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Abstract

Pretrained language models (PLMs) have made
significant strides in various natural language
processing tasks. However, the lack of in-
terpretability due to their “black-box” nature
poses challenges for responsible implementa-
tion. Although previous studies have attempted
to improve interpretability by using, e.g., at-
tention weights in self-attention layers, these
weights often lack clarity, readability, and intu-
itiveness. In this research, we propose a novel
approach to interpreting PLMs by employing
high-level, meaningful concepts that are easily
understandable for humans. For example, we
learn the concept of “Food” and investigate how
it influences the prediction of a model’s senti-
ment towards a restaurant review. We intro-
duce C3M, which combines human-annotated
and machine-generated concepts to extract hid-
den neurons designed to encapsulate seman-
tically meaningful and task-specific concepts.
Through empirical evaluations on real-world
datasets, we manifest that our approach offers
valuable insights to interpret PLM behavior,
helps diagnose model failures, and enhances
model robustness amidst noisy concept labels.

1 Introduction

Although Pretrained Language Models (PLMs)
like BERT (Devlin et al., 2018) have achieved re-
markable success in various NLP tasks (Zhu et al.,
2020; Liu and Lapata, 2019), they are frequently
regarded as black boxes, posing significant obsta-
cles to their responsible deployment in real-world
scenarios, particularly in critical domains such as
healthcare (Koh et al., 2020). Therefore, enabling
PLMs’ interpretability is crucial to achieve socially
responsible AI (Cheng et al., 2021). To date, many
existing works (Belinkov and Glass, 2019; Madsen
et al., 2022) leverage attention weights extracted
from the self-attention layers to provide token-level
or phrase-level importance. These low-level ex-
planations are found unfaithful (Yin and Neubig,

Figure 1: The illustration of CBE-PLMs. Via PLMs, the
original texts x is first map into an intermediate layer
consisting of a set of human-comprehensible concepts
c, which are then used to predict the target label y.

2022) and lack readability and intuitiveness (Losch
et al., 2019), leading to unstable or even unrea-
sonable explanations. To address these limitations,
we seek to explain via human-comprehensible con-
cepts that use more abstract features (e.g., general
notions) as opposed to raw input features at the to-
ken level (Zarlenga et al., 2022; Liao and Vaughan,
2023). The foundation of this work is the Con-
cept Bottleneck Models (CBMs) (Koh et al., 2020)
that interprets deep models (e.g., ResNet (He et al.,
2016)) for image classification tasks using high-
level concepts (e.g., shape). For NLP tasks such
as sentiment analysis, concepts can be Food, Am-
biance, and Service as shown in Figure 1, where
each concept corresponds to a neuron in the con-
cept bottleneck layer. The final decision layer is
then a linear function of these concepts. Using
concepts greatly improves the readability and intu-
itiveness of the explanations compared to low-level
features such as “lobster”.

We propose to study Concept-Bottleneck-
Enabled Pretrained Language Models (CBE-
PLMs). There are three key challenges: First,
CBMs cannot be directly adapted since PLMs
are pre-trained and fine-tuned on separate corpora
while CBMs work on the same end-to-end im-
age classification tasks during training and test-
ing. Therefore, the corpora used for pre-training
PLMs may contain useful text-concept correlations
that are unseen in the downstream task. An in-
vestigation of the adaptability of CBMs to CBE-
PLMs is needed. Second, the majority of existing
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CBMs (Koh et al., 2020; Zarlenga et al., 2022) re-
quire human-annotated concepts. This can be chal-
lenging for natural language since the annotator
may need to read through the entire text to under-
stand the context and label one concept (Németh
et al., 2020). This limits the practical usage and
scalability of CBE-PLMs. Third, many studies
have identified the tradeoff between interpretability
and task accuracy using CBMs since the prede-
termined concepts may leave out important infor-
mation for target task prediction (Zarlenga et al.,
2022). Therefore, it is crucial to improve both inter-
pretability and task performance to achieve optimal
interpretability-utility tradeoff.

To tackle the first challenge, we adapt standard
training strategies in CBMs (Koh et al., 2020) to
learning CBE-PLMs and conduct comprehensive
analyses to identify the best way to adapt CBMs
to interpret PLMs. For the second challenge of
concept discovery and labeling, we propose lever-
aging Large Language Models (LLMs) trained on
extensive human-generated corpora and feedbacks,
such as ChatGPT (OpenAI, 2023), to identify novel
concepts in text and generate pseudo-labels (via
prompting) for unlabeled concepts. Recent stud-
ies (Bommasani et al., 2022; OpenAI, 2023) exhibit
that these LLMs encapsulate significant amounts
of human common sense knowledge. By augment-
ing the small set of human-specified concepts with
machine-generated concepts, we increase concept
diversity and useful information for prediction. In
addition, generated pseudo-labels offer us a large
set of instances with noisy concept labels, com-
plementing the smaller set of instances with clean
labels. To further improve interpretability-utility
tradeoff (third challenge), we propose to learn from
noisy concept labels and incorporate a concept-
level MixUp mechanism (Zhang et al., 2017) that
allows CBE-PLMs to cooperatively learn from both
noisy and clean concept sets. We name our frame-
work for training CBE-PLMs as ChatGPT-guided
Concept augmentation with Concept-level Mixup
(C3M). In summary, our contributions include:

• We provide the first comprehensive investigation
of standard training strategies of CBMs for inter-
preting PLMs and benchmark CBE-PLMs.

• We propose C3M, which leverages LLMs and
MixUp to help PLMs learn from human-
annotated and machine-generated concepts.
C3M liberates CBMs from predefined concepts
and enhances the interpretability-utility tradeoff.

• We demonstrate the effectiveness and robustness
of test-time concept intervention for the learned
CBE-PLMs for common text classification tasks.

2 Related Work

2.1 Interpreting Pretrained Language Models

PLMs such as Word2Vec (Mikolov et al., 2013),
BERT (Devlin et al., 2018), and the more recent
GPT series (Radford et al., 2019; Brown et al.,
2020; OpenAI, 2023) have demonstrated impres-
sive performance in various NLP tasks. However,
their opaque nature poses a challenge in compre-
hending how PLMs work internally (Diao et al.,
2022). In order to improve the interpretability and
transparency of PLMs, researchers have explored
different approaches, such as visualizing attention
weights (Galassi et al., 2020), probing feature rep-
resentations (Mishra et al., 2017; Lundberg and
Lee, 2017; Bills et al., 2023), and using counterfac-
tuals (Wu et al., 2021; Ross et al., 2021), among
others, to provide explanations at the local token-
level, instance-level, or neuron-level. However,
these methods often lack faithfulness and intuitive-
ness, and are of poor readability, which undermines
their trustworthiness (Madsen et al., 2022).

Recently, researchers have turned to global
concept-level explanations that are naturally un-
derstandable to humans. Although this level of
interpretability has been less explored in NLP com-
pared to computer vision (Goyal et al., 2019; Kim
et al., 2018; Mu and Andreas, 2020), it has gained
attention. For instance, a study (Vig et al., 2020)
investigates gender classification bias by examin-
ing the association of occupation words such as
‘nurse’ with gender. In addition, the CBMs (Koh
et al., 2020; Zarlenga et al., 2022) have emerged
as novel frameworks for achieving concept-level
interpretability in lightweight image classification
systems. CBMs typically involve a layer preced-
ing the final fully connected classifier, where each
neuron corresponds to a concept that can be inter-
preted by humans. CBMs also show advantages
in improving accuracy through human intervention
during testing. Yet, the application of CBMs to
larger-scale PLMs interpretation is under-explored.
Implementing CBMs necessitates human involve-
ment in defining the concept set and annotating the
concept labels. Such requirements are challenging
for natural language as humans may need to read
through the entire text to understand the context
and label one concept (Németh et al., 2020).



2.2 Learning from Noisy Labels
Addressing inaccurately labeled or misclassified
data in real-world scenarios is the goal of learning
from noisy labels, with techniques including noise
transition matrix estimation (Liu et al., 2022), ro-
bust risk minimization (Englesson and Azizpour,
2021), and more. Recently, the resilience of semi-
supervised learning methods like MixMatch (Berth-
elot et al., 2019) and FixMatch (Sohn et al., 2020)
to label noise has been discovered by using pseudo-
labels for unlabeled data. Inspired by them, we por-
pose to utilize an LLM (ChatGPT) as a fixed-label
guesser, generating noisy intermediate concept la-
bels to potentially predict task labels.

Notably, CBMs specialize in the interpretation
and interactability of deep models for general clas-
sification tasks. While Multi-Aspect Sentiment
Analysis (Zhang et al., 2022) (MASA) shares simi-
lar goals when using aspects as concepts, it differs
as concepts are not confined to fine-grained aspec-
tual features and can be abstract ideas or broader
notions throughout entire contexts. Aspect labels in
MASA, primarily used for prediction accuracy, are
not always mandatory. To summarize, this study
pioneers the comprehensive exploration of utiliz-
ing concepts for interpreting large-scale PLMs, and
provids a robust framework for harnessing the noisy
signals from LLMs to achieve interpretable out-
comes from lighter-weight PLMs, which can be
easily understood by users.

3 Enable Concept Bottlenecks for
Pretrained Language Models

3.1 Problem Setup
We focus on interpreting the predictions of fine-
tuned PLMs for text classification tasks. Given
data D = {(x(i), y(i), c(i))ni=1}, where x ∈ Rd is
the original text input, y ∈ R is the target label
to predict, and c ∈ Rk is a vector of k concepts
from the concept set C with |C| = k, we consider a
PLM fθ parameterized by θ that encodes an input
text x ∈ Rd into its latent representation z ∈ Re.
Vanilla fine-tuning strategy, concretely defined in
Appendix A, can be abstracted as x→ z → y.

Concept-Bottleneck-Enabled Pretrained Lan-
guage Models. The original concept bottlenecks in
CBMs (Koh et al., 2020) come from resizing one
of the layers in the CNN encoder to match the num-
ber of concepts. However, since PLM encoders
typically provide text representations with much
higher dimensions than the number of concepts,

directly reducing the neurons in the layer would
significantly impact the quality of learned text rep-
resentation. To address this issue, we instead add
a linear layer with the sigmoid activation, denoted
as pψ, that projects the learned latent representa-
tion z ∈ Re into the concept space c ∈ Rk. This
process can be represented as x → z → c → y.
Note that, unlike the previous works for image
classification, each concept here does not need to
be binary (i.e., present or not). We allow multi-
class concepts, e.g., the concept “Food” in a restau-
rant review can be positive, negative, or unknown.
We refer to the PLM and the projector (fθ, pψ) to-
gether as the concept encoder and the complete
model (fθ, pψ, gϕ) as Concept-Bottleneck-Enabled
Pretrained Language Models (CBE-PLMs).

During training, CBE-PLMs seek to achieve two
goals: (1) align concept prediction ĉ = pψ(fθ(x)))
to x’s ground-truth concept labels c and (2) align la-
bel prediction ŷ = gϕ(pψ(fθ(x))) to ground-truth
task labels y. We accordingly adapt the three con-
ventional strategies, independent training, sequen-
tial training, and joint training, proposed in (Koh
et al., 2020) to learn the CBE-PLM. Their detailed
formulations are given in Appendix A.

3.2 Benchmarking CBE-PLMs

We propose to benchmark the performance of the
vanilla fine-tuning and the three training strate-
gies for CBE-PLMs using two text classifica-
tion datasets: CEBaB (Abraham et al., 2022) and
IMDB (Maas et al., 2011). Both datasets contain
human-labeled concepts. We consider four typical
PLMs following Abraham et al. (2022). Descrip-
tions of the PLM backbones, datasets, and concept
labels are detailed in Section 5.1, Section 5.2, and
Appendix G. We consider the target task scores and
concept prediction scores as the evaluation metrics
for utility and interpretability, respectively.

CBM for CBE-PLMs. In this experiment, we
aim to identify the optimal training strategy for
CBE-PLMs. The results depicted in Figure 2 con-
firm that standard-PLMs typically yield the highest
task scores, demonstrating that the implementation
of a concept bottleneck can indeed impact target
task performance negatively. However, without
considering the concept labels, standard-PLMs lack
interpretability. In contrast, CBE-PLMs trained
jointly exhibit higher task scores and superior con-
cept prediction scores compared to their counter-
parts. This divergence from CBMs in the image
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Figure 2: Illustration of the interpretability-accuracy trade-off using various backbones. The top-right indicates a
more favorable trade-off, i.e., a better interpretability-utility Pareto front. We also show the confidence intervals for
both dimensions.

domain, where all three strategies display similar
performance (Koh et al., 2020), is notable. We
attribute this to PLMs’ extensive pretraining on nu-
merous human-generated corpora and larger param-
eter numbers than the studied vision encoders such
as ResNets (He et al., 2016). Unlike independent or
sequential training where the PLM encoder is fixed
after training on the concept labels, joint training
allows PLMs to ultize their capacity to learn con-
cepts and target labels jointly, making the learned
concept activations from the bottleneck layer better
aligned with the task labels. Given this advantage
of joint training, we adopt it as the default strategy
for training CBE-PLMs in the subsequent sections.

While initial findings from applying vanilla
CBM (Koh et al., 2020) for interpreting PLMs ap-
pear encouraging, they require human-annotated
concepts during training. This proves to be imprac-
tical in real-world situations due to the vast number
of potential concepts and the time-intensive anno-
tation process (Németh et al., 2020). Often, only
a limited number of texts come with manually la-
beled concepts. Moreover, as humans continuously
acquire new concepts, it is desirable for the train-
ing framework to discover and incorporate new
concepts automatically. Thus, we aim to design a
general framework for training CBE-PLMs.

4 C3M: A General Framework for
Learning CBE-PLMs

We define the following data potions according to
the real-world scenarios. We refer to a dataset with
human-annotated concepts as the source concept
dataset, denoted as Ds = {(x(i), y(i), c(i)s )ns

i=1},
where ns denotes the size and cs ∈ Rks is a vector
of ks concepts from the pre-defined source concept
set Cs. We also consider another dataset without
concept labels, referred to as the unlabeled con-
cept dataset, denoted as Du = {(x(i), y(i))nu

i=1}.

The complete dataset is then the combination of
these two datasets: D = {Ds,Du}. ns and ks
are typically small, limiting the effectiveness of
CBE-PLMs. Specifically, small ns leads to sparse
concept labels in D, and vanilla CBM cannot be
trained on datasets with unlabeled concepts Du.
Additionally, small ks indicates that we may not
have sufficient information for model prediction.
To address these limitations, we propose ChatGPT-
guided Concept augmentation with Concept-level
Mixup (C3M), a novel framework for training CBE-
PLMs effectively. As illustrated in Figure 3, at
the high level, we augment the concept set Cs and
annotate pseudo concept labels for the unlabeled
concept dataset using ChatGPT. Since these pseudo
labels are noisy, we propose a novel concept-level
MixUp to train the CBE-PLMs effectively on the
augmented dataset with noisy concept labels.

4.1 ChatGPT-guided Concept Augmentation

In this section, we detail how to leverage ChatGPT
(GPT4) to automatically (1) augment the concept
set, and (2) annotate missing concept labels.

4.1.1 Concept Set Augmentation

The goal of concept set augmentation is to automat-
ically generate high-quality concepts using human-
specified concepts Cs as references. These gener-
ated concepts should be semantic meaningful and
useful for target task prediction. Inspired by LF-
CBM (Oikarinen et al., 2023), we query ChatGPT
with appropriate prompts to generate additional
concepts. Our prompts are designed using “in-
context learning” (Brown et al., 2020; Min et al.,
2022; Xie et al., 2022), and include examples from
human annotations. Below is an example of a Chat-
GPT prompt designed for a sentiment classification
task using the IMDB dataset (Maas et al., 2011):



Besides {Acting, Storyline, Emotional Arousal,
Cinematography}, what are the additional important
features to judge if a {movie} is good or not?

Parentheses represent fields that can be cus-
tomized for different tasks. The concepts
Acting, Storyline, Emotional Arousal, and
Cinematography are from the source concept
set Cs with labels manually annotated following
procedures in Appendix B. Different from LF-
CBM which generates concepts merely relying on
GPT3 (Brown et al., 2020), we further include
a small set of human-specified concepts in the
prompt to improve the quality of generated con-
cepts. This additional information can help effec-
tively filter out undesired output without additional
operations (e.g., deletions). Rarely seen concepts
are discarded using a predefined threshold and the
remaining generated concepts are referred to as
augmented concepts set Ca with size ka. Results
are given in Table 5 in Appendix G.

4.1.2 Noisy Concept Label Annotation
The next step is to automatically annotate unlabeled
concepts using noisy labels. We again leverage the
power of ChatGPT which has been shown to en-
capsulate significant amounts of human common
sense knowledge (Bommasani et al., 2022; Ope-
nAI, 2023; Singh et al., 2023) and show strong per-
formance for some text annotation tasks (Gilardi
et al., 2023). As we will also show here, LLMs
are surprisingly proficient at identifying language
concepts when suitably prompted. Using the same
example of movie reviews, the prompt for this step
is designed as follows:

a. According to the review "{text1}", the
"{concept1}" of the movie is "positive".
b. According to the review "{text2}", the
"{concept2}" of the movie is "negative".
c. According to the review "{text3}", the
"{concept3}" of the movie is "unknown".
d. According to the review "{texti}", how is the
"{concepti}" of the movie? Please answer with one
option in "positive, negative, or unknown".

Following a similar “in-context learning” strategy
described in Section 4.1.1, Prompts a-c are three
human-annotated examples randomly selected to
represent positive, negative, and unknown concept
labels, respectively. Prompt d is the query instance.
The goal is to obtain noisy labels for any given
{texti} and {concepti}. There are three types of
noisy concept annotations:

1. Noisy labels for human-specified concepts in
Ds. The resulting dataset D̃s is used to validate

the quality of labels generated by ChatGPT only
(See Table 4 in Appendix F).

2. Noisy labels for ChatGPT-generated concepts
in Ds. The augmented concept set is denoted as
csa = (cs||ca) ∈ Rks+ka , where || refers to the
concatenation operator and ca ∈ Rka stands for
the generated concepts. For example, we iden-
tify new important concepts such as Soundtrack
using ChatGPT for the IMDB movie reviews.

3. Noisy labels for both human-specified and
ChatGPT-generated concepts in unlabeled con-
cept datasets Du. The augmented concept set
is denoted as c̃sa = (c̃s||c̃a) ∈ Rks+ka and
c̃s ∈ Rks , c̃a ∈ Rka stand for the generated con-
cept labels for human-specified and ChatGPT-
generated concepts, respectively.

In summary, we transform the original dataset
with sparse concept labels into an augmented
dataset with new concepts and noisy labels: D =
{Ds,Du} → D̃ = {D̃sa, D̃u}. Examples of these
two types of qeuries are illustrated in Appendix J.

Figure 3: Illustration of the proposed framework C3M.

4.2 Learning from Noisy Concept Labels

While directly training CBE-PLMs on the trans-
formed dataset D̃ is straightforward, this method’s
drawback is its equal treatment of human anno-
tations and ChatGPT-generated noisy labels, po-
tentially leading to prediction and interpretation
inaccuracies. To improve interpretability and ac-
curacy, we introduce a novel Concept-level MixUp
(CM) approach. It advocates for a convex behavior
of PLMs between human-annotated and ChatGPT-
generated concepts, thereby enhancing its robust-
ness against noisy concept labels.



4.2.1 Concept-level MixUp
To better utilize the noisy concept labels, CM
first linearly interpolates the texts and concept la-
bels between human-annotated concepts (D̃sa) and
ChatGPT-generated concepts (D̃u). Specifically,
we interpolate any two text-concept-label ternaries
(x(i), c(i), y(i)), (x(j), c(j), y(j)) for both their la-
tent representation (z(i), z(j)), concepts (c(i), c(j)),
and the task labels (y(i), y(j)) using the MixUp (·)
defined as follows:

λ ∼ Beta(α, α); λ̂ = max(λ, 1− λ);

z(i) = fθ(x
i); z(j) = fθ(x

j);

ẑ(i,j) = λ̂z(i) + (1− λ̂)z(j);

ĉ(i,j) = λ̂c(i) + (1− λ̂)c(j);

ŷ(i,j) = λ̂y(i) + (1− λ̂)y(j),

(1)

where α is a hyperparameter for the Beta distri-
bution. Notably, λ̂ ≥ 0.5 preserves the order of
human-annotated concepts and ChatGPT-generated
concepts for computing individual loss components
in Eq. (4) appropriately. Then, we combine and
shuffle human-annotated and ChatGPT-annotated
data in the transformed dataset D̃ = {D̃sa, D̃u}:

W = Shuffle(D̃) = Shuffle(D̃sa||D̃u), (2)

where || indicates the concatenation of two potions
of datasets. Next, we perform MixUp (·) for the ith
instance as follows:

(ẑ(i)sa , ĉ
(i)
sa , ŷ

(i)
sa ) = MixUp(D̃(i)

sa ,W(i)),

(ẑ(i)u , ĉ(i)u , ŷ
(i)
u ) = MixUp(D̃(i)

u ,W(i)).
(3)

Through these steps, we can generate a "mixed
version" for each instance in D̃sa and D̃u, while
preserving a larger portion of the original instance.

4.2.2 Loss Function
The loss function LjointMixUp for training CBE-
PLMs with the MixUped dataset is defined below:

Lsa = Ljoint(ẑ
(i)
sa , ĉ

(i)
sa , ŷ

(i)
sa );

Lu = Ljoint(ẑ
(i)
u , ĉ(i)u , ŷ

(i)
u );

LjointMixUp = Lsa + τLu,

(4)

where τ is a hyperparameter and Ljoint is the joint
training loss used in vanilla CBM formulated in Ap-
pendix A. In this way, We backpropagate gradients
of the mixed noisy concept labels and gold concept
labels to update the parameters in CBE-PLMs.

5 Experiments

5.1 Datasets

In this section, we give detailed descriptions of
the experimented datasets. Each of the datasets
has two components: source concept dataset and
unlabeled concept dataset (D = {Ds,Du}). Exist-
ing datasets with human-annotated concept labels
are very limited. One source concept dataset is
CEBaB (Abraham et al., 2022; Wu et al., 2022), a
common sentiment classification dataset for restau-
rant reviews. Its corresponding Du is the restaurant
reviews from the Yelp Dataset1. We also curate
another dataset for movie reviews. Specifically,
we randomly sample two portions of reviews from
the IMDB datasets (Maas et al., 2011) to repre-
sent Ds and Du, respectively. Following a pre-
vious NLP work (Cai et al., 2021), we manually
annotate the concept labels for Ds in the movie re-
views. More annotation details are included in Ap-
pendix B. For convenience, we still refer to these
two new datasets as CEBaB and IMDB. Each con-
cept contains three values, i.e., Negative, Positive,
and Unknown. As described in Section 4.1, each
dataset D is then transformed into D̃ = {D̃sa, D̃u}.
The basic statistics of the transformed datasets and
their human-annotated concepts are given in Ta-
ble 3 in Appendix E and Table 4 in Appendix F,
respectively. Note that the last column in Table 4
indicates the accuracy of ChatGPT-labeled con-
cepts in Ds, as described in Section 4.1. Table 5
in Appendix G provides statistics about augmented
concepts. Both the human-annotated and ChatGPT-
generated data, alone with the framework imple-
mentation are released 2.

5.2 PLM Backbones

We experiment with the same PLM backbones
as in the CEBaB paper (Abraham et al., 2022):
GPT2 (Radford et al., 2019), BERT (Devlin et al.,
2018), RoBERTa (Liu et al., 2019), and BiL-
STM (Hochreiter and Schmidhuber, 1997) with
CBOW (Mikolov et al., 2013). For better perfor-
mance, we obtain the representations of the input
texts by pooling the embedding of all tokens. Re-
ported scores are the averages of six independent
runs, each taking 5 to 40 minutes. More implemen-
tation details and parameter values are included in
Appendix C and Table 2 in Appendix D.

1https://www.kaggle.com/datasets/omkarsabnis/
yelp-reviews-dataset

2https://github.com/Zhen-Tan-dmml/CBM_NLP.git

https://www.kaggle.com/datasets/omkarsabnis/yelp-reviews-dataset
https://www.kaggle.com/datasets/omkarsabnis/yelp-reviews-dataset
https://github.com/Zhen-Tan-dmml/CBM_NLP.git


Table 1: Comparisons of task accuracy and interpretability using CEBaB and IMDB datasets. Metrics for both task
and concept labels are written as Accuracy/Macro F1. Scores are reported in %. Scores in bold indicate that the
CBE-PLM under the current setting outperforms its standard PLM counterpart. CM denotes Concept-level MixUp.

Dataset CEBaB IMDB

Model D D̃ D D̃

Task Concept Task Concept Task Concept Task Concept

PLMs

LSTM 40.57/60.67 - 43.34/64.47 - 68.25/53.37 - 90.5/90.46 -
GPT2 66.69/77.25 - 67.26/78.81 - 71.67/67.53 - 97.64/97.55 -
BERT 68.75/78.71 - 71.81/82.58 - 80.5/78.4 - 98.89/98.68 -

RoBERTa 71.36/80.17 - 73.12/82.64 - 84.1/82.5 - 99.13/99.12 -

CBE-PLMs

LSTM 56.47/67.82 86.46/85.24 54.54/65.84 83.46/84.74 68.5/55.4 72.5/77.5 93.02/91.53 76.92/75.41
GPT2 64.04/77.75 92.14/92.05 63.57/74.71 90.17/90.13 70.05/69.53 80.6/82.5 96.85/96.81 86.14/88.06
BERT 67.27/79.24 93.65/92.75 68.23/78.13 89.64/90.45 77.42/74.57 80.2/83.7 97.62/97.58 92.57/92.05

RoBERTa 70.98/79.89 96.12/95.34 69.85/79.29 91.45/92.23 82.33/80.13 86.7/85.3 98.45/98.12 93.99/94.28

CBE-PLMs-CM

LSTM - - 59.67/70.53 88.75/86.67 - - 94.35/92.32 83.83/84.52
GPT2 - - 65.54/77.87 93.58/92.32 - - 97.89/97.88 89.64/88.25
BERT - - 70.58/80.07 94.43/93.26 - - 98.18/98.06 94.87/94.32

RoBERTa - - 72.88/81.91 96.3/98.5 - - 99.69/99.66 96.35/96.36

5.3 Task Accuracy vs Interpretability

Table 1 presents the results for the two original
datasets (D) and their transformed versions (D̃).
We have the following observations:

CBE-PLMs offer interpretability and compet-
itive task prediction performance. Compared to
standard PLMs (trained solely with task labels),
CBE-PLMs provide concept-level interpretability
with only a minor decrease in task prediction.
Interestingly, a smaller PLM, i.e., LSTM with
CBOW embeddings, achieves improved task ac-
curacy when learning from concept labels. This
suggests that the accuracy-interpretability tradeoff
in concept learning is not necessary, as opposed to
the prevailing view. Concepts can help guide PLMs
trained on smaller corpora with fewer parameters
towards better prediction performance.

Noisy concept labels can facilitate the training
of CBE-PLMs on small datasets. The extremely
limited size of the IMDB source concept dataset (de-
liberately set to 100) yields unsurprisingly low test
scores. Transforming D into D̃ using ChatGPT for
noisy labeled concept instances leads to significant
improvements in both concept and task predictions
for CBE-PLMs-CM.

Uncritical learning from noisy concept labels
can impair performance. Results for CEBaB in
Table 1 demonstrate that, learning from the trans-
formed dataset D̃ directly leads to inferior perfor-
mance for CBE-PLMs. Unlike IMDB, the source
concept dataset in CEBaB contains sufficient train-
ing instances, therefore, enforcing CBE-PLMs to
learn from noisy concept labels will undesirably
mislead the model, exacerbating both the concept
and task prediction performance.

CBE-PLMs-CM trained via the proposed
C3M framework consistently deliver superior
interpretability-utility trade-offs. By encourag-
ing the CBE-PLMs to linearly interpolate between
examples with gold-labeled concepts and those
with ChatGPT-generated concepts, the model is
able to extract useful semantic knowledge mean-
while becoming robust to noisy concept labels. The
result is promising: We achieve the best concept-
level prediction (interpretability measure) without
sacrificing the task prediction performance, and in
some cases, CBE-PLMs trained through C3M can
even outperform their standard PLM counterparts.

5.4 Explainable Predictions

A unique advantage of CBMs is that its decision
rules can be interpreted as a linear combination of
comprehensible variables (Koh et al., 2020). In-
heriting this strength, our proposed CBE-PLMs
can deliver intuitive concept-level explanations for
predictions by assessing the activations of each con-
cept. We measure concept contribution using the
product of activation and the corresponding weight
in the linear label predictor gϕ (Oikarinen et al.,
2023). Concepts with negative activation are desig-
nated as “Neg Concept”. We highlight the concepts
contributing the most in our visualizations. Visu-
alization results are demonstrated in Figure 4 for
a toy example, while real-world CEBaB and IMDB
case studies can be found in Appendix H. These
visualizations provide new intriguing insights into
real-world applications. For instance, negative con-
cepts (e.g., Service) contribute more to the final
prediction of positive sentiment in Figure 4, mak-
ing the predicted sentiment second highest (Y = 4)
rather than the highest (Y = 5). Moreover, inter-



pretability results such as Figure 6 in Appendix H
imply that concepts such as “Food” and “Ambiance”
weigh more heavily in customers’ restaurant evalu-
ations compared to “Noise” and “Menu Variety”.

Figure 4: Illustration of the explainable prediction for a
toy example in restaurant review sentiment analysis.

5.5 Test-time Intervention
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Figure 5: The results of Test-time Intervention. "NI"
denotes "no intervention", "RI (W/O CM)" denotes "ran-
dom intervention on CBE-PLMs without the concept-
level MixUp", "RI" denotes "random intervention on
CBE-PLMs", and "OI" denotes "oracle intervention".

Another strength of CBE-PLMs is that they al-
low test-time concept intervention (inherited from
CBMs), facilitating deeper, user-friendly interac-
tions. To assess this strength, we follow Koh et al.
(2020) to intervene in the predicted concepts and
investigate the impact of such interventions on test-
time prediction accuracy. Concept mispredictions
arise from ChatGPT’s incorrect labels or inaccu-
rate concept activation. Recall that the input of the
task label predictor is the predicted concept acti-
vations â = pϕ(fθ(x)) rather than the predicted
ternary concepts ĉ. In a concept-level interven-
tion I , the activation âj of the jth concept with
a target concept cj is set to the 5th, 95th, or 50th
percentile of âj over the training distribution for
Negative, Positive, or Unknown cj respectively.
Multiple concepts can be intervened upon by re-
placing all related predicted concept activations
and updating the prediction. Experiments were
conducted on the transformed version D̃ of the
CEBaB dataset. Figure 5 exhibits results for CBE-
PLMs using BERT and GPT2 as the PLM back-
bones (with similar observations for LSTM and

RoBERTa). A case study is further illustrated in
Appendix I. The results reveal that task accuracy
improves substantially when more concepts are
corrected by the oracle. Additionally, while the per-
formance of CBE-PLMs declines as more concepts
are intervened upon incorrectly (randomly), the pro-
posed concept-level MixUp effectively mitigates
this impact. Notably, the decline in performance is
marginal when only two concepts are erroneously
intervened upon. These findings underscore the
pronounced advantages of test-time intervention
for CBE-PLMs trained through C3M. First, domain
experts can interact with the model to rectify any
inaccurately predicted concept values. Second, in
reality, even experts might inadvertently implement
incorrect interventions. Yet, despite this suscepti-
bility, our proposed concept-level MixUp strategy
effectively curbs performance degradation, particu-
larly when inaccuracies affect only a small subset
of the intervention. This attests to the robustness
of the proposed framework.

6 Conclusion

Our analysis began with an exhaustive examination
of three training strategies, identifying joint train-
ing as the most efficacious. Further, we proposed
the C3M framework, designed to streamline the
training process of CBE-PLMs in the presence of
incomplete concept labels. Moreover, we show-
cased the interpretability of our models in their
decision-making process and elucidated how this
comprehensibility can be harnessed to boost test
accuracy via concept intervention.

Outlook: Our research lays the groundwork
for future studies focused on enhancing the trans-
parency and robustness of PLMs. We foresee that
CBE-PLMs could potentially show more resilience
to data biases compared to standard PLMs, which
have been known to display biased performance
due to spurious correlations between sensitive at-
tributes (e.g., gender) and task labels (Wang and
Culotta, 2021; Udomcharoenchaikit et al., 2022).
For instance, a biased PLM might wrongly infer
patterns like female users writing more extreme re-
views while male users tend towards moderate ones.
CBE-PLMs, by focusing on concept labels and re-
lying solely on these concepts for classifications,
might reduce such biases. If the concepts are not
associated with sensitive attributes and their rela-
tionship with task labels is consistent, CBE-PLMs
could offer enhanced fairness.



Limitations

While our approach presents a significant step to-
wards more interpretable pretrained language mod-
els, several limitations warrant further exploration.
First, our approach relies heavily on the accuracy
of the predefined concepts. Despite the promising
results, this dependency raises the issue of poten-
tial bias present in the concept selection process
(for both human-specified and ChatGPT-generated
concepts). If a concept is not well-defined or if
important concepts are missing, this could lead to
incomplete or skewed interpretations. Second, the
methodology proposed in this paper has not been
experimented on very large language models, such
as Bloom (Scao et al., 2022). The core idea of
this framework is to utilize large language models
(LLMs) to provide explanations for comparatively
lighter-weight pretrained language models (PLMs).
Nevertheless, the proposed framework is of a uni-
versal nature and should be compatible with any
PLMs. Investigations utilizing larger PLMs are
reserved for future research endeavors. Third, the
process of prompting large language models to gen-
erate concept labels remains somewhat of an art.
While we have proposed a systematic method for
constructing desired prompts, the performance of
the model may still be sensitive to the quality and
structure of these prompts. Lastly, while our pro-
posed method shows promising results in English
language tasks, it has not been tested extensively on
other languages. This restricts its applicability in
a multilingual setting. Future work should extend
this method to other languages and conduct cross-
lingual analysis. We hope future research will build
upon our work to address these limitations, moving
us closer to truly interpretable, responsible, and
universally applicable language models.

Ethics Statement

In conducting this research, we strictly adhered to
the ACL Ethics Policy. All data used in our work
were either publicly available or anonymized, en-
suring no personally identifiable information was
involved. The work presented in this paper signifi-
cantly contributes to the field of natural language
processing and machine learning. By improving
the interpretability of pre-trained language models,
we are contributing to the creation of more transpar-
ent and trustworthy AI systems. This advancement
is expected to have broad-ranging impacts across
numerous domains that increasingly rely on AI,

including healthcare, education, business, and fi-
nance, enhancing decision-making processes and
user interaction with AI systems. However, the
increased efficacy of these models could also raise
potential societal concerns if not used responsibly.
The misuse of these advanced NLP technologies
could lead to privacy breaches, the propagation of
misinformation, or the amplification of existing
biases in data. As with any powerful technology,
it is essential to consider its ethical implications
and manage its deployment with care to ensure it’s
used for the betterment of society. Our work also
underscores the need for continual research into
strategies that mitigate potential bias in AI systems
and protect user privacy. As researchers, we are
committed to working towards these goals and urge
those employing this technology to adhere to the
same principles.
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A Definitions of Training Strategies

Given a text input x ∈ Rd, concepts c ∈ Rk and
its label y, the strategies for fine-tuning the text
encoder fθ, the projector pψ and the label predictor
gϕ are defined as follows:
i) Vanilla fine-tuning a PLM: The concept labels
are ignored, and then the text encoder fθ and the
label predictor gϕ are fine-tuned either as follows:

θ, ϕ = argmin
θ,ϕ

LCE(gϕ(fθ(x), y),

or as follows (frozen text encoder fθ):

ϕ = argmin
ϕ

LCE(gϕ(fθ(x), y),

where LCE indicates the cross-entropy loss. In this
work we only consider the former option for its
significant better performance.
ii) Independently training PLM with the concept
and task labels: The text encoder fθ, the projector
pψ and the label predictor gϕ are trained seperately
with ground truth concepts labels and task labels
as follows:

θ, ψ = argmin
θ,ψ

LCE(pψ(fθ(x)), c),

ϕ = argmin
ϕ

LCE(gϕ(c), y).

During inference, the label predictor will use the
output from the projector rather than the ground-
truth concepts.

iii) Sequentilally training PLM with the concept
and task labels: We first learn the concept encoder
as the independent training strategy above, and then
use its output to train the label predictor:

ϕ = argmin
ϕ

LCE(gϕ(pψ(fθ(x), y).

iv) Jointly training PLM with the concept and task
labels: Learn the concept encoder and label predic-
tor via a weighted sum Ljoint of the two objectives
described above:

θ, ψ, ϕ = argmin
θ,ψ,ϕ

Ljoint(x, c, y)

= argmin
θ,ψ,ϕ

[LCE(gϕ(pψ(fθ(x), y)

+ γLCE(pψ(fθ(x)), c)].

It’s worth noting that the CBE-PLMs trained jointly
are sensitive to the loss weight γ. We report the
most effective results here, tested value for γ are
given in Table 2 in Appendix D.

B Details of the Manual Concept
Annotation for the IMDB Dataset

Our annotation policy is following a previous
work (Cai et al., 2021) for NLP datasets annotat-
ing. For the IMDB dataset, we annotate the four
concepts (Acting, Stroyline, Emotional Arousal,
Cinematography) manually. Even though the con-
cepts are naturally understandable by humans, two
Master students familiar with sentiment analysis
are selected as annotators for independent annota-
tion with the annotation tool introduced by Yang
et al. (2017). The strict quadruple matching F1
score between two annotators is 85.74%, which
indicates a consistent agreement between the two
annotators (Kim and Klinger, 2018). In case of
disagreement, a third expert will be asked to make
the final decision.

C Implementation Detail

In this section, we provide more details on the im-
plementation settings of our experiments. Specif-
ically, we implement our framework with Py-
Torch (Paszke et al., 2017) and HuggingFace (Wolf
et al., 2020) and train our framework on a sin-
gle 80GB Nvidia A100 GPU. We follow a prior
work (Abraham et al., 2022) for backbone imple-
mentation. All backbone models have a maximum
token number of 512 and a batch size of 8. We use
the Adam optimizer to update the backbone, pro-
jector, and label predictor according to Section 3.1.



The values of other hyperparameters (Table 2 in
Appendix D) for each specific PLM type are deter-
mined through grid search. We run all the experi-
ments on an Nvidia A100 GPU with 80GB RAM.

D Parameters and Notations

In this section, we provide used notations in this
paper along with their descriptions for comprehen-
sive understanding. We also list their experimented
values and optimal ones, as shown in Table 2.

E Statistics of Data Splits

The Statistics and split policies of the experimented
datasets, including the source concept dataset Ds,
the unlabeled concept dataset Du, and their aug-
mented versions. The specific details are presented
in Table 3.

F Statistics of Human-Annotated
Concepts

The Statistics of Human-Annotated Concepts in
both CEBaB and IMDB datasets. We also include
the accuracy of ChatGPT’s concept prediction here.
The specific details are presented in Table 4.

G Statistics of Concepts in Transformed
Datasets

The Statistics and split policies of the transformed
datasets of experimented datasets are presented in
Table 5.

H More Results on Explanable
Predictions

Case studies on explanable predictions for both
CEBaB and IMDB datasets are given in Figure 6 and
Figure 7 respectively.

I A case study on Test-time Intervention

We present a case study of Test-time Intervention
using an example from the transformed unlabeled
concept data D̃u of the CEBaB dataset, as shown
in Figure 8. The first row displays the target con-
cept labels generated by ChatGPT. The second row
shows the predictions from the trained CBE-PLM
model, which mispredicts two concepts ("Waiting
time" and "Waiting area"). The third row demon-
strates test-time intervention using ChatGPT as the
oracle, which corrects the predicted task labels.

Finally, the fourth row implements test-time inter-
vention with a human oracle, rectifying the concept
that ChatGPT originally mislabeled.

J Examples of Querying ChatGPT

In this paper, we query ChatGPT for 1) augmenting
the concept set, and 2) annotate missing concept
labels. Note that in practice, we query ChatGPT
(GPT4) via OpenAI API. Here we demonstrate
examples from the ChatGPT (GPT4) GUI for better
illustration. The illustrations are given in Figure 9
and Figure 10.

https://platform.openai.com/docs/api-reference/introduction
https://chat.openai.com/?model=gpt-4


Table 2: Key parameters in this paper with their annotations and evaluated values. Note that bold values indicate the
optimal ones.

Notations Specification Definitions or Descriptions Values

max_len - maximum token number of input 128 / 256 / 512
batch_size - batch size 8
plm_epoch - maximum training epochs for PLM and Projector 20
clf_epoch - maximum training epochs for the linear classifier 20

hidden_dim - hidden dimension size 128
emb_dim LSTM embedding dimension for LSTM 300

lr

LSTM learning rate when the backbone is LSTM 1e-1 / 1e-2 / 5e-2 / 1e-3 / 1e-4
GPT2 learning rate when the backbone is GPT2 1e-3 / 5e-3/ 1e-4 / 5e-4/ 1e-5
BERT learning rate when the backbone is BERT 1e-4 / 5e-4/ 1e-5 / 3e-5/ 5e-5

RoBERTa learning rate when the backbone is RoBERTa 1e-4 / 5e-4/ 1e-5 / 3e-5/ 5e-5
\gamma - loss weight in the joint loss Ljoint 0.1 / 0.3 / 0.5 / 0.7 / 1.0

\tau - loss weight in the joint-MixUp loss LjointMixUp 0.1 / 0.5 / 1.0 / 1.5 / 2.0

Table 3: Statistics of experimented datasets. k denotes the number of concepts.

Dataset Ds Du D̃sa D̃u Task
Train/Dev/Test k Train/Dev/Test k Train/Dev/Test k Train/Dev/Test k

CEBaB 1755/1673/1685 4 2000/500/500 0 1755/1673/1685 10 2000/500/500 10 5-way classification

IMDB 100/50/50 4 1000/1000/1000 0 100/50/50 8 1000/1000/1000 8 2-way classification

Table 4: Statistics of human-specified concepts in Ds and the accuracy of ChatGPT’s concept prediction.

Dataset (Ds) Concept Negative Positive Unknown Total ChatGPT Acc.

CEBaB

Food 1693 (33.1%) 2087 (40.8%) 1333 (26.1%) 5113 77.9%
Ambiance 787 (15.4%) 994 (19.4%) 3332 (65.2%) 5113 69.2%

Service 1249 (24.4%) 1397 (27.3%) 2467 (48.2%) 5113 78.7%
Noise 645 (12.6%) 442 (8.6%) 4026 (78.7%) 5113 77.7%

IMDB

Acting 76 (38%) 66 (33%) 58 (29%) 200 73.0%
Storyline 80 (40%) 77 (38.5%) 43 (21.5%) 200 64.0%

Emotional Arousal 74 (37%) 73 (36.5%) 53 (26.5%) 200 60.5%
Cinematography 118 (59%) 43 (21.5%) 39 (19.4%) 200 66.5%

Figure 6: Illustration of the explanable prediction for an example from the CEBaB dataset.



Table 5: Statistics of concepts in transformed datasets (D̃). Human-specified concepts are underlined. Concepts
shown in gray are not used in experiments as the portion of the "Unknown" label is too large.

Dataset Concept Negative Positive Unknown Total

CEBaB

Food 2043(25.2%) 4382(54.0%) 1688(20.8%) 8113
Ambiance 868(10.7%) 1659(20.4%) 5586(68.9%) 8113

Service 1543(19.0%) 2481(30.6%) 4089(50.4%) 8113
Noise 668(8.2%) 477(5.9%) 6968(85.9%) 8113

Cleanliness 55(0.7%) 610(7.5%) 7448(91.8%) 8113
Price 714(8.8%) 527(6.5%) 6872(84.7%) 8113

Location 303(3.7%) 2598(32.0%) 5212(64.2%) 8113
Menu Variety 238(2.9%) 2501(30.8%) 5374(66.2%) 8113
Waiting Time 572(7.1%) 608(7.5%) 6933(85.5%) 8113
Waiting Area 267(3.3%) 1136(14.0%) 6710(82.7%) 8113

Parking 53(0.7%) 107(1.3%) 7953(98.0%) 8113
Wi-Fi 9(0.1%) 39(0.5%) 8065(99.4%) 8113

Kids-Friendly 15(0.2%) 536(6.6%) 7562(93.2%) 8113

IMDB

Sentiment 1624(50.7%) 1576(49.2%) 0(0.0%) 3200
Acting 663(20.7%) 1200(37.5%) 1337(41.8%) 3200

Storyline 1287(40.2%) 1223(38.2%) 690(21.6%) 3200
Emotiona Arousal 1109(34.7%) 1136(35.5%) 955(29.8%) 3200
Cinematography 165(5.2%) 481(15.0%) 2554(79.8%) 3200

Soundtrack 107(3.3%) 316(9.9%) 2777(86.8%) 3200
Directing 537(16.8%) 850(26.6%) 1813(56.7%) 3200

Background Setting 288(9.0%) 581(18.2%) 2331(72.8%) 3200
Editing 304(9.5%) 240(7.5%) 2656(83.0%) 3200

Figure 7: Illustration of the explanable prediction for an example from the IMDB dataset.



Figure 8: Illustration of the explanable prediction for an example from the transformed unlabeled concept data D̃u

of the CEBaB dataset. The brown box with dash lines indicates the test-time intervention on corresponding concepts.

Figure 9: The illustration of querying ChatGPT for additional concepts for the IMDB dataset.

Figure 10: The illustration of querying ChatGPT for annotating a missing concept label for the IMDB dataset.


