1 + s

√
8πσ2

k
+ 2

∞∑
p=1

(
8σ2s2

k

)p
· (p!)

(2p)!

+

√
8s2σ2

k

∞∑
p=1

(
8σ2s2

k

)p
· Γ
(
p+ 1

2

)
(2p)!

≤ 1 + s

√
8πσ2

k
+

(
2 +

√
8πs2σ2

k

) ∞∑
p=1

(
8σ2s2

k

)p
· (p!)

(2p)!

≤ 1 + s

√
8πσ2

k
+

(
1 +

√
2πs2σ2

k

) ∞∑
p=1

(
8σ2s2

k

)p
p!

= 1 + s

√
8πσ2

k
+

(
1 +

√
2πs2σ2

k

)[
exp

(
8s2σ2

k

)
− 1

]

≤
√

8πs2σ2

k
+

(
1 +

√
2πs2σ2

k

)
exp

(
8s2σ2

k

)
≤ exp

(
8s2σ2

k

)
+ 2exp

(
16s2σ2

k

)
≤ 3exp

(
16s2σ2

k

)
,

where the 1st step is based on Taylor’s expansion and the second to the last step is based on the fact that

x ≤ e
x2

π ,
√

π
2xe

x2 ≤ e2x
2

, ∀x ≥ 0.

21

For any s > 0,

P

(∥∥∥ 1
k

∑
j∈J

ϵj − 1
n

n∑
j=1

ϵj

∥∥∥ ≥ t

)

≤ Eexp

(
s
∥∥∥ 1
k

∑
j∈J

ϵj − 1
n

n∑
j=1

ϵj

∥∥∥− ts

)
≤ 3exp

(
16s2σ2

k − ts
)
.

(15)

By letting s = kt
32σ2 in (15),

P

(∥∥∥1
k

∑
j∈J

ϵj −
1

n

n∑
j=1

ϵj

∥∥∥ ≥ t

)
≤ 3exp

(
− kt2

64σ2

)
.

Definition E.1. A random vector ϵ ∈ Rd is (a, σ2)-norm-subGaussian (or nSG(a, σ2)), if ∃a, σ2 > 0 such

that

P (∥ϵ− Eϵ∥ ≥ t) ≤ a · exp
(
− t2

2σ2

)
,

∀t ∈ R.

Definition E.2. A sequence of random vectors ϵ1, . . . , ϵK ∈ Rd is (a, {σ2
k}Kk=1)-norm-subGaussian martin-

gale difference sequence adapted to F0,F1, . . . ,FK , if ∃ a, σ2
1 , . . . , σ

2
K > 0 such that for k = 1, 2, . . . ,K,

E [ϵ|Fk−1] = 0, σk ∈ Fk−1, ϵk ∈ Fk,

and ϵk|Fk−1 is (a, σ2
k)-norm-subGaussian.

Lemma E.4 (Corollary 8 in Jin et al. (2019)). Suppose ϵ1, . . . , ϵK ∈ Rd is (a, {σ2
k}Kk=1)-norm-subGaussian

martingale difference sequence adapted to F0,F1, . . . ,FK . Then for any fixed δ > 0, and B > b > 0, with

probability at least 1− δ, either
K∑

k=1

σ2
i ≥ B

or, ∥∥∥ K∑
k=1

ϵk

∥∥∥ ≤ a

2
e1/e

√√√√max

{
K∑

k=1

σ2
i , b

}(
log

2d

δ
+ log log

B

b

)
.

Lemma E.5. For any ε > 0, n ∈ Z+,

1

T 2 ∧ (
√
nT)

≤ ε2,

when T ≥ ⌈ 1ε + 1√
nε2
⌉.

22

Proof.

1

T 2 ∧ (
√
nT)

= max
{ 1

T 2
,

1√
nT

}
≤ max

{ 1

T ′2

∣∣
T ′= 1

ε

,
1√
nT ′

∣∣
T ′= 1√

nε2

}
= ε2.

Lemma E.6. For any ε ∈ (0, e−1], n ∈ Z+,

log T

T 2 ∧ (
√
nT)

≤ ε2,

when T ≥
⌈
3
(

1
ε log

1
ε + 2√

nε2
log 1

ε2 + 1
{

1√
nε2

log 1
ε2 ≤

e
6

})⌉
.

Proof. Function h(T) = log T
T 2 is monotonically decreasing when T ≥

√
e. Since T ≥ 3

ε log
1
ε ≥
√
e,

log T

T 2
≤

log
(
3
ε log

1
ε

)(
3
ε log

1
ε

)2 =
log 3 + log 1

ε + log log 1
ε

9
(
log 1

ε

)2 ε2

≤
1 + log 3 + 2 log 1

ε

9
(
log 1

ε

)2 ε2 ≤ 3 + log 3

9
ε2 ≤ ε2.

Define a function h̃(T) = log T
T . It is monotonically decreasing when T ≥ e. Thus, if 6√

nε2
log 1

ε2 ≥ e, we

know T ≥ e and consequently,

log T√
nT
≤

log
(

6√
nε2

log 1
ε2

)
√
n
(

6√
nε2

log 1
ε2

)
=

log 1√
nε2

+ log log 1
ε2 + log 6

6 log 1
ε2

ε2

≤
log 1

ε2 + log log 1
ε2 + log 6

6 log 1
ε2

ε2

≤
2 log 1

ε2 + 1 + log 6

6 log 1
ε2

ε2

≤ 3 + log 6

6
ε2

≤ ε2.

23

If 6√
nε2

log 1
ε2 ≤ e, T ≥ 3. Hence,

log T√
nT
≤ log 3√

n3
≤ 6√

ne
log

1

ε2

(
log 3

3
· e
6

)
≤ 6√

ne
log

1

ε2
≤ ε2.

Based on the above results,

log T

T 2 ∧ (
√
nT)

≤ max

{
log T

T 2
,
log T

(
√
nT)

}
≤ ε2.

F Proofs of Main Theorems

Proof of Proposition B.1. It is not hard to conclude that we only need to show

P

(
∃ j ≥ 1,

1

Kj

Kj−1∑
k=0

∥∥ν(j)
k

∥∥2 ≤ ϵ̃2

)
= 1. (16)

For simplicity, we denote Vj ≜ 1
Kj

Kj−1∑
k=0

∥∥ν(j)
k

∥∥2. To show (16), we firstly derive the in-expectation bound on

Vj , which has been covered in works like Wang et al. (2019).

With our basic assumptions, we have

f
(
x
(j)
k+1

)
= f̃

(
Proj

(
x
(j)
k − ηjν

(j)
k ,D

))
≤ f̃

(
x
(j)
k − ηjν

(j)
k

)
≤ f̃

(
x
(j)
k

)
−
〈
∇f̃

(
x
(j)
k

)
, ηjν

(j)
k

〉
+

L

2
η2j

∥∥∥ν(j)
k

∥∥∥2
= f

(
x
(j)
k

)
−
〈
∇f

(
x
(j)
k

)
, ηjν

(j)
k

〉
+

L

2
η2j
∥∥ν(j)

k

∥∥2
= f

(
x
(j)
k

)
+

ηj
2

∥∥∥ν(j)
k −∇f

(
x
(j)
k

)∥∥∥2 − ηj
2

∥∥∥∇f(x(j)
k

)∥∥∥2
− ηj

2
(1− Lηj)

∥∥ν(j)
k

∥∥2,
where the 2nd and 3rd step is based on Assumption 3.3. Then, summing the above inequality from k = 0

to Kj − 1,

f (x̃j)− f (x̃j−1)

24

= f
(
x
(j)
Kj

)
− f

(
x
(j)
0

)
≤ ηj

2

Kj−1∑
k=0

∥∥∥ν(j)
k −∇f

(
x
(j)
k

)∥∥∥2 − ηj
2
(1− Lηj)KjVj . (17)

Then,

E
(
f (x̃j)− f (x̃j−1)

∣∣Fj−1

)
≤ E

(
ηj
2

Kj−1∑
k=0

∥∥∥ν(j)
k −∇f

(
x
(j)
k

)∥∥∥2 ∣∣Fj−1

)

− ηj
2
(1− Lηj)KjE

(
Vj

∣∣Fj−1

)
. (18)

For convenience, we abbreviate E (·|Fj−1) as Ej−1(·). For k = 1, 2, . . . ,Kj − 1,

Ej−1

∥∥∥ν(j)
k −∇f

(
x
(j)
k

)∥∥∥2
= Ej−1E

(∥∥∥ν(j)
k −∇f

(
x
(j)
k

)∥∥∥2 ∣∣Fj,k−1

)

= Ej−1E

(∥∥∥ 1

bj

∑
i∈I(j)

k

∇fi(x(j)
k)− 1

bj

∑
i∈I(j)

k

∇fi(x(j)
k−1)

+∇f(x(j)
k−1)−∇f(x

(j)
k)
∥∥∥2∣∣∣Fj,k−1

)

+ Ej−1

∥∥∥ν(j)
k−1 −∇f(x

(j)
k−1)

∥∥∥2
= Ej−1

1

b2j

∑
i∈I(j)

k

E

(∥∥∥∇fi(x(j)
k)− 1

bj

∑
i∈I(j)

k

∇fi(x(j)
k−1)

+∇f(x(j)
k−1)−∇f(x

(j)
k)
∥∥∥2∣∣∣Fj,k−1

)

+ Ej−1

∥∥∥ν(j)
k−1 −∇f(x

(j)
k−1)

∥∥∥2
≤ 4L2

bj
Ej−1

∥∥∥x(j)
k − x

(j)
k−1

∥∥∥2 + Ej−1

∥∥∥ν(j)
k−1 −∇f(x

(j)
k−1)

∥∥∥2
≤

4L2η2j
bj

Ej−1

∥∥∥ν(j)
k−1

∥∥∥2 + Ej−1

∥∥∥ν(j)
k−1 −∇f(x

(j)
k−1)

∥∥∥2
≤

4L2η2j
bj

k−1∑
t=0

Ej−1

∥∥∥ν(j)
t

∥∥∥2 + Ej−1

∥∥∥ν(j)
0 −∇f(x

(j)
0)
∥∥∥2

≤
4L2η2jKj

bj
Ej−1Vj + Ej−1

∥∥∥ν(j)
0 −∇f(x

(j)
0)
∥∥∥2 . (19)

25

Based on (18) and (19),

E
(
f (x̃j)− f (x̃j−1)

)
≤ −ηjKj

2

(
1− Lηj −

4L2η2jKj

bj

)
EVj

+
ηjKj

2
E
∥∥∥ν(j)

0 −∇f(x
(j)
0)
∥∥∥2

≤ − Kj

16L
EVj +

Kj

8L
E
∥∥∥ν(j)

0 −∇f(x
(j)
0)
∥∥∥2 , (20)

where the second step is based on the choice of ηj ≡ 1
4L and bj ≥ Kj , j ≥ 1. Let us define J0 = min{j :

Bj = n}. Then, for j ≥ J0, based on (20),

1

16L
EVj ≤

Kj

16L
EVj ≤ E (f (x̃j−1)− f (x̃j)) .

Then for any m ∈ Z+,

P
(
Vj > ϵ̃2, j ≥ 1

)
≤ P

(
VJ0

+ VJ0+1 + . . .+ VJ0+m > (m+ 1)ϵ̃2
)

≤ E (VJ0
+ VJ0+1 + . . .+ VJ0+m)

(m+ 1)ϵ̃2

≤ 16L

(m+ 1)ϵ̃2

J0+m∑
j=J0

E (f (x̃j−1)− f (x̃j))

≤ 16L∆f

(m+ 1)ϵ̃2
.

Since m can be arbitrarily large, we know

P
(
Vj > ϵ̃2, j ≥ 1

)
= 0,

which can directly lead to (16).

Proof of Theorem 3.2. In this proof, for simplicity, we denote E [·|Fk] by Ek [·]. Let sk =
k∑

i=1

zi, k ≥ 1.

For a 1 ≤ k ≤ K, consider

fk(t) = Ek−1 [cosh(λ∥sk−1 + tzk∥)] , λ > 0, t > 0.

26

Then,

f ′
k(t) =

1

2
Ek−1

[
λ⟨zk, sk−1 + tzk⟩
∥sk−1 + tzk∥

(
eλ∥sk−1+tzk∥ − e−λ∥sk−1+tzk∥

)]
,

and consequently,

f ′
k(0) =

1

2
Ek−1

[
λ⟨zk, sk−1⟩
∥sk−1∥

(
eλ∥sk−1∥ − e−λ∥sk−1∥

)]
= 0.

Next,

f ′′
k (t)

=
1

2
Ek−1

[(
λ2⟨zk, sk−1 + tzk⟩2

∥sk−1 + tzk∥2
+

λ∥zk∥2

∥sk−1 + tzk∥

)
eλ∥sk−1+tzk∥

+

(
λ2⟨zk, sk−1 + tzk⟩2

∥sk−1 + tzk∥2
− λ∥zk∥2

∥sk−1 + tzk∥

)
e−λ∥sk−1+tzk∥

]

= Ek−1

[
λ2⟨zk, sk−1 + tzk⟩2

∥sk−1 + tzk∥2
cosh(λ∥sk−1 + tzk∥)

+
λ2∥zk∥2

λ∥sk−1 + tzk∥
sinh(λ∥sk−1 + tzk∥)

]

≤ Ek−1

[(
λ2⟨zk, sk−1 + tzk⟩2

∥sk−1 + tzk∥2
+ λ2∥zk∥2

)
cosh(λ∥sk−1 + tzk∥)

]

≤ 2λ2Ek−1

[
∥zk∥2cosh(λ∥sk−1 + tzk∥)

]
≤ 2λ2r2kEk−1 [cosh(λ∥sk−1 + tzk∥)]

= 2λ2r2kfk(t),

where the first inequality is based on the fact that if y > 0, sinh(y)
y ≤ cosh(y).

According to Lemma 3 in Pinelis (1992),

fk(t) ≤ fk(0)exp
(
λ2r2kt

2
)
= cosh(λ∥sk−1∥)exp

(
λ2r2kt

2
)
.

Thus,

Ek−1 [cosh(λ∥sk∥)]

= fk(1) ≤ cosh(λ∥sk−1∥)exp
(
λ2r2kt

2
)
. (21)

27

Now, let

Gk = cosh(λ∥sk∥)exp
(
− λ2

k∑
i=1

r2i

)
, k = 1, 2, . . . ,K.

We can easily know that for k = 1, 2, . . . ,K, Gk is measurable with respect to Fk. According to (21),

Ek−1Gk = exp
(
− λ2

k∑
i=1

r2i

)
Ek−1 [cosh(λ∥sk∥)]

≤ cosh(λ∥sk−1∥)exp
(
− λ2

k−1∑
i=1

r2i

)
= Gk−1,

which implies that {Gk}Kk=1 is a non-negative super-martingale adapted to F0,F1, . . . ,FK .

For any constant m > 0, if we define stopping time Tm = inf

{
t : ∥st∥ ≥ λ

t∑
i=1

r2i +m

}
, we immediately

know that GTm∧k, k ≥ 0, is a supermartingale and

P

(
∃1 ≤ t ≤ k, ∥st∥ ≥ λ

t∑
i=1

r2i +m

)

= P

(
∥sTm∥ ≥ λ

Tm∑
i=1

r2i +m, 1 ≤ Tm ≤ k

)

= P

(
∥sTm∧k∥ ≥ λ

Tm∧k∑
i=1

r2i +m, 1 ≤ Tm ≤ k

)

≤ P

(
GTm∧k ≥ exp

(
− λ2

Tm∧k∑
i=1

r2i

)
cosh

(
λ2

Tm∧k∑
i=1

r2i +mλ
))

≤ P

(
GTm∧k ≥

1

2
exp
(
− λ2

Tm∧k∑
i=1

r2i +
(
λ2

Tm∧k∑
i=1

r2i +mλ
)))

= P
(
2GTm∧k ≥ eλm

)
≤ 2EGTm∧k

eλm

≤ 2e−λmEG0

= 2e−λm,

where the 2nd step is based on the fact that cosh(y) ≥ 1
2e

y,∀y ∈ R, the 4th step is by Chebyshev’s inequality

and the 5th step is based on the supermartingale property.

Therefore, if we let λm = log 2
δ ,

P

(
∃1 ≤ t ≤ k, ∥st∥ ≥ λ

t∑
i=1

r2i +
1

λ
log

2

δ

)
≤ δ.

28

Since k can be up to K,

P

(
∃1 ≤ t ≤ K, ∥st∥ ≥ λ

t∑
i=1

r2i +
1

λ
log

2

δ

)
≤ δ.

The final conclusion can be obtained immediately by following similar steps given in the proof of Corollary

8 from Jin et al. (2019).

Proof of Proposition D.1. Recall that

ϵ
(j)
0 = ν

(j)
0 −∇f

(
x
(j)
0

)
=

1

Bj

∑
i∈Ij

∇fi
(
x
(j)
0

)
−∇f

(
x
(j)
0

)
,

where Ij is sampled without replacement. Since
∥∥∥∇fi(x(j)

0

)∥∥∥ ≤ αM , i = 1, 2, . . . , n, based on Proposition

E.1,

P
(
∥ϵ(j)0 ∥ ≥ t|Fj,−1

)
≤ 3exp

(
− Bjt

2

64α2
M

)
1 {Bj < n} . (22)

Next, if we suppose I(j)m =
{
i
(j)
m,1, i

(j)
m,2, . . . , i

(j)
m,bj

}
, where i

(j)
m,t1 ̸= i

(j)
m,t2 for any 1 ≤ t1 < t2 ≤ bj , we have

ϵ(j)m

=
1

bj

∑
i∈I(j)

m

[
∇fi(x(j)

m)−∇f(x(j)
m) +∇f(x(j)

m−1)−∇fi(x
(j)
m−1)

]

=

bj∑
r=1

1

bj

[
∇f

i
(j)
m,r

(x(j)
m)−∇f(x(j)

m) +∇f(x(j)
m−1)−∇fi(j)m,r

(x
(j)
m−1)

]

≜
bj∑
r=1

ρ
(j)
(m−1)bj+r.

Let

F̃ (j)
0 = Fj,0

and

F̃ (j)
a1bj+a2

= σ
(
F̃ (j)

a1bj+a2−1

⋃
σ
(
i
(j)
a1+1,a2

))
for a1 = 0, 1, 2, . . . and a2 = 1, 2, . . . , bj . Then, we can see that

{
ρ
(j)
s

}kbj
s=1

is a martingale difference sequence

adapted to
{
F̃ (j)

s

}kbj
s=0

.

Notice that for m = 1, 2, . . . , k and r = 1, 2, . . . , bj ,

∥∥ρ(j)
(m−1)bj+r

∥∥
=

∥∥∥∥ 1

bj

[
∇f

i
(j)
m,r

(x(j)
m)−∇f(x(j)

m) +∇f(x(j)
m−1)−∇fi(j)m,r

(x
(j)
m−1)

]∥∥∥∥
29

≤ 2L

bj

∥∥∥x(j)
m − x

(j)
m−1

∥∥∥ .
Therefore, based on Theorem 3.2, for any fixed δ′ > 0, B > b > 0, with probability at least 1− δ′, either

(
σ
(j)
k

)2
≜

k∑
m=1

bj∑
r=1

(
2L

bj

∥∥∥x(j)
m − x

(j)
m−1

∥∥∥)2

=
4L2

bj

k∑
m=1

∥∥∥x(j)
m − x

(j)
m−1

∥∥∥2
≥ B,

or

∥∥∥ν(j)
k −∇f

(
x
(j)
k

)
− ϵ

(j)
0

∥∥∥2
=
∥∥∥ kbj∑

s=1

ρ(j)
s

∥∥∥2
≤ 9max

{(
σ
(j)
k

)2
, b
}(

log
2

δ′
+ log log

B

b

)
.

Under the compact constraint, (
σ
(j)
k

)2 ≤ 4L2d21k

bj
.

Thus, if we let B =
8L2d2

1k
bj

and b = 4L2τk
bj

for some τ ∈ (0, 1), it would be of probability 0 to have
(
σ
(j)
k

)2 ≥ B.

Thus, with probability at least 1− δ′,

∥∥∥ν(j)
k −∇f

(
x
(j)
k

)
− ϵ

(j)
0

∥∥∥2
≤ 9

((
σ
(j)
k

)2
+

4L2τk

bj

)(
log

2

δ′
+ log log

2d21
τ

)
(23)

≤ 9

((
σ̃
(j)
k

)2
+

4L2τk

bj

)(
log

2

δ′
+ log log

2d21
τ

)
.

According to (22), with probability at least 1− δ′,

∥∥ϵ(j)0

∥∥2 ≤ 64α2
M

Bj
log

3

δ′
1 {Bj < n} . (24)

Thus, combining (23) and (24), with probability at least 1− 2δ′,

∥∥∥ν(j)
k −∇f

(
x
(j)
k

)∥∥∥2

30

≤ 18

((
σ̃
(j)
k

)2
+

4L2τk

bj

)(
log

2

δ′
+ log log

2d21
τ

)
+

128α2
M

Bj
log

3

δ′
1 {Bj < n} .

Proposition F.1 (Inner Loop Analysis). Given Assumptions 3.2, 3.3 and 3.4, under the parameter setting

given in Theorem 3.1, let Ω =
∞⋃
j=1

Ωj, where the definition of Ωj is given in (12). On Ω,

f
(
x
(j)
Kj

)
− f

(
x
(j)
0

)
≤ − 1

16L

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 + L2ηjτj ljK
2
j

bj
+

ηjKjqj
2

,

for all j ∈ Z+. Such event Ω occurs with probability at least 1− δ.

Proof of Proposition F.1. Firstly, as what we have shown in section 3,
∞⋃
j=0

Ωj occurs with probability at

least 1− δ.

Based on (17), on
∞⋃
j=0

Ωj ,

f
(
x
(j)
Kj

)
− f

(
x
(j)
0

)
≤ ηj

2

Kj−1∑
k=0

[
lj

((
σ̃
(j)
k

)2
+

4L2τjk

bj

)
+ qj

]

− ηj
2
(1− Lηj)

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2
≤ ηj

2

Kj−1∑
k=0

(
4L2η2j lj

bj

k∑
m=1

∥∥∥ν(j)
m−1

∥∥∥2)+
2L2ηjτj lj

bj

K2
j

2

+
ηjKjqj

2
− ηj

2
(1− Lηj)

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2
≤

2L2η3j ljKj

bj

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 + L2ηjτj ljK
2
j

bj
+

ηjKjqj
2

− ηj
2
(1− Lηj)

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2
= −ηj

2

(
1− Lηj −

4L2η2j ljKj

bj

)
Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2
+

L2ηjτj ljK
2
j

bj
+

ηjKjqj
2

31

= − 1

8L

(
1− 1

4
− 1

4

)Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 + L2ηjτj ljK
2
j

bj
+

ηjKjqj
2

= − 1

16L

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 + L2ηjτj ljK
2
j

bj
+

ηjKjqj
2

,

where the 5th step is based on our choices of ηj =
1
4L and bj = ljKj , j = 1, 2,

Proof of Proposition D.3. Firstly,

−∆f ≤ f (x̃2T)− f (x̃T) = f
(
x
(2T)
K2T

)
− f

(
x
(T+1)
0

)
≤

2T∑
j=T+1

 −1
16L

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 + L2ηjτj ljK
2
j

bj
+

ηjKjqj
2

 (25)

=

2T∑
j=T+1

[
L2ηjτj ljK

2
j

bj
+

ηjKjqj
2

]
− 1

16L

2T∑
j=T+1

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 ,
where the 3rd step is based on Proposition F.1.

For simplifying notations, we denote

AT ≜
2T∑

j=T+1

[
L2ηjτj ljK

2
j

bj
+

ηjKjqj
2

]
.

Then,

AT

=

2T∑
j=T+1

(
LτjKj

4
+

Kjqj
8L

)

=

2T∑
j=T+1

(
L
√

j2 ∧ n

4j3
+

16α2
M

L
√

j2 ∧ n
log

12Cej
4

δ
1
{
j2 < n

})

≤
2T∑

j=T+1

(
L

4j2
+

16α2
M

L
√
j2 ∧ n

log
12Cej

4

δ
1
{
j2 < n

})

≤
2T∑

j=T+1

(
L

4j2
+

16α2
M

Lj
log

12Cej
4

δ

)
(26)

≤ CeL

4
+

2T∑
j=T+1

16α2
M

Lj
log

12Cej
4

δ

≤ CeL

4
+

2T∑
j=T+1

16α2
M

LT
log

12Ce(2T)
4

δ

=
CeL

4
+

16α2
M

L
log

192CeT
4

δ

32

=
CeL

4
+

16α2
M

L
log

192Ce

δ
+

64α2
M

L
log T,

where the 1st step is based on the choices that ηj = 1
4L and bj = ljKj , the second step is bases on the

choices of Kj =
√
Bj =

√
j2 ∧ n, δ′j =

δ
4Cej4

. According to Lemma E.5, as T ≥ T1,

1

T 2 ∧ (
√
nT)

≤ ε2

320L(c1 +∆f)
. (27)

According to Lemma E.6, as T ≥ T2,

log T

T 2 ∧ (
√
nT)

≤ ε2

320Lc2
. (28)

If we suppose to the contrary that

1

Kj

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 > ε̃2

holds for all T + 1 ≤ j ≤ 2T , then we have

1

16L

2T∑
j=T+1

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2

≥ ε̃2

16L

2T∑
j=T+1

Kj ≥ ε̃2

16L

2T∑
j=T+1

(
T ∧

√
n
)
=

ε̃2

16L
T 2 ∧ (

√
nT).

By (26), (27), (28) and the above results,

80L

T 2 ∧ (
√
nT)

∆f +AT −
1

16L

2T∑
j=T+1

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2


≤ 80L

T 2 ∧ (
√
nT)

(∆f +AT)− 5ε̃2

=
80L

T 2 ∧ (
√
nT)

(∆f +AT)− ε2

≤ 80L

T 2 ∧ (
√
nT)

(∆f + c1) +
80Lc2 log T

T 2 ∧ (
√
nT)

− ε2

≤ ε2

4
+

ε2

4
− ε2

= −ε2

2
,

which contradicts (25).

Proof of Proposition D.4.

εT

= 8L2τT + 2qT

33

=
8L2

T 3
+

256α2
M

BT
log

3

δ′T
1 {BT < n}

≤ 8L2

T 3
+

256α2
M

T 2
log

3

δ′T
(29)

=
8L2

T 3
+

256α2
M

T 2
log

12CeT
4

δ

≤
(
8L2 + 256α2

M log
12Ce

δ

)
1

T 2
+

1024α2
M

T 2
log T

= c3
1

T 2
+ c4

log T

T 2
, (30)

where the 2nd step is based on our choice of τT = 1
T 3 and the 4th step is based on the choice of δ′T = δ

4CeT 4 .

According to Lemma E.5, where we can simply let n =∞, as T ≥ T3,

1

T 2
≤ ε2

4c3
. (31)

Similarly, according to Lemma E.6 and Assumption 3.4, as T ≥ T4,

log T

T 2
≤ ε2

4c4
. (32)

Combining (29), (31) and (32),

εT ≤
ε2

2
.

Proof of Corollary C.1. This part follows a similar way as the complexity analysis in Horváth et al.

(2020). It is easy to know that if Algorithm 1 stops in T outer iterations, the first order computational

complexity is

ÕL,∆f ,αM

(
T 3 ∧ (nT)

)
.

Thus, it is sufficient to show

T 3
i ∧ (nTi) = ÕL,∆f ,αM

(
1

ε3
∧
√
n

ε2

)
, i = 1, 2, 3, 4.

• T 3
1 ∧ (nT1)

For simplicity, we let c̃1 =
√
320L(c1 +∆f) and consequently T1 =

⌈
c̃1
ε +

c̃21√
nε2

⌉
.

34

When
√
nε ≤ c̃1,

c̃1
ε ≤

c̃21√
nε2

and consequently T = O
(

c̃21√
nε2

)
. Hence,

T 3
1 ∧ (nT1) = O(nT1) = O

(√
nc̃21
ε2

)
= O

(√
nc̃21
ε2
∧ c̃31

ε3

)
,

where the last step is due to
√
n ≤ c̃1

ε .

When
√
nε ≥ c̃1,

c̃1
ε ≥

c̃21√
nε2

and consequently T = O
(
c̃1
ε

)
. Hence,

T 3
1 ∧ (nT1) = O(T 3

1) = O
(
c̃31
ε3

)
= O

(√
nc̃21
ε2
∧ c̃31

ε3

)
,

where the last step is due to c̃1 ≤
√
nε.

To sum up,

T 3
1 ∧ (nT1) = O

(√
nc̃21
ε2
∧ c̃31

ε3

)
= ÕL,∆f ,αM

(
1

ε3
∧
√
n

ε2

)
.

• T 3
2 ∧ (nT2)

Secondly, if we let c̃2 =
√
320Lc2, we have c̃2 ≥ 4 based on Assumption 3.4. As a result, T2 =

Θ
(

3c̃2
ε log 3c̃2

ε +
2c̃22√
nε2

log
c̃22
ε2

)
. Therefore, it is equivalent to study T̄ 3

2 ∧ (nT̄2) where T̄2 = 3c̃2
ε log 3c̃2

ε +

2c̃22√
nε2

log
c̃22
ε2 .

When c̃2 ≥ 1.5
√
nε,

3c̃2
ε

log
3c̃2
ε
≤ 3c̃2

ε
log

c̃22
ε2
≤ 2c̃22√

nε2
log

c̃22
ε2

.

Thus, T̄2 = O
(

2c̃22√
nε2

log
c̃22
ε2

)
. Then,

T̄ 3
2 ∧ (nT̄2) = O

(
nT̄2

)
= O

(
2
√
nc̃22
ε2

log
c̃22
ε2

)
= O

(
2
√
nc̃22
ε2

log
c̃22
ε2
∧ 4c̃32

3ε3
log

c̃22
ε2

)
.

When c̃2 ≤ 1.5
√
nε,

2c̃22√
nε2

log
c̃22
ε2

=
4c̃22√
nε2

log
c̃2
ε
≤ 4c̃22√

nε2
log

3c̃2
ε

≤ 1.5ε

c̃2
· 4c̃

2
2

ε2
log

3c̃2
ε

=
6c̃2
ε

log
3c̃2
ε

.

Thus, T̄2 = O
(
c̃2
ε log 3c̃2

ε

)
. Then

T̄ 3
2 ∧ (nT̄2) = O

(
T̄ 3
2

)
= O

(
c̃32
ε3

(
log

3c̃2
ε

)3
)

35

= O

(
c̃32
ε3

(
log

3c̃2
ε

)3

∧ 1.5
√
nc̃22

ε2

(
log

3c̃2
ε

)3
)
.

To sum up,

T 3
2 ∧ (nT2) = ÕL,∆f ,αM

(
1

ε3
∧
√
n

ε2

)
.

• T 3
3 ∧ (nT3)

Since T3 = Θ̃L,∆f ,αM

(
1
ε

)
, we can directly know that

T 3
3 ∧ (nT3) = ÕL,∆f ,αM

(
1

ε3
∧ n

ε

)
= ÕL,∆f ,αM

(
1

ε3
∧
√
n

ε2

)
.

• T 3
4 ∧ (nT4)

Similar to the previous case,

T 3
4 ∧ (nT4) = ÕL,∆f ,αM

(
1

ε3
∧
√
n

ε2

)
.

Proof of Theorem C.2. We can see that many results given under the setting of Theorem 3.1 can still

apply under the current setting. If we still define Ωj as (12), Ω =
∞⋃
j=1

Ωj occurs with probability at least

1− δ.

Under the current setting, Proposition F.1 is still valid. Thus, on Ω, for any j ∈ Z+,

f
(
x
(j)
Kj

)
− f

(
x
(j)
0

)
≤ − 1

16L

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 + L2ηjτj ljK
2
j

bj
+

ηjKjqj
2

= − 1

16L

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 + L2ηjτj ljK
2
j

bj

= − 1

16L

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 + LτjKj

4

= − 1

16L

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 + √nL
4

τj ,

where the 2nd step is due to our choice of Bj ≡ n and consequently qj ≡ 0, the 3rd step is based on our

choices of ηj = 1
4L and bj = ljKj , the 4th step is based on our choice of Kj = n. Summing the above

36

inequality from j = 1 to T ,

−∆0
f

= f (x∗)− f
(
x
(1)
0

)
≤ f

(
x
(T)
KT

)
− f

(
x
(1)
0

)
=

T∑
j=1

√nL
4

τj −
1

16L

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2


=

√
nT ε̃2

32L
− 1

16L

T∑
j=1

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 , (33)

where the 2nd step is according to Assumption 3.1, the 4th step is based on our choice of τj ≡ ε̃2

8L2 . We

assert that when T ≥ T5, there must exist a 1 ≤ j ≤ T such that

1

Kj

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 ≤ ε̃2.

If not,

√
nT ε̃2

32L
− 1

16L

T∑
j=1

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2
=

√
nT ε̃2

32L
− 1

16L

T∑
j=1

Kj

Kj

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2
≤
√
nT ε̃2

32L
− 1

16L

T∑
j=1

ε̃2Kj

=

√
nT ε̃2

32L
−
√
nε̃2T

16L

= −
√
nT ε̃2

32L

= −
√
nε2T

160L

≤ −(∆0
f + 1),

which is in conflict with (33). Thus, on Ω, the first stopping rule will be met in at most T outer iterations

while the second stopping rule is always satisfied. When both stopping rules are met, we can show that the

output is of desirable property. Let 1 ≤ j ≤ T and 0 ≤ k ≤ Kj such that

1

Kj

Kj−1∑
k=0

∥∥∥ν(j)
k

∥∥∥2 ≤ ε̃2

37

and ∥∥∥ν(j)
k

∥∥∥2 ≤ ε̃2.

Then, on Ω,

∥∇f (x̂)∥2

=
∥∥∥∇f(x(j)

k

)∥∥∥2
≤ 2

∥∥∥ν(j)
k

∥∥∥2 + 2
∥∥∥ν(j)

k −∇f
(
x
(j)
k

)∥∥∥2
≤ 2ε̃2 + 2

∥∥∥ν(j)
k −∇f

(
x
(j)
k

)∥∥∥2
≤ 2ε̃2 + 2lj

(
4L2η2j
bj

k∑
m=1

∥∥∥ν(j)
m−1

∥∥∥2 + 4L2τjk

bj

)

≤ 2ε̃2 + 2lj

4L2η2j
bj

Kj∑
m=1

∥∥∥ν(j)
m−1

∥∥∥2 + 4L2τjKj

bj


≤ 2ε̃2 + 2lj

(
4L2η2jKj ε̃

2

bj
+

4L2τjKj

bj

)

= 2ε̃2 + 0.5ε̃2 + 8L2τj

= 3.5ε̃2

≤ ε2,

where the 4th step is based on Proposition D.1, the 7th step is based on our choices of ηj =
1
4L and bj = ljKj ,

the 8th step is based on our choice of τj ≡ ε̃2

8L2 .

38

G Supplementary Figures

Figure 3: Comparison of convergence with respect to (1 − δ)-quantile of square of gradient norm
(
∥∇f∥2

)
and δ-quantile of validation accuracy on the MNIST dataset for δ = 0.1 and δ = 0.01. The second (fourth)
column presents zoom-in figures of those in the first (third) column. Top: δ = 0.1. Bottom: δ = 0.01. ’bs’
stands for batch size. ’sj=x’ means that the smallest batch size ≈ x log x.

References

Allen-Zhu, Z. and E. Hazan (2016). “Variance reduction for faster non-convex optimization”. In: International

conference on machine learning. PMLR, pp. 699–707.

Bardenet, R. and O.-A. Maillard (2015). “Concentration inequalities for sampling without replacement”. In:

Bernoulli 21.3, pp. 1361–1385.

Boucheron, S., G. Lugosi, and P. Massart (2013). Concentration inequalities: A nonasymptotic theory of

independence. Oxford university press.

Defazio, A., F. Bach, and S. Lacoste-Julien (2014). “SAGA: A fast incremental gradient method with support

for non-strongly convex composite objectives”. In: Advances in neural information processing systems,

pp. 1646–1654.

Fang, C., C. J. Li, Z. Lin, and T. Zhang (2018). “SPIDER: near-optimal non-convex optimization via

stochastic path integrated differential estimator”. In: Proceedings of the 32nd International Conference

on Neural Information Processing Systems, pp. 687–697.

Ghadimi, S. and G. Lan (2013). “Stochastic first-and zeroth-order methods for nonconvex stochastic pro-

gramming”. In: SIAM Journal on Optimization 23.4, pp. 2341–2368.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep learning. MIT press.

39

Harvey, N. J., C. Liaw, Y. Plan, and S. Randhawa (2019a). “Tight analyses for non-smooth stochastic

gradient descent”. In: Conference on Learning Theory. PMLR, pp. 1579–1613.

Harvey, N. J., C. Liaw, and S. Randhawa (2019b). “Simple and optimal high-probability bounds for strongly-

convex stochastic gradient descent”. In: arXiv preprint arXiv:1909.00843.

Hoeffding, W. (1963). “Probability Inequalities for Sums of Bounded Random Variables”. In: Journal of the

American Statistical Association 58.301, pp. 13–30.

Horváth, S., L. Lei, P. Richtárik, and M. I. Jordan (2020). “Adaptivity of stochastic gradient methods for

nonconvex optimization”. In: arXiv preprint arXiv:2002.05359.

Jain, P., D. Nagaraj, and P. Netrapalli (2019). “Making the last iterate of sgd information theoretically

optimal”. In: Conference on Learning Theory. PMLR, pp. 1752–1755.

James, G., D. Witten, T. Hastie, and R. Tibshirani (2013). An introduction to statistical learning. Vol. 112.

Springer.

Ji, K., Z. Wang, B. Weng, Y. Zhou, W. Zhang, and Y. Liang (2020). “History-gradient aided batch size

adaptation for variance reduced algorithms”. In: International Conference on Machine Learning. PMLR,

pp. 4762–4772.

Jin, C., P. Netrapalli, R. Ge, S. M. Kakade, and M. I. Jordan (2019). “A short note on concentration

inequalities for random vectors with subgaussian norm”. In: arXiv preprint arXiv:1902.03736.

Johnson, R. and T. Zhang (2013). “Accelerating stochastic gradient descent using predictive variance reduc-

tion”. In: Advances in neural information processing systems 26, pp. 315–323.

Kakade, S. M. and A. Tewari (2009). “On the generalization ability of online strongly convex programming

algorithms”. In: Advances in Neural Information Processing Systems, pp. 801–808.

Le Roux, N., M. Schmidt, and F. Bach (2012). “A stochastic gradient method with an exponential con-

vergence rate for finite training sets”. In: Proceedings of the 25th International Conference on Neural

Information Processing Systems-Volume 2, pp. 2663–2671.

Lei, L. and M. Jordan (2017). “Less than a single pass: Stochastically controlled stochastic gradient”. In:

Artificial Intelligence and Statistics. PMLR, pp. 148–156.

Lei, L. and M. I. Jordan (2020). “On the adaptivity of stochastic gradient-based optimization”. In: SIAM

Journal on Optimization 30.2, pp. 1473–1500.

Lei, L., C. Ju, J. Chen, and M. I. Jordan (2017). “Non-convex finite-sum optimization via SCSG methods”.

In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 2345–

2355.

Li, X. and F. Orabona (2020). “A high probability analysis of adaptive sgd with momentum”. In: arXiv

preprint arXiv:2007.14294.

40

Li, Z. (2019). “SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points”. In:

Advances in Neural Information Processing Systems 32, pp. 1523–1533.

Li, Z., H. Bao, X. Zhang, and P. Richtárik (2021). “PAGE: A simple and optimal probabilistic gradient esti-

mator for nonconvex optimization”. In: International Conference on Machine Learning. PMLR, pp. 6286–

6295.

Li, Z. and J. Li (2018). “A simple proximal stochastic gradient method for nonsmooth nonconvex optimiza-

tion”. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems,

pp. 5569–5579.

Nesterov, Y. (2003). Introductory lectures on convex optimization: A basic course. Vol. 87. Springer Science

& Business Media.

Nguyen, L. M., J. Liu, K. Scheinberg, and M. Takáč (2017a). “SARAH: A novel method for machine learning

problems using stochastic recursive gradient”. In: International Conference on Machine Learning. PMLR,

pp. 2613–2621.

Nguyen, L. M., J. Liu, K. Scheinberg, and M. Takáč (2017b). “Stochastic recursive gradient algorithm for

nonconvex optimization”. In: arXiv preprint arXiv:1705.07261.

Pinelis, I. (1992). “An approach to inequalities for the distributions of infinite-dimensional martingales”. In:

Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference. Springer, pp. 128–

134.

— (1994). “Optimum bounds for the distributions of martingales in Banach spaces”. In: The Annals of

Probability, pp. 1679–1706.

Reddi, S. J., A. Hefny, S. Sra, B. Poczos, and A. Smola (2016). “Stochastic variance reduction for nonconvex

optimization”. In: International conference on machine learning. PMLR, pp. 314–323.

Tran-Dinh, Q., N. H. Pham, D. T. Phan, and L. M. Nguyen (2019). “Hybrid stochastic gradient descent

algorithms for stochastic nonconvex optimization”. In: arXiv preprint arXiv:1905.05920.

Wang, Z., K. Ji, Y. Zhou, Y. Liang, and V. Tarokh (2019). “Spiderboost and momentum: Faster variance

reduction algorithms”. In: Advances in Neural Information Processing Systems 32, pp. 2406–2416.

Zhou, D., J. Chen, Y. Cao, Y. Tang, Z. Yang, and Q. Gu (2018). “On the convergence of adaptive gradient

methods for nonconvex optimization”. In: arXiv preprint arXiv:1808.05671.

41

	Introduction
	Related Works
	Our Contributions
	Notation

	Prob-SARAH Algorithm
	Theoretical Results
	Technical Assumptions
	Main Results on Complexity
	Proof Sketch

	Numerical Experiments
	Logistic Regression with Non-Convex Regularization
	Two-Layer Neural Network

	Conclusion
	Remarks and Examples for Assumptions
	More comments on Assumptions 3.1–3.4
	An Example of Assumption 3.3

	Stop Guarantee
	Detailed Results on Complexity
	Dependency on Parameters

	Postponed Proofs for the Results in Section 3
	Bounding the Difference between bold0mu mumu k(j) and f(to. xk(j))to.
	Analysis on the Output
	Upper-bounding the Stopping Time

	Technical Lemmas
	Proofs of Main Theorems
	Supplementary Figures

