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ABSTRACT
Generative models have attracted significant interest due to their
ability to handle uncertainty by learning the inherent data distribu-
tions. However, two prominent generative models, namely Genera-
tive Adversarial Networks (GANs) and Variational AutoEncoders
(VAEs), exhibit challenges that impede achieving optimal perfor-
mance in sequential recommendation tasks. Specifically, GANs
suffer from unstable optimization, while VAEs are prone to poste-
rior collapse and over-smoothed generations. The sparse and noisy
nature of sequential recommendation further exacerbates these
issues.

In response to these limitations, we present a conditional denois-
ing diffusion model, which includes a sequence encoder, a cross-
attentive denoising decoder, and a step-wise diffuser. This approach
streamlines the optimization and generation process by dividing
it into easier and tractable steps in a conditional autoregressive
manner. Furthermore, we introduce a novel optimization schema
that incorporates both cross-divergence loss and contrastive loss.
This novel training schema enables the model to generate high-
quality sequence/item representations and meanwhile precluding
collapse. We conducted comprehensive experiments on four bench-
mark datasets, and the superior performance achieved by our model
attests to its efficacy.
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1 INTRODUCTION
Sequential Recommendation [10, 18, 21, 40, 41, 43] suggests items
to users based on their previous interactions such as purchases,
clicks, or ratings. It has been intensively investigated because of its
scalability and efficacy in capturing user temporal trends. Recent
research in sequential recommendation focuses on attention-based
methods for their promising results. SASRec [10] and Bert4Rec [37]
are early attempts that utilize the attention-based transformer struc-
ture in the sequential recommendation. Further improvements in
item representation quality are made by DuoRec [28] and CBiT [2],
which incorporated contrastive learning to make items more dis-
tinguishable without compromising ranking capabilities. Though
attention-based methods demonstrate their effectiveness, they still
suffer from performance degradation if there are noisy interactions,
like random clicks in sequences. These noises lead to biased ranking
results, especially for short sequences and cold-start items [40].

In this sense, generative models [5, 13] are running into the
spotlight. They provide solutions by learning the underlying dis-
tribution and estimating the uncertainty within the data, which
improves their robustness to noises [6, 24, 31, 40]. Two prevalent
categories of generative models are Generative Adversarial Net-
works (GANs) [5] and Variational AutoEncoders (VAEs) [13]. Com-
pared with GAN-based methods, VAE-based methods have more
stable optimization, which thus have garnered more attention in
the sequential recommendation. ACVAE [43] incorporates adver-
sarial training into the VAE framework, while ContrastVAE [40]
integrates contrastive learning into the VAE to address posterior
collapse issues, showing promising improvements compared to
conventional recommender systems.

Despite the success of generative models, there are limitations
that impede these models from achieving enhanced performance.
First, it is hard for generative models to well characterize the dis-
tribution of discrete sequences. Specifically, the optimization of
GAN-based methods is unstable [1, 16, 23, 35], while the VAE-based
methods suffer from posterior collapse issues [20, 38, 39, 45]. Sec-
ondly, the sparsity of sequential recommendation aggravates the
difficulty in training generative models. For example, in short se-
quences, the portion of noisy interactions is relatively larger than in
long sequences. Hence, the generative models are unable to capture
the true distribution of the data. Moreover, we observe that gener-
ative models especially for those VAE-based models tend to yield
over-smoothing results [26, 33]. Specifically, generative models are
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prone to yield similar ranking scores on candidate items, which
results from the incorporation of uncertainty. Though obtaining
good performance when considering a set of top-ranking items,
existing generative models are incapable of ranking those items in
accurate positions as their scores are rather close.

To address these issues, we can divide the difficult and unsta-
ble learning procedure into multiple simple tasks and split the
generation procedure into multi-steps. Intuitively, if the noisy in-
terpolation has relatively more impact on short sequences, we can
simulate the smaller level of noise for each step, thus simplifying
the learning task. If the one-step generated ranking prediction is
too smooth, we can learn the small transition for each step and
gradually generate the high-fidelity ranking predictions. For these
desiderata, we resort to denoising diffusion models (DDMs) for
solutions. These models [3, 8, 29] can be regarded as the extended
VAEs that overcome both posterior collapse and over-smoothing is-
sues through the fine-grained multi-step generation and inherit the
nature of the stable and efficient optimization of VAEs. Specifically,
DDMs consist of two phases: diffusion and denoising. The diffusion
step collapses original inputs into Gaussian noise through gradual
noise addition, while the denoising step generates original input
from Gaussian noise by removing the noise step-by-step. Gener-
ally, the diffuser of DDMs maps the input to the Gaussian Noise
gradually and the denoiser reconstructs such intermediate states.
As the noise added to the input from a diffuser is scheduled and rel-
atively small, the denoiser can be aware of such noise and learn the
step-wise transition to reconstruct the original information from
Gaussian Noise. Furthermore, due to such multi-step generations,
the decoder is able to learn fine-grained intermediate transitions
and overcome the over-smoothing issues of VAE from the one-step
generation paradigm.

However, it is rather difficult to incorporate such a learning
paradigm into the sequential recommendation. There are only
a few successful examples in discrete tasks, such as text gener-
ation [3, 4, 19]. One primary reason is that traditional diffusion
models are designed for continuous spaces like image generation,
where input features are fixed and contain substantial information.
In contrast, sequential recommendation scenarios involve item in-
put information that is randomly initialized based on item IDs.
Without a carefully designed approach that takes into account the
characteristics of DDMs, performance in discrete spaces could be
adversely affected by representation collapse [3, 4, 19]. Another
factor that hinders the successful implementation of DDMs in se-
quential recommendation is its original purpose: reconstructing
the corrupted original information. In the context of sequential
recommendation, the desired outcome is the generation of high-
quality sequence/item representations reflecting user preferences,
enabling the prediction of the next possible items based on prior
interaction records. Merely reconstructing original item representa-
tions within a sequence (Gaussian Noise vector from the beginning)
could exacerbate the collapse issues of DDMs for the sequential
recommendation. Furthermore, the generation process of DDMs
is unconditional and non-autoregressive, which is inappropriate
for the sequential recommendation. Specifically, the generation of
DDM starts from the randomly initialized Gaussian Noise, which is
uncontrollable. For sequential recommendation, as the autoregres-
sive generation has been proven to be effective [10, 40], we expect

the model could generate the next item engagement representa-
tion that is conditioned on previous interactions, i.e., conditionally
generate sequence representations autoregressively.

To tackle these challenges, we propose conditional denoising
diffusion models for sequential recommendation (CDDRec) that
include a sequence encoder, cross-attentive conditional denoising
decoder, and step-wise diffuser. The sequence encoder encodes se-
quence representations from interacted item embeddings, which
is used as the conditioned information for a step-wise generation.
The objective of the conditional denoising decoder is to gener-
ate high-quality sequence representations by removing the noise
of sequences step-by-step. To make the denoising decoder aware
of each denoising step, we adopt the cross-attention mechanism
with the denoising step as the query input. To boost the gener-
ation performance, previous methods choose the self-condition
strategy, which makes the generation process condition on the
output of the previous generation step [3]. It can be regarded as
adding a residual connection to the long dependence chain. In the
conditional generation scenario, we make the denoising decoder
estimate the noise of every step directly conditional on the output
of the sequence encoder. The step-wise diffuser introduces noise
into target sequence representations to construct corrupted tar-
gets and simulate the small step-wise noise in the sequences. We
also introduce a cross-divergence loss based on DDM’s original
reconstruction loss, enabling the model to construct high-fidelity
sequence/item representations and be aware of user preferences
while preventing learning collapse. Furthermore, we introduce In-
view and Cross-view contrastive optimization to ensure the model
predicts a consistent output given the noise interpolation.

Our contribution can be summarized as follows:
• To the best of our knowledge, we propose the novel condi-
tional denoise diffusion models for sequential recommenda-
tion CDDRec in the conditional autoregressive generation
paradigm.

• We designed the optimization schema to equip the CDDRec
with the ranking capacity for sequential recommendation
and prevent it from representation collapse.

• We conduct comprehensive experiments on sequential rec-
ommendation dataset, the substantial improvement on all
metrics through four datasets indicates the effectiveness of
CDDRec. We also conduct ablation studies to further exam-
ine the effectiveness of each key design.

2 RELATEDWORK
2.1 Generative Models for Sequential

Recommendation
Generative models have been extensively studied and applied in the
sequential recommendation. Variational AutoEncoder (VAE) is a
popular generative model that learns item latent representations by
first encoding them into a latent space and then reconstructing the
original data sample from this latent space. Liang et al. [20] applied
VAEs to recommendation tasks by assuming that the interacted
items of a user follow the multinomial distribution and optimizing
the VAE by maximizing the reconstruction likelihood. Sachdeva
et al. [34] further improved upon this method by factorizing the
joint distribution of a user interaction sequence in an autoregressive
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manner. Zhao et al. [44] used self-attention layers to implement
the encoder and decoder of the VAE. Wang et al. [40] proposed
the ContrastVAE, which incorporates contrastive learning into the
VAE framework and utilizes the contrastELBO from a multi-view
perspective. Generative Adversarial Network (GAN) is another
widely used generative model. GANs optimize a generator and
a discriminator simultaneously. The discriminator distinguishes
between samples generated by the generator and those from the real
dataset, while the generator generates indistinguishable samples
that maximize the prediction error of the discriminator. Ren et al.
[32] utilized a generator to generate sequence representations that
predict the next-item ranking score and introduced a multi-factor
specific discriminator to estimate the rationality of the generated
embedding with respect to each item factor, guiding the generation
process. Xie et al. [43] introduced adversarial training to VAEs,
enabling the model to learn more diverse and informative item
representations.

2.2 Denoise Diffusion models for discrete tasks
Denoise Diffusion Models (DDMs) have shown great success in
continuous spaces, such as image generation [8, 9, 25, 29] and audio
generation [11, 14, 15, 17]. Recently, several attempts have been
made to apply DDMs in discrete spaces, such as text generation.
SUNDAE [36] is one of the pioneers that uses DDMs for text gener-
ation. They introduce a step-unrolled denoising autoencoder that
reconstructs corrupted sequences in a non-autoregressive manner.
Diffusion-LM [19] gradually reconstructs word vectors from Gauss-
ian noise guided by attribute classifiers and introduces a rounding
process that maps continuous word embeddings to discrete words.
DiffSeq [4] introduces a forward process with partial noise that uses
the question of a dialog as the uncorrupted part and the answer of
the dialog as the corrupted part and adds partial noise to the answer
part during the forward pass. The backward pass reconstructs the
answer in a non-autoregressive way. While the denoising process
in DDMs realizes conditional generation, this methodology is not
directly applicable for sequential recommendation tasks, as there is
significant overlap when regarding historical interactions as ques-
tions and one-step-shifted interactions as answers. Additionally,
such models may be unaware of rankings among items and user
preferences. TimeGrad [30] is one attempt to incorporate DDMs
into the conditional autoregressive generation paradigm, utilizing
an RNN to encode previous sequences and applying multi-step
diffusion/denoising over the latent states of the RNN.

3 PRELIMINARY
Denoising Diffusion Models (DDMs). DDMs have demonstrated

considerable effectiveness in generating high-quality data for con-
tinuous tasks, encompassing areas such as computer vision [8, 9, 25,
29] and audio generation [11, 14, 15, 17]. These models belong to the
family of likelihood-based generative models. However, in contrast
to the variational autoencoder (a notable likelihood-based genera-
tive model) which directly produces data from latent embeddings
in a single step, DDMs divide the generation process into multiple
stages by restoring corrupted data. It is the parameterized Markov
chain that progressively introduces noise until the original data is
reduced to Gaussian noise during the diffusion phase. Conversely,

the reverse denoising phase is learned to recover the corrupted
data at each stage. Upon mastering the reverse denoising phase, the
model is adept at denoising data from randomly sampled Gaussian
noise in a stepwise manner. This multi-step refinement approach
simplifies the learning process and facilitates high-fidelity genera-
tion. It is important to note that data corruption occurs by adding
a Gaussian noise scale to the original data according to a noise
schedule strategy, specifically, incorporating fixed Gaussian noise
at each stage. Given the similarities between DDMs and VAEs as
likelihood-based generative models, the training objectives for both
models begin with optimizing the evidence lower bound (ELBO)
for minimizing the negative log-likelihood:

L𝐷𝐷𝑀 = −E𝑞 (𝑥0) log𝑝\ (𝑥0) ≤ E𝑞 (𝑥0,𝑥1:𝑇 ) [log
𝑞(𝑥1:𝑇 |𝑥0)
𝑝\ (𝑥0, 𝑥1:𝑇 )

], (1)

L𝑉𝐴𝐸 = −E𝑞 (𝑥0) log 𝑝\ (𝑥0) ≤ E𝑞 (𝑥0,𝑧) [log
𝑞(𝑧 |𝑥0)
𝑝\ (𝑥0, 𝑧)

], (2)

where 𝑞 and 𝑝\ are data distribution and learned approximated
distribution respectively. 𝑥0 is the data sample, 𝑥1:𝑇 and 𝑧 are the
corresponding latent variables of DDMs and VAEs. In contrast to
the VAE, the primary distinction lies in the representation of latent
variables. The VAE incorporates a single latent variable 𝑧, whereas
the DDM introduces multi-step latent variables 𝑥1:𝑇 .

Diffusion Phase: The diffusion process of the DDMs, as a param-
eterized Markov chain, can be factorized as follows according to
the first-order Markov property:

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡−1

𝑞(𝑥𝑡 |𝑥𝑡−1), 𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I),

(3)
whereN is the Normal distribution. At each stage, a small quantity
of Gaussian noise is added to corrupt the data, with the variance
schedule 𝛽𝑡 dictating the amount of Gaussian noise introduced at
each step. Applying the reparameterization trick, the 𝑥𝑛𝑡 can be
formalized as the following closed form with respect to the original
input 𝑥𝑛0 :

𝑞(𝑥𝑡 |𝑥0) = N(𝑥𝑡 ;
√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 )I), 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =

𝑡∏
𝑖=1

𝛼𝑖 .

(4)
Denoising Phase: The primary aim of DDMs is to learn a de-

noising model capable of reversing the diffusion phase at each
step. Consequently, the reverse phase can initially be factorized as
follows:

𝑝\ (𝑥0, 𝑥1:𝑇 ) = 𝑝 (𝑥𝑇 )
𝑇∏
𝑡=1

𝑝\ (𝑥𝑡−1 |𝑥𝑡 ),

𝑝\ (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; `\ (𝑥𝑡 , 𝑡), Σ\ (𝑥𝑡 , 𝑡)) .
(5)

The denoising step is parameterized with learnable `\ and Σ\ .

Optimization: In order to optimize the parameter \ , we need to
minimize the KL-divergence between 𝑞(𝑥𝑡−1 |𝑥𝑡 ) and 𝑝\ (𝑥𝑡−1 |𝑥𝑡 ).
Given that𝑞(𝑥𝑡−1 |𝑥𝑡 ) is unknown, the posterior distribution𝑞(𝑥𝑡−1 |𝑥𝑡 , 𝑥0)
can be computed using 𝑞(𝑥𝑡−1 |𝑥0), 𝑞(𝑥𝑡 |𝑥0), and 𝑞(𝑥𝑡 |𝑥𝑡−1) accord-
ing to Bayes’ rule. The step-wise objective function derived from
Eq. 1 can be expressed as follows:
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L𝐸𝐿𝐵𝑂 = E𝑞 [𝐷𝐾𝐿 [𝑞(𝑥𝑇 |𝑥0) | |𝑝 (𝑥𝑇 )]

+
∑︁
𝑡>1

𝐷𝐾𝐿 [𝑞(𝑥𝑡−1 |𝑥𝑡 , 𝑥0) | |𝑝\ (𝑥𝑡−1 |𝑥𝑡 )] − log𝑝\ (𝑥0 |𝑥1)],

(6)

where 𝐷𝐾𝐿 is the KL-divergence. For the simplified objective, the
standard approach involves randomly sampling a fixed number of
𝑡 and minimizing the second term during each iteration, which can
be expressed as follows:

𝐿𝑠𝑖𝑚𝑝𝑙𝑒 = | |𝜖−𝜖\ (
√
𝛼𝑡𝑥0+

√
1 − 𝛼𝑡𝜖, 𝑡) | |2, 𝛼𝑡 = 1−𝛽𝑡 , 𝛼𝑡 =

𝑡∏
𝑖=1

𝛼𝑖 ,

(7)
where 𝜖\ is the denoiser that removes the Gaussian noise added to
𝑥0 at step 𝑡 , and 𝜖 denotes the Gaussian Noise.

Limitations: While DDMs have achieved significant success in
continuous tasks [8, 29], there are few triumphs in discrete space,
primarily due to the following constraints: 1), The collapse of the
denoising objective. Specifically, each token’s representation is ran-
domly initialized (sampled from a normal distribution) and learned
during the optimization process. However, in the original DDMs
scenario, input features are fixed and distinguishable from each
other. Simply applying DDMs to randomly initialized token rep-
resentations may result in representation collapse [3]. More con-
cretely, 𝑥0 in Eq. 7 is also Gaussian noise, rather than an image
containing abundant information. As a result, the denoising loss
function learns little from the early stages and collapses to a trivial
representation solution initially. In our experiments, we observed
a similar phenomenon. For the sequential recommendation task,
dataset characteristics such as learnable item input features, spar-
sity, cold-start, and long-tail distribution exacerbate the collapse. 2),
The incompatibility of non-autoregressive generation. The autore-
gressive sequential recommendation is the de-facto mechanism. In
contrast, DDMs is optimized to reconstruct original image samples
in an autoencoder manner. In sequential recommendation, the goal
is to predict the next engaged items based on historical interactions.
Designing an appropriate diffusion model that retains the merit of
high-fidelity generation power necessitates conditional generation
rather than generating the target sample from randomly initial-
ized noise. Therefore, we introduce a new optimization framework
that leverages the powerful step-wise high-resolution conditional
generation capabilities for sequential recommendation.

Problem Definition. In sequential recommendation, we have a set
of usersU, a set of items X, and a set of user interaction sequences
S = {𝑆1, 𝑆2, . . . , 𝑆 |U |}. Each sequence comprises a varying number
of items 𝑆𝑖 = {𝑥1, 𝑥2, . . . , 𝑥 |𝑆𝑖 |}, arranged in chronological order.
Sequential recommendation aims to predict the next engaged items
𝑥 |𝑆𝑖 | for a specific user𝑢𝑖 , given their previous interaction sequence
{𝑥1, 𝑥2, . . . , 𝑥 |𝑆𝑖 |−1}. In this paper, CDDRec generates the represen-
tation of items 𝑥 |𝑆𝑖 | in𝑇 steps, conditional on the representation of
the historical interaction sequence. For ease of notation, we denote
xnt as the sample of the target item embedding at diffusion step 𝑡 .

4 METHODOLOGY
In this section, we present the comprehensive methodology of CD-
DRec and provide an illustration of the framework in Figure 1.

Generally, we first retrieve sequence representations from the item
embedding lookup table and feed them into the self-attentive se-
quence encoder to learn sequence representations based on his-
torical item interactions. These representations act as conditioned
information for the cross-attentive conditional denoising decoder.
The decoder is aware of the specific step, used as the query of a
cross-attentive layer, enabling it to predict the corresponding noise
added at each diffusion step. From the item embedding lookup ta-
ble, we obtain the target sequence embedding, which is shifted one
step to the right. We employ the step-wise diffuser to progressively
introduce Gaussian Noise at each step. This serves as the target
sequence representation for each denoising step.

4.1 Sequence Encoder
Previous methods predominantly concentrate on denoising from
a randomly initialized Gaussian noise and generating sentences
non-autoregressively [3, 4, 19]. However, in the sequential rec-
ommendation, predicting the next item based on historical in-
teraction records autoregressively has proven to be more effec-
tive [10, 40]. Consequently, in this paper, we employ a self-attentive
encoder to learn hidden representations of historical interactions,
which can then be fed into the subsequent cross-attentive condi-
tional denoising decoder for the multi-step generation. We also
incorporate positional embeddings and attention masks to pre-
vent attending to future interactions. Formally, given a histori-
cal sequence 𝑥1, 𝑥2, . . . , 𝑥𝑛−1, we first retrieve item embeddings
from the lookup table and construct the input sequence embedding
E = [e1+p1, e2+p2, . . . , e𝑛−1+p𝑛−1] ∈ R(𝑛−1)×𝑑 , where 𝑛 = |𝑆𝑖 |, ei
and pi are the item embedding and position embedding at position 𝑖 .
Next, we input this sequence embedding into a self-attention layer
(SA):

es = SA(E) = Softmax
(
(EW𝑄 ) (EW𝐾 )⊤

√
𝑑

)
(EW𝑉 ) ∈ R(𝑛−1)×𝑑 ,

(8)
where W𝑄 , W𝐾 , and W𝑉 are the learnable parameters, 𝑑 is the
dimension of the embedding, and

√
𝑑 is the normalization factor to

avoid large values in the softmax function.

4.2 Cross-attentive Conditional Denoising
Decoder

In prior approaches, the denoiser’s aim is to learn the reverse de-
noising process of the associated diffusion step, 𝑝\ (𝑥𝑡−1 |𝑥𝑡 ) ∼
N (`\ (𝑥𝑡 , 𝑡), 𝛽𝑡 I), where 𝛽𝑡 = 1−𝛼𝑡−1

1−𝛼𝑡 is the closed form of variance
of posterior distribution 𝑞(𝑥𝑡−1 |𝑥𝑡 , 𝑥0), enabling the model denoiser
to reconstruct the original input. For sequential recommendation
tasks, the objective is to predict subsequent items based on his-
torical interactions in an autoregressive manner. Therefore, rather
than generating sequence representations from uncontrollable, ran-
domly initialized Gaussian noise, we opt to integrate the denoiser
within the conditional generation framework with a conditional
denoising decoder. Drawing inspiration from the performance en-
hancement strategy of self-conditioning, which entails making
the denoiser cognizant of their estimates from the preceding de-
noising step [3]—an approach conceptually akin to incorporating
residual connections within the denoising chain—we introduce the
direct-condition mechanism. This mechanism allows the decoder
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Figure 1: Framework of CDDRec. From left to right, we initially employ a sequence encoder to process and encode the se-
quential patterns derived from prior user interactions. The encoder’s output serves as key and value data, combined with the
denoising step indicator 𝑡 as the query for the following cross-attentive conditional denoising decoder. This decoder is uti-
lized to predict the denoised mean of target item embeddings x̂𝑛 at each denoising step, sampled via the reparameterization
trick. Conversely, from right to left, we introduce our step-wise diffuser, responsible for the gradual addition of noise and the
creation of corrupted target item embeddings xn at each diffusion step, also sampled through the reparameterization trick.
Cross-divergence loss and contrastive loss are applied at every step.

to directly condition the sequence embeddings from the encoder at
every denoising step. Direct conditioning can improve performance
by circumventing the long-dependence chain in the denoising phase
and directly estimating the noise at each diffusion step from the
conditioning sequence embeddings and step indicators. Moreover,
this novel design facilitates model convergence to optimal solutions
without necessitating large diffusion steps. Consequently, we con-
dition the reverse denoising phase on the preceding sequence rep-
resentations, expressed as 𝑝\ (x̂t |es, 𝑡) ∼ N (`\ (es, 𝑡), 𝛽𝑡 I), where
es denotes the encoded historical interactions using the sequence
encoder.

In contrast to earlier methods [30] that maintain only the final
position’s representation as the sequence representation, we strive
to preserve as much information as possible due to the sparse nature
of sequential recommendations. Hence, we select a cross-attention
architecture as the denoising decoder instantiation capable of taking
the entire sequence representation and corresponding step indi-
cator as input. Formally, given a sequence embedding es and the
relevant diffusion step 𝑡 , the direct conditional denoising decoder is
anticipated to predict the corrupted samples at this diffusion step.
Initially, we acquire a learnable embedding et for the indicator 𝑡
from a time lookup embedding table and expand it to the dimension
ofR (𝑛−1)×𝑑 , ensuring that every previous hidden embedding is con-
scious of the same diffusion step. We define the cross-attention (CA)
as follows:

`1:n
\

(es, 𝑡) = 𝐶𝐴(es, et) = Softmax
(
(etW𝑄 ) (esW𝐾 )⊤

√
𝑑

)
(esW𝑉 ) .

(9)
It is worth noting that we mask the items in the future to ensure the
autoregressive generation mechanism. Given the predicted mean
and the corresponding variance, we can sample the predicted target
item embedding at denoising step 𝑡 using the reparameterization

trick:
x̂nt = `n

\
+ 𝛽𝑡𝜖, 𝜖 ∼ N(0, I). (10)

4.3 Step-wise Diffuser
The goal of the step-wise diffuser is to incrementally introduce
Gaussian noise to the original data, creating corrupted data for
each step. As per Eq. 3, we predefine a noise schedule 𝛽𝑡 and cor-
responding conditional Gaussian distribution 𝑞(xnt |x

n
t−1) for every

diffusion step, where 𝑛 represents the sequence’s final target item.
We can employ the reparameterization trick to sample the xnt at
any step 𝑡 using xn0 , via the closed form Eq. 4:

xnt =
√
𝛼𝑡xn0 +

√
1 − 𝛼𝑡𝜖, 𝜖 ∼ N(0, I), (11)

which is used as the corrupted target to be reconstructed at step 𝑡 .

4.4 Optimization
As previously discussed in Sec. 3, the traditional DDM is designed
to reconstruct a sample by removing the Gaussian noise added to
it. Consequently, the learning objective is to learn the denoising
function 𝑝\ (𝑥𝑡−1 |𝑥𝑡 ) for the prior diffusion step, minimizing the KL
divergence 𝐷𝐾𝐿 [𝑞(𝑥𝑡−1 |𝑥𝑡 , 𝑥0) | |𝑝\ (𝑥𝑡−1 |𝑥𝑡 )] at each diffusion step.
In the inference phase, the conventional DDM begins with Gaussian
noise and generates an image by iteratively removing the noise.
However, the primary goal of sequential recommendation is to pre-
dict the next engaged item based on historical interactions. Firstly,
we expect the model to generate high-quality item embeddings
conditional on historical interactions, which implies the model
should be capable of generating sequence embeddings shifted by
one position from the preceding sequence embedding. Secondly,
in contrast to image or language generation, the sequential rec-
ommendation is a retrieval task requiring the model to effectively
rank items, giving higher scores to target items compared to non-
interest items. Thirdly, the long-tail and sparse nature of sequential
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recommendation tasks exacerbate the denoising objective collapse
issue in conventional DDMs. Bearing these considerations in mind,
we devise a new optimization paradigm that leverages step-wise
generation while remaining cognizant of rankings and preventing
collapse.

Denoising Diffusion Optimization. To ensure conditional gener-
ation, we aim to optimize the KL divergence of the conditional
generation function:
𝑑𝑖𝑠 (xnt , x̂

n
t ) = 𝐷𝐾𝐿 [𝑞(xnt |x

n
0 ) | |𝑝\ (x̂

n
t |es, 𝑡)] ∝ ||xt𝑛−x̂𝑛t | |

2 ∝ −xnTt x̂nt .
(12)

Instead of predicting noise from the target item embedding xt−1
of diffusion step 𝑡 − 1, we can directly use the previous sequence
embedding to predict the corrupted target item embedding at each
diffusion step. This approach not only ensures conditional gen-
eration taking advantage of step-wise generation but also avoids
accumulating bias during step-wise inference. Since we can di-
rectly predict the corrupted sample without knowing xt−1, we
can omit this variable in our learning objective. We sample both
corrupted target item embeddings and predicted target item em-
beddings according to Eq. 11 and Eq. 10. In order to account for the
model’s ranking capability, it is essential not only to minimize the
dissimilarity between predicted item embeddings and the target
item embeddings but also to maximize the dissimilarity between
predicted item embeddings and other irrelevant items. Therefore,
rather than merely minimizing the KL-divergence as the objective,
we employ the KL-divergence as a generation dissimilarity metric
for recommendation purposes.

Cross-Divergence Loss. Relying solely on the generation objective,
the model tends to maximize the similarity between the predicted
mean and corrupted target item embedding. However, since all item
embeddings are randomly initialized and optimized dynamically,
the model may learn trivial item representations where every pair
of item embeddings is highly similar, resulting in high-ranking
scores for all items. To circumvent this issue, we require the KL
divergence between the predicted mean and target item embedding
to be smaller than that between the predicted mean and unrelated
item embeddings. Consequently, we introduce the cross-divergence
loss using Eq. 12 as a dissimilarity metric at each denoising step 𝑡 :

L𝑡
𝑐𝑑

=
1
𝑁

∑︁
𝑛

log(𝜎 (−𝐷𝐾𝐿 [𝑞(xnt |x
n
0 ) | |𝑝\ (x̂

n
t |es, 𝑡)]))

+ log(1 − 𝜎 (−𝐷𝐾𝐿 [𝑞(x′nt |x′n0 ) | |𝑝\ (x̂nt |es, 𝑡)]))],
(13)

where x′n0 is the embedding of a randomly sampled negative target
item that has never appeared in the user’s historical interactions.

Contrastive Loss. To endow the model with robustness against
the noisy interaction, we expect the model to predict consistent
item engagement given a certain quantity of noise interpolation.
Therefore, inspired by the nature of the diffusion model—which
adds Gaussian Noise to target item embeddings and predicts Gauss-
ian Noise with the denoiser—we incorporate a simple yet effective
multi-view contrastive learning approach into our framework.

The first view caters to the objective of sequential recommenda-
tion. Since we anticipate that the denoised item embedding from
the conditional denoising decoder should resemble the target item
embedding while distancing itself from other irrelevant items, we

optimize the in-view InfoNCE loss as follows:

L𝑡𝑖𝑛 =
1
𝑁

𝑁∑︁
𝑖=1

log
exp(x̂𝑖⊤𝑡 x𝑖𝑡/𝜏)∑

𝑗
exp(x̂𝑖⊤𝑡 x𝑗𝑡 /𝜏) +

∑
𝑗
1[ 𝑗≠𝑖 ] exp(x̂𝑖⊤𝑡 x̂𝑗𝑡 /𝜏)

, (14)

where x̂it is the output of conditional denoising decoder of position 𝑖
at denoising step 𝑡 , xit is the output of step-wise diffuser at diffusion
step 𝑡 at position 𝑖 of the sequence.

From another perspective, we expect the model to be robust to
noise in the input data. In other words, when a small interpolation
is introduced to the input sequence, the conditional denoiser should
still predict similar target item sequence representations. As a result,
we initially acquire the augmented view by modifying the input
sequence through random cropping, shuffling, and masking. Then,
we incorporate a supplementary cross-view InfoNCE loss, which
aims to maximize the agreement between the original view and its
augmented counterpart, as detailed below:

L𝑡𝑐𝑟𝑜𝑠𝑠 =
1
𝑁

𝑁∑︁
𝑖=1

log
exp(x̂𝑖⊤𝑡 x̃𝑖𝑡/𝜏)∑

𝑗
exp(x̂𝑖⊤𝑡 x̃𝑗𝑡 /𝜏) +

∑
𝑗
1[ 𝑗≠𝑖 ] exp(x̂𝑖⊤𝑡 x̂𝑗𝑡 /𝜏)

,

(15)
where x̃𝑖𝑡 is the output of conditional denoising decoder at diffusion
step 𝑡 , position 𝑖 of augmented view.

Since the noise added to the target item embedding increases
as the diffusion step progresses, more information is lost at higher
diffusion steps. Intuitively, to avoid focusing too much on recon-
structing non-informative noise, we rescale the loss term of each
diffusion step by dividing it by the step indicator. Furthermore,
unlike previous methods that randomly sample step indicators for
optimization, we explicitly calculate the loss term for every dif-
fusion step. The final optimization objective can be formalized as
follows:

L𝑟𝑒 =
𝑇∑︁
𝑡=0

1
𝑡 + 1

(L𝑡
𝑐𝑑

+ _(L𝑡𝑖𝑛 + L𝑡𝑐𝑟𝑜𝑠𝑠 )). (16)

5 EXPERIMENTS
In this section, we evaluate the proposed CDDRec on sequential
recommendation tasks to examine the following research questions:

• RQ1: How does CDDRec perform compared to state-of-the-
art sequential recommendation models.

• RQ2: What are the contributions of each key designs of
CDDRec.

• RQ3: How does CDDRec perform with respect to different
subsets of sequences and different denoising steps.

Dataset. In this paper, we conduct experiments on four Amazon
datasets [22]: Office, Beauty, Tools and Home, and Toys and Games.
We first filter out users and items with fewer than five interaction
records. Next, we sort user interactions with items in chronological
order. In line with common practice [10, 37, 46], for each user, we
treat the last engaged item as the test item, the penultimate one
as the validation item, and all previous items, excluding these two,
as training items. In other words, we split the train, validation,
and test datasets using all previous interactions except for the last
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two, second-to-last interactions, and the last ones from all users,
respectively. We report the statistics of the datasets in Table 1.

Table 1: Statistics of datasets, we report the number of users,
number of items, number of interactions, number of inter-
actions per item, and the averaged sequence length.

Dataset #Users #Items #Interactions #Ints / item Avg. seq. len.
Beauty 22,363 12,101 198,502 16.40 8.3
Toys 19,412 11,924 167,597 14.06 8.6
Tools 16,638 10,217 134,476 13.16 8.1
Office 4,905 2,420 53,258 22.00 10.8

Baseline Models. We conduct the overall comparison with these
three related types of state-of-the-art methods:

• Generative Models:MultVAE [20],ACVAE [43], Contrast-
VAE [40]. MultVAEmodels the interactions of a user asmulti-
nomial distribution and optimizes the VAE by reconstructing
the interactions. ACVAE introduces the concept of adversar-
ial variational Bayes and mutual information maximization
to optimize the VAE for the sequential recommendation.
ContrastVAE introduces the objective named ContrastELBO,
a variational augmentation strategy to optimize the VAE via
maximizing the mutual information among latent variables
and the next item embedding reconstruction likelihood.

• Contrastive Models: CL4Rec [42], DuoRec [28], CBiT [2].
CL4Rec introduces the data augmentation strategies: mask,
random shuffle, and random crop into the sequential recom-
mendation task and optimizes the model via InfoNCE [27]
loss. DuoRec further improves the contrastive learning para-
digm in sequential recommendation via semantic augmenta-
tion, which regards the sequences with the same target items
as the positive views instead of sequences constructed from
data-level augmentations. CBiT further improves Bert4Rec
by introducing the additional InfoNCE objective.

• Encoder Models: GRU4Rec [7], SASRec [10], FMLP [47].
GRU4Rec first attempts the Recurrent Neural Network for
the sequential recommendation, while SASRec first employs
a transformer-based encoder to learn sequence and item
representation. FMLP further replaces the multi-head self-
attention layer of SASRec with the denoising Fourier layer,
thus designing a novel encoder only with multi-layer per-
ceptions.

Metrics. To evaluate the performance of our model, we employ
ranking-related evaluationmetrics, including Recall@N, NDCG@N,
and MRR, following common practice [10, 40, 42]. We first obtain
the sequence representation using the user interaction records
except for the last one. Then, we calculate the ranking score using
the dot product between the sequence representation and candidate
items (all items in the dataset are used as candidates) and sort these
scores in descending order. These sorted ranking scores are used to
evaluate Recall, NDCG, and MRR with respect to the last test items.

Implementation Details. We implement our model using Pytorch
and conduct our experiments on an Nvidia V100 GPU with 40G
memory.We choose Adam [12] as our optimization strategy and use
early stopping with patience of 50 to prevent overfitting.We employ

a learning rate of 0.001, batch size of 128, dropout probability of
0.2, embedding dimension of 128, and maximum sequence length
of 20 as our hyperparameters. For a fair comparison, we conduct
30 experiments for every baseline method by randomly selecting
hyperparameters such as learning rate, dropout probability, hidden
size, number of attention heads, etc.

5.1 Overall Experiments
In this paper, we conduct a comprehensive comparison between
CDDRec and state-of-the-art models, reporting the numerical re-
sults in Table 2. Our model CDDRec consistently outperforms other
models on these four datasets, demonstrating the effectiveness of
our model. Specifically, in terms of Recall@1, our model shows
substantial improvement with gains of 20.98%, 16.67%, 17.59%, and
18.42% compared to the second-best models on Office, Beauty, Tools,
and Toys, respectively.We attribute these improvements to the high-
quality item embeddings generated by CDDRec. As a result, the
items are more distinguishable from negative items and closer to
positive targets, increasing the likelihood of ranking the target item
first. Concretely, if predicted ranking scores are over-smoothed, i.e.,
the top-rated scores are more similar to each other, it is more likely
to hit the target items when considering the top 10 ranked items.
This explains why CDDRec has relatively smaller improvements
on Recall@10 compared to other metrics. From another perspec-
tive, metrics like NDCG@5, NDCG@10, and MRR, which take the
ranking position of target items into account, still show impressive
improvements. This indicates that our model CDDRec ranks target
items relatively higher than other models.
5.2 Ablation Study
In this section, we conduct experiments to examine the effectiveness
and contributions of each component, rescaled cross-divergence
loss, and contrastive loss. We report the experimental results on the
Office dataset in Table 3, Table 4, and Fig. 2. From the experiments,
we have the following observations:

Effect of Cross-Divergence loss based on Dissimilar Metric. In Ta-
ble 3, the significant performance drop of 88.88% and 91.42% was
observed in columns MSE from single-view and multi-view. MSE
loss (Eq. 12) that only minimizes the KL divergence between the pre-
dicted item and the target item embeddings can lead to the collapse
issues. Furthermore, the multi-view without any regularization ex-
acerbates such collapse issues. In contrast, the cross-divergence loss
dramatically improves the performance when introduced as shown
in columns L𝑟𝑒

𝑐𝑑
, as it incorporates ranking capability into the diffu-

sion model by maximizing the divergence between predicted item
embeddings and randomly sampled negative item embeddings. The
comparison between columnsL𝑟𝑒𝑐𝑒 from single-view and multi-view
shows that data augmentation has a positive effect on performance
when cross-divergence loss is employed.

Effect of loss term rescale. By comparing column L𝑐𝑑 and L𝑟𝑒
𝑐𝑑

in Table 3, we can conclude that the diffusion-step-rescaled loss
term has a positive effect on the overall performance. Due to space
limitations, we only report the variants with the adaptive loss for
multi-view settings. It is worth noting that, during the experiments,
we also observed a consistent performance drop for each variant
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Table 2: Overall Comparison. The best is bolded, and the runner-up is underlined.

Dataset Metric SVAE ACVAE ContrastVAE CL4Rec DuoRec CBiT GRU4Rec SASRec Bert4Rec FMLP CDDRec Imp

Office

R@1 0.0088 0.0139 0.0194 0.0094 0.0120 0.0198 0.0051 0.0198 0.0137 0.0224 0.0271 20.98%
R@5 0.0316 0.0457 0.0642 0.0294 0.0330 0.0593 0.0241 0.0656 0.0485 0.0593 0.0765 16.62%
R@10 0.0597 0.0742 0.1052 0.0430 0.0559 0.0917 0.0510 0.0989 0.0848 0.0901 0.1091 3.71%
N@5 0.0202 0.0300 0.0411 0.0194 0.0223 0.0396 0.0149 0.0428 0.0309 0.0414 0.0521 21.73%
N@10 0.0292 0.0392 0.0544 0.0237 0.0296 0.0500 0.0234 0.0534 0.0426 0.0513 0.0627 15.26%
MRR 0.0249 0.0351 0.0463 0.0207 0.0264 0.0437 0.0204 0.0457 0.0408 0.0455 0.0548 18.36%

Beauty

R@1 0.0014 0.0167 0.0161 0.0045 0.0107 0.0174 0.0079 0.0129 0.0119 0.0154 0.0203 16.67%
R@5 0.0068 0.0428 0.0491 0.0160 0.0278 0.0512 0.0266 0.0416 0.0396 0.0433 0.0542 5.86%
R@10 0.0127 0.0606 0.0741 0.0250 0.0403 0.0762 0.0421 0.0633 0.0595 0.0627 0.0770 1.05%
N@5 0.0041 0.0299 0.0327 0.0103 0.0193 0.0343 0.0172 0.0274 0.0257 0.0297 0.0376 9.62%
N@10 0.0060 0.0356 0.0407 0.0131 0.0233 0.0424 0.0222 0.0343 0.0321 0.0360 0.0447 5.42%
MRR 0.0046 0.0310 0.0345 0.0111 0.0201 0.0359 0.0191 0.0291 0.0294 0.0305 0.0387 7.80%

Tools

R@1 0.0055 0.0090 0.0108 0.0060 0.0058 0.0066 0.0047 0.0103 0.0059 0.0089 0.0127 17.59%
R@5 0.0118 0.0242 0.0315 0.0189 0.0182 0.0214 0.0154 0.0284 0.0189 0.0251 0.0359 13.97%
R@10 0.0204 0.0364 0.0483 0.0293 0.0361 0.0347 0.0242 0.0427 0.0319 0.0359 0.0522 8.07%
N@5 0.0086 0.0166 0.0212 0.0123 0.0120 0.0139 0.0102 0.0194 0.0123 0.0170 0.0244 15.09%
N@10 0.0114 0.0206 0.0266 0.0156 0.0148 0.0182 0.0129 0.0240 0.0165 0.0204 0.0297 11.65%
MRR 0.0098 0.0178 0.0227 0.0132 0.0128 0.0154 0.0113 0.0207 0.0160 0.0174 0.0253 11.45%

Toys

R@1 0.0022 0.0156 0.0228 0.0067 0.0099 0.0195 0.0066 0.0193 0.0110 0.0189 0.0270 18.42%
R@5 0.0057 0.0349 0.0591 0.0180 0.0258 0.0525 0.0226 0.0551 0.0300 0.0516 0.0665 12.52%
R@10 0.0098 0.0492 0.0823 0.0259 0.0360 0.0747 0.0363 0.0797 0.0466 0.0674 0.0935 13.61%
N@5 0.0038 0.0255 0.0414 0.0124 0.0179 0.0364 0.0148 0.0377 0.0206 0.0357 0.0472 14.01%
N@10 0.0038 0.0301 0.0489 0.0149 0.0212 0.0435 0.0192 0.0456 0.0260 0.0408 0.0559 14.31%
MRR 0.0044 0.0270 0.0422 0.0132 0.0182 0.0373 0.0165 0.0385 0.0244 0.0347 0.0479 13.51%

when using the mean of loss instead of the diffusion-step-rescaled
loss.

Effect of contrastive loss. By comparing columns L𝑟𝑒
𝑐𝑑
+In and

L𝑟𝑒
𝑐𝑑
+Cross with the overall performance of CDDRec in Table 3, we

can conclude that both the cross-view loss and in-view loss have
a positive effect on the overall performance. Furthermore, we can
also observe that the in-view contrastive loss has more effect on the
overall performance compared to the cross-view loss. Without the
In-view InfoNCE loss, the Cross-view InfoNCE loss has negative
results, the possible reason is that the cross-view InfoNCE loss
only requires the predicted item embeddings to resemble given a
certain amount of noise interpolation, ignoring the ranking require-
ment of models. This phenomenon indicates the necessity of the
combination of both in-view and cross-view optimization.

Study of Diffusion and Denoising. During the experiments, our
proposed model has been endowed with denoising capabilities as
delineated in Eq. 10. Notably, the model is designed to predict the
mean of the target item embedding. By employing this sampling
procedure, the model can simultaneously predict the noise intro-
duced into the target item embeddings. Accurate prediction of the
mean for these perturbed items, devoid of noise, confers the de-
noising ability upon the model. On the other hand, the diffusion
step also follows a sampling process as described by Eq. 11. In the
absence of this diffusion step, the model would encounter identical
original target item embeddings throughout each denoising step.

To scrutinize the impact of these dual processes, we substitute the
two sampling steps with the predicted mean and the original item
embedding, respectively, and present the experimental findings
in Table 4. The results yield several key observations: Firstly, the
diffusion and denoising processes generally contribute positively

to the overall performance across all datasets, as evidenced by
the performance decline in comparison to our model CDDRec.
Moreover, the significance of diffusion and denoising varies among
datasets. Specifically, the denoising process demonstrates greater
importance on the Office and Toys datasets, while the diffusion
phase is more crucial for the Beauty and Tools datasets.

An explanation for this variation could be attributed to the dif-
ferences in sequence length across the datasets. Office and Toys
datasets exhibit relatively longer sequences, which could result in
a higher likelihood of noisy interactions, thereby rendering the
sampling process on the target sequence less effective. Conversely,
when dealing with shorter sequences, the diffusion phase that in-
troduces noise may serve as an augmentation strategy, bolstering
the model’s robustness to noisy interactions.

Study of Conditional Encoder. In this study, we introduce a condi-
tional denoising decoder and an associated optimization approach.
We posit that incorporating the conditional denoising decoder into
existing encoders and employing our optimization schema can en-
hance the performance of these methods. To substantiate our claim,
we conduct experiments wherein we integrate our conditional de-
noising decoder with the encoders of GRU4Rec, FMLPRec, and
SASRec, in conjunction with our optimization technique. The out-
comes of these experiments are presented in Figure 2. Our findings
reveal a consistent performance improvement across all encoders
and datasets, suggesting that the proposed framework is not only
compatible with existing encoder-based methodologies but also
contributes positively to their original performance levels.

5.3 Hyperparameter Sensitivity
In this section, we investigate the sensitivities of CDDRec’s hyper-
parameters. Due to space constraints, we focus on reporting the
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Table 3: Ablation Study: Single-View indicates the variants that do not have the positive view of the sequences via data aug-
mentation, Multi-View is another way around. MSE implies that we do not apply cross-divergence loss, instead, we optimize
the model via Mean squared error loss between predicted item embedding and target item embedding. L𝑐𝑑 is the variant of
L𝑟𝑒
𝑐𝑑

that calculate mean error of all denoising step. "Cross" denotes the cross-view contrastive loss while "In" demonstrates
the in-view contrastive loss. "avg.drop" is the average performance drop compared to CDDRec.

Variants Single-View Multi-View CDDRec
Metric MSE L𝑐𝑑 L𝑟𝑒

𝑐𝑑
MSE L𝑟𝑒

𝑐𝑑
L𝑟𝑒
𝑐𝑑

+In L𝑟𝑒
𝑐𝑑

+Cross

Office

R@1 0.0016 0.0198 0.0208 0.0006 0.0226 0.0241 0.0218 0.0271
R@5 0.0096 0.0622 0.0650 0.0075 0.0693 0.0691 0.0693 0.0765
R@10 0.0153 0.0952 0.1011 0.0133 0.1078 0.1068 0.1070 0.1091
N@5 0.0055 0.0411 0.0425 0.0041 0.0462 0.0470 0.0460 0.0521
N@10 0.0073 0.0517 0.0541 0.0060 0.0585 0.0590 0.0581 0.0627
MRR 0.0066 0.0440 0.0463 0.0054 0.0499 0.0506 0.0500 0.0548

avg. drop 88.88% 19.46% 15.54% 91.42% 9.03% 7.70% 9.78% 0%

Table 4: Study of Diffusion and Denoising. The terms "-Diffusion" and "-Denoising" imply that we substitute diffusion sam-
pling with target item embeddings and denoising sampling with the predicted mean, respectively. "avg.drop" is the average
performance drop compared to CDDRec.

-Diffusion -Denoising CDDRec
R@1 MRR avg.drop R@1 MRR avg.drop R@1 MRR

Office 0.0236 0.0496 11.20% 0.0222 0.0490 14.33% 0.0271 0.0548
Beauty 0.0154 0.0342 17.88% 0.0179 0.0365 8.75% 0.0203 0.0387
Tools 0.0112 0.0226 11.24% 0.0116 0.0243 6.31% 0.0127 0.0253
Toys 0.0267 0.0464 2.12% 0.0264 0.0462 2.89% 0.0270 0.0479
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Figure 2: The evaluation of CDDRec on MRR through four datasets with different sequence encoders. RNN, MLP, and Att are
the encoders of GRU4Rec, FMLP, and SASRec respectively.

experimental results for key hyperparameters, including maximum
diffusion step and maximum noise schedule. As depicted in Fig-
ure 3, the optimal maximum diffusion steps are 10, 15, 25, and 30 for
Office, Tools, Toys, and Beauty datasets, respectively. This implies
that the optimal diffusion step for each dataset is related to their
item count. Specifically, the Beauty dataset has the highest number
of items, making it more challenging for CDDRec to learn meaning-
ful item embeddings. Consequently, a greater number of diffusion
steps are required to obtain more refined intermediate states of
item representations. Additionally, we present the experimental
results for CDDRec with varying noise schedules in Figure 4. We
observe that the optimal maximum noise levels for Office, Toys,

Tools, and Beauty are 0.04, 0.06, 0.08, and 0.1, respectively. A possi-
ble explanation for this pattern could be the combined influence of
sequence length and item count. Longer sequences may inherently
contain noisy interactions, thus necessitating less added noise. The
maximum noise schedule for Office, Toys, and Tools aligns with this
observation. However, the Beauty dataset, with the largest number
of items, may demand more granular learning, thereby requiring
higher levels of added noise to the sequences.

5.4 Study the effect on Length and Frequency
In this section, we present a comparative analysis of the perfor-
mance of CDDRec and baseline methods CBiT, ContrastVAE, and
SASRec on the Office dataset. We first compute the training se-
quence length and target item frequency based on their occurrence
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Figure 3: The evaluation of CDDRec on MRR through four datasets with different maximum diffusion step 𝑇 .
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Figure 4: The evaluation of CDDRec on MRR through four datasets with different maximum noise schedules 𝛽 .

in the training dataset. Subsequently, we assess the Recall@10 and
NDCG@10 metrics. We report the dataset statistics concerning
sequence length and item frequency in Table 5, and present the
performance comparison in Fig. 5.

Discussion on Sequence Length. Our analysis yields the following
observations: Firstly, CDDRec consistently surpasses the baseline
models for shorter sequences across all metrics, particularly for
sequences with a length of fewer than 30 items. This can be at-
tributed to CDDRec’s diffusion and denoising mechanism, which
introduces Gaussian Noise to the predicted sequence representa-
tion and target sequence embeddings. Shorter sequences are more
susceptible to the impact of noisy interactions. By explicitly adding
noise to sequences, the model exhibits increased robustness to noisy
interactions in the dataset. As 95% of the Office dataset consists of
short sequences with fewer than 30 interactions, the improvement
in performance for such sequences significantly contributes to our
model’s overall superiority.

Discussion on Item Frequency. With respect to sequence subsets
featuring different target item frequencies, CDDRec outperforms
the baseline models for sequences wherein target items exhibit
lower frequencies in the training dataset. A possible explanation
for this phenomenon is that CDDRec learns multi-step intermedi-
ate states of transitions from sequence embeddings to target item
embeddings. Low-frequency items may serve as intermediate tran-
sitions, enabling the model to recognize latent transitions from
frequent to infrequent items.
5.5 Study of Smoothness of Ranking Prediction
As previously mentioned, traditional generative models often pro-
duce over-smoothed outputs. Intuitively, in the context of sequential
recommendation, generative models may predict over-smoothed
ranking scores across candidate items. To support this intuition,

we carry out experiments comparing the average absolute percent-
age change (Avg.Change) of the top 40 ranking scores between
ContrastVAE and CDDRec. The metric is defined as follows:

Avg.Change =
𝑁∑︁
𝑖=1

1
𝑁 − 1

|𝑟𝑎𝑛𝑘𝑖+1 − 𝑟𝑎𝑛𝑘𝑖 |
𝑟𝑎𝑛𝑘𝑖

× 100 (17)

, where 𝑟𝑎𝑛𝑘 is the ranking score vector calculated with the dot-
product between predicted item embeddings and the candidate item
embeddings.

We utilize this metric to evaluate the descending speed of the
model’s ranking prediction, which can reflect the smoothness of
the ranking prediction. The results are presented in Fig. 6. In gen-
eral, CDDRec exhibits greater confidence in its ranking predictions,
as evidenced by the larger average percentage change compared
to ContrastVAE for both overall evaluation and sequence subsets.
ContrastVAE is inclined to provide more similar ranking predic-
tions among the top 40 candidates. Interestingly, the Avg.Change of
CDDRec decreases with increasing sequence length, indicating that
the model is more uncertain about recommendations for longer
sequences. Concerning item frequency, CDDRec displays a larger
average percentage change for sequences featuring infrequent tar-
get items. We also evaluate the Avg.Change with respect to the
denoising step. We calculate the ranking score vectors on candi-
date items using intermediate item embedding predictions from
different denoising steps and report their Avg.Change in Fig. 6(c).
One interesting observation is that the Avg.Change increases with
the denoising step. At the beginning of the denoising phase (T=20),
the model is more uncertain about ranking predictions, gradually
gaining clarity (T=0) as the denoising phase progressively removes
noise from the sequence predictions.
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Figure 5: The comparison between CDDRec and baseline models on subgroups of Office dataset.

Table 5: Number of sequences end at items of different frequency groups and with different lengths.

Frequency Length
Dataset [≤20] [20, 40] [40, 60] [≥60] [≤10] [10, 20] [20, 30] [≥30]
Office 2862 1011 660 372 3488 938 285 194
Beauty 14271 3475 1878 2739 18816 2528 568 451
Tools 12049 2487 921 1181 14516 1659 283 180
Toys 13711 3379 1109 1213 16570 2034 446 362
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Figure 6: TheAvg.Change forCDDRec andContrastVAE across various subset sequences and denoising stepT onOffice dataset.

6 CONCLUSION
In conclusion, we introduce CDDRec, featuring a cross-attentive
conditional denoising decoder that utilizes the denoising step indi-
cator as the query information and the sequence embedding as the
key and value information to endow the model with conditional
autoregressive generation capabilities. Additionally, we propose
the recommendation optimization paradigm for CDDRec, enabling
the model to generate high-fidelity sequence/item representations
and provide high-quality ranking predictions. We conduct com-
prehensive experiments that indicate that CDDRec outperforms
state-of-the-art methods.
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