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Abstract. While Large Language Models (LLMs) can achieve human-level per-
formance in various tasks, they continue to face challenges when it comes to
effectively tackling multi-step physics reasoning tasks. To identify the shortcom-
ings of existing models and facilitate further research in this area, we curated
a novel dataset, MM-PhyQA, which comprises well-constructed, high school-
level multimodal physics problems. By evaluating the performance of contempo-
rary LLMs that are publicly available, both with and without the incorporation
of multimodal elements in these problems, we aim to shed light on their capa-
bilities. For generating answers for questions consisting of multimodal input (in
this case, images and text) we employed Zero-shot prediction using GPT-4 and
utilized LLaVA (LLaVA and LLaVA-1.5), the latter of which were fine-tuned on
our dataset. For evaluating the performance of LLMs consisting solely of tex-
tual input, we tested the performance of the base and fine-tuned versions of the
Mistral-7B and LLaMA2-7b models. We also showcased the performance of the
novel Multi-Image Chain-of-Thought (MI-CoT) Prompting technique, which
when used to train LLaVA-1.5 13b yielded the best results when tested on our
dataset, with superior scores in most metrics and the highest accuracy of 71.65%
on the test set.

Keywords: Large Language Models · Large Multimodal Models · Prompt Engi-
neering · Chain-of-Thought

1 Introduction

Recent advances in Large Multimodal Models (LMMs) show impressive capabilities
in handling multiple modalities, excelling in tasks like zero-shot generalization, vi-
sual reasoning, and instruction-following. Models like LLaMA-2 [1] and Mistral-7b [2]
have displayed decent performance on famous textual mainstream question-answering
benchmarks. SciPhyRAG [3] used retrieval augmentation to solve physics questions.
However, the challenge of effectively handling queries combining textual and visual
components persists, especially in subjects like Math and Physics, a problem that is
exemplified by state-of-the-art models like GPT-4 [4] being proprietary. Fine-tuning
general-purpose LLMs to perform well at a singular task has been effective in a variety
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Fig. 1: Schematic Pipeline of Multimodal Question Answering

of complex scenarios [5,6]. Hence, developing open-source domain-specific chatbots
with multimodal capabilities is promising. These chatbots can empower students with
interactive question sessions, providing instant clarifications and guidance, and revolu-
tionizing exam preparation.

To evaluate the capabilities of Large Multimodal Models (LMMs) for question-
answering we have created a novel multimodal multiple-choice high school physics
question-answering dataset. Physics questions require a good understanding of the un-
derlying concepts and construction of steps with reasoning to reach the correct solution,
hence not solvable by simply memorizing certain facts. High-school physics numerical
questions are often accompanied by diagrams, which adds additional complexity that
models should be able to interpret and understand for effective problem-solving, there-
fore acting as a valuable benchmark for evaluating the performance of LMMs. Given the
dearth of multimodal physics datasets containing complex, high-quality questions, our
dataset facilitates the study performance of LMMs and LLMs in a challenging setting.

Introduction of techniques like Chain-of-Thought (CoT) Prompting [7] has further
enhanced the performance of LLMs, and subsequent experiments using the technique
in a multimodal context [8,9] have been fruitful. CoT-Prompting involves providing the
necessary prompts to a model to steer it toward the correct solution. It is analogous to
how humans go about solving a problem, wherein we try to think of the intermediate
steps that build logically toward the final answer. However, the prospect of incorporat-
ing images and figures with the prompt exemplars is yet to be explored by contemporary
literature.

In this paper, we do a quantitative analysis regarding the effect of utilizing a modal-
ity other than text and the difference in the performance of LLMs and LMMs between
using them out of the box (Zero Shot Prompting) and fine-tuning them for a specific
purpose. We also examine the effects of using Chain-of-Thought Prompting in a mul-
timodal setting, for which we came up with a novel method to incorporate multiple
images during the CoT prompting process.

Hence, the contributions of this paper are threefold. Firstly we introduce a novel
multimodal dataset, MM-PhyQA, containing challenging physics questions. We also
generate its CoT-Prompting variant, providing exemplar questions during the training
process. Secondly, we analyze the effects of using an additional modality other than
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text, the effects of utilizing techniques like CoT Prompting, and the performance gain
witnessed by fine-tuning LLMs and LMMs for a specific purpose, particularly for a
task like answering physics questions. Finally, we introduce an approach, Multi-Image
Chain-Of-Thought (MI-CoT) for employing multiple images during CoT-Prompting
that is novel, to the best of our knowledge.

2 Related Works

2.1 Available Datasets

Numerous educational datasets are available for math and science. GSM8k [10] offers
8500 grade school math problems, while JEEBench [11] provides 450 questions from
JEE advanced exams. SciQ [12] contains 13,697 science questions, and SciBench [13]
offers college-level scientific problems. MMLU [14] is a multitask test dataset with
15908 samples, and C-Eval [15] includes multiple-choice questions in Chinese across
52 disciplines.

In the realm of multimodal datasets, GeoQA [16] offers middle school geomet-
ric questions with images and text, while TQA [17] provides middle school science
questions in a similar format. ChartQA [18] is a chart-based reasoning dataset, and
MMQA [19] consists of questions with images, text, and tables. ScienceQA [8] is a
diverse multimodal dataset with 21208 science questions spanning various topics but
lacks challenging high school-level questions.

2.2 Large Multimodal Models and Chain-of-Thought

Large language models’ extension into multi-modal versions has led to significant at-
tention and successful applications. GPT4-V [20] and PaLM-E [21] are state-of-the-art
multimodal models, with PaLM-E directly incorporating visual features for enhanced
performance. LLaVA [22,23] is recognized for its versatility in handling various multi-
modal tasks, utilizing a CLIP [24] encoder with Vicuna for vision-language understand-
ing. Shikra [25] excels in Visual Question Answering (VQA) and image-captioning
tasks, particularly in multimodal conversation scenarios. Kosmos-2 [26] demonstrates
strong performance across diverse multimodal tasks, including grounding, referring,
learning within context, and generation.

The Chain-of-Thought paradigm has transformed how large language models pro-
cess reasoning, significantly improving NLP tasks. It has evolved from vanilla CoT to
more complex structures like Tree-of-Thoughts [27] and Graph-of-Thoughts [28]. De-
spite these advancements, the shift towards multimodal reasoning led by multimodal
CoT [9], has limitations due to reliance on multiple question-answer chains from a
single image during training. To overcome this, we propose the Multi-Image Chain-Of-
Thought (MI-CoT) technique, ensuring each question-answer pair used in training is
associated with a distinct image, enhancing diversity and robustness.

3 Novel Dataset

There is a lack of multimodal datasets that comprise physics questions and are catered
to high school students. While there are a few datasets available that consist of questions
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(a) Sample question of MMPhy-QA
dataset

(b) Heatmap of text similarity between 15 ran-
domly sampled original and augmented ques-
tions

Fig. 2: MMPhy-QA Dataset questions

at a high school level, the quality of the questions does not belong to the highest of stan-
dards. We curated a novel MM-PhyQA Dataset from publicly available resources. The
resources are geared toward individuals who prepare for competitive exams through-
out India, ensuring a higher difficulty level than that of an average high school physics
question.

3.1 Original Dataset Creation

Around 300 questions were manually created. As shown in Figure 2a, each question
consists of a question, four options, the correct answer to the question, and an explana-
tion that shows the reasoning by giving steps to approach the correct answer to select
the correct answer.

3.2 Data Augmentation Procedure

For augmenting the data ChatGPT [29] was given a prompt to create other variations of
the text while ensuring that the meaning remained the same, bringing the total count of
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the questions in the dataset to 4500. Figure 2b shows the heatmap of the cosine similar-
ity scores of the augmented questions w.r.t the original one for some of the questions.
The questions were altered in two ways:

– Numerical Value Variation: During augmentation, numerical values in the origi-
nal questions are adjusted to diversify the solutions, ensuring the model’s impartial-
ity. Python functions were developed for each question to get the correct answers
after changing the values.

– Structural Variation: To avoid pattern memorization, the questions’ structure was
intentionally altered by rephrasing with ChatGPT and sometimes manual adjust-
ments. Options were kept the same but randomly rearranged.

Initially, attempts to rephrase the entire query sometimes failed to properly shuffle
the questions. Manual adjustments were made to correct these errors. While includ-
ing the entire query didn’t consistently result in a rephrased version, prompting Chat-
GPT to generate separate variations for the question and explanation improved results.
However, some questions still required manual rephrasing, involving adjustments to the
question, explanation, options, and correct answer.

3.3 Chain of Thought Variant

To facilitate the model to generate better reasoning, two questions were added corre-
sponding to each question. These questions were based on the same topic and care was
taken that similar concepts were utilized as seen in Figure 2a. All three questions consist
of figures.

Table 1: Topics and subtopics in the MM-PhyQA dataset
Topic Subtopics

Kinematics Velocity-Time, Acceleration, Rotational Motion, Gravitation, Motion
in a Straight Line, Motion in a Plane, Periodic Motion, Wave Motion.

Mechanics Law of Motion, Work, Power, Force, Law of Motion
Electrostatics and

Current Electricity
Current, Voltage, Resistance, Electric Field, Ohm’s Law, Kirchhoff’s
Laws, and Their Applications, Series and Parallel Combinations of

Resistors
Thermodynamics Laws of Thermodynamics, Thermal Equilibrium, Heat Transfer,

Temperature, Reversible and Irreversible Processes, Kinetic Theory of
Gases.

Optics Reflection, Mirrors, Lenses, Wave Optics, Magnification.
Magnetism Magnetic Field, Hysteresis, Permeability, Electromagnets.

Electronic Devices Semiconductors, Logic Gates, Diode.
Atoms Nuclei, Isotopes.

3.4 MM-PhyQA Dataset Topics

The dataset consists of topics that are present in high school physics curricula through-
out India. The topics and the corresponding subtopics are listed in Table 1.
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Fig. 3: Multi-Image Chain of thought (MI-CoT) Prompted text provided as input to
LMMs during training. The main question to be answered is preceded by two exem-
plars, with the three questions separated by a delimiter. The image is a sequence of
three comma-separated file names and the label is the ground truth

4 Methodology

Figure 1 shows the pipeline that was utilized for data processing, input processing,
and output generation. Each element in the dataset consists of the question ID, the
question, the label consisting of the corresponding answer and the reasoning, and the
image filename. A function was used to convert each element to a prompt which can
be fed to the model for generating the answer. For the Chain of Thought variant of the
dataset, the structure was modified. As shown in Figure 3, the question was preceded by
two similar questions with their correct answers and reasoning. All the three questions
were separated by a delimiter consisting of hyphens. The filenames of the three images
were stored in a comma-separated fashion.

4.1 Multi-Image Chain-of-Thought (MI-CoT)

Different versions of LLaVA were utilized to evaluate the performance of CoT-Prompting.
For the model to extract information from all the images corresponding to a list of
questions, we came up with a novel approach, namely a Multi-Image chain of thoughts
(MI-CoT). Under this technique, the three images were stacked on top of each other.
The rationale for employing multi-image prompting was driven by the anticipation that
the Large Language Model (LLM) would effectively distinguish and identify the spe-
cific image to be utilized for each question within a single prompt. Consider the images
corresponding to the two prompt questions Xp and Xq , and the image for the main
question Xr. LLaVA utilizes the CLIP visual encoder to get the visual feature Zv:

Zv = g(Xv) (1)

where
Xv = Xp ·Xq ·Xr (2)

The filenames were passed as a list in the same order in which they were stacked. To
make sure that the dimensions were correct for feeding the resultant concatenated image
Xv into the CLIP encoder, the size of the images was reduced along one dimension
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using an autoencoder after basic pre-processing (normalization and padding) of the
images. A basic neural-network-based autoencoder was employed and was trained on
the train split for this purpose.

5 Experiments

For evaluating the performance of the models, an 85/15 train-test split was used. We
made sure that the percentage share of questions with options a, b, c, and d was roughly
the same in both the training and testing datasets. This was especially important in the
case of the training dataset to ensure no bias imposed by any option during the training
process. We used accuracy as the primary metric for judging the performance of the
models and rouge scores for evaluating the correctness of the reasoning.

5.1 Models

We conducted a variety of experiments with both text and multimodal LLMs to gauge
the difference in performance that comes about due to the change in the modality.
LLaMA2-7b and Mistral-7b are the current state-of-the-art open-source LLMs for tex-
tual input. These models were tested with text-only inputs. We use these LLMs to high-
light the difference in the level of performance between fine-tuned models versus using
them straight out of the box, aka through zero-shot prompting. For the ablation study,
we also experimented with GPT-4, which is the current state-of-the-art model for mul-
timodal question-answering.

LLaVA and LLaVA-1.5 being multimodal were provided with the figures along with
the textual input. All the models were trained on A100 GPU and were fine-tuned for 5
epochs with a batch size of 8. Weighted Adam optimizer was utilised and the learning
rate was set to 2e-4.

We also experimented with different LoRA values in the case of the LLaVA-1.5
model. LoRA or Low-Rank Adaptation [30], is a method to represent the weight changes
during the training process in lower-ranked matrices. This is especially useful while
fine-tuning general-purpose LLMs, as it speeds up the training process. A lower LoRA
rank means fewer parameters are learned during the adaptation process, however, it
results in a faster training process as well. We tested the 7b (7 billion) and 13b (13 bil-
lion) variants of LLaVA which correspond to the number of learning parameters. The
different LLaVA configurations also formed the basis of our comparison of the perfor-
mance of (MI-CoT) Prompting. For fine-tuning, open-source base model checkpoints
from huggingface were utilized.

6 Results and Discussion

6.1 Model Performance

The results of the experiments with their accuracy scores on the test dataset are listed
in Table 2. Mistral-7b and LLaMA2-7b being text-only models only take into account
the textual data which means that they are bound to miss critical information in some
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Table 2: Performance of text-only and multimodal (MM) models. Model training specifications
such as LoRA Rank and whether MI-CoT Prompting was used have been mentioned. All models
were fine-tuned except for GPT-4, for which the answers were extracted using zero-shot prompt-
ing

Model MI-CoT Modality Accuracy Rouge1 Rouge2 RougeL LoRA Rank
LLaMA2-7b × Text Only 0.25 0.380 0.187 0.315 8
Mistral-7b × Text Only 0.428 0.460 0.256 0.391 8

GPT-4 × MM 0.331 - - - -
LLaVA-13b × MM 0.293 0.551 0.383 0.501 64

LLaVA-1.5 7b × MM 0.533 0.712 0.579 0.676 64
LLaVA-1.5 13b × MM 0.527 0.672 0.532 0.634 64
LLaVA-1.5 13b × MM 0.531 0.621 0.490 0.586 128

LLaVA-13b ✓ MM 0.291 0.383 0.184 0.306 64
LLaVA-1.5 7b ✓ MM 0.354 0.496 0.343 0.444 64

LLaVA-1.5 13b ✓ MM 0.653 0.686 0.585 0.656 64
LLaVA-1.5 13b ✓ MM 0.716 0.677 0.582 0.650 128

questions. We observed an accuracy score of 25.95% and 42.83% for LLaMA2-7b and
Mistral-7b, respectively. Thus, we conclude that text-only LLMs are not capable of
providing the right answers for a large number of multimodal questions which require
multiple steps with complex reasoning to reach the final answer.

LLaVA is a model that can potentially answer complex questions due to its ability
to process images. While the older LLaVA version with 13 billion parameters exhib-
ited a lower accuracy than Mistral-7b, LLaVA-1.5 was able to perform significantly
better than Mistral-7b. The best performance was seen when LLaVA-1.5, trained with
13 billion parameters, was fine-tuned with a LoRA rank of 128 and employed Chain
of Thought Prompting with an accuracy score of 71.65%. A higher LoRA rank means
that the model can learn more parameters during fine-tuning which makes it ideal for
task-specific situations, such as answering complex physics questions. LLaVA-1.5 13b
performs better than the 7b variant with an equal LoRA rank of 64 when multi-image
prompting was utilized. This is because the larger number of trainable parameters al-
lowed the model to learn and generalize better.

Table 3: Performance of text-only LLMs using zero-shot prompting and fine-tuning
Model Task Modality Accuracy(in %) Rouge 1 Rouge 2 Rouge L

LLaMA2-7b
Zero Shot Prompting Text Only 14.22 0.301 0.096 0.201

Supervised Fine-tuning Text Only 25.95 0.380 0.187 0.315

Mistral-7b
Zero Shot Prompting Text Only 23.32 0.259 0.083 0.180

Supervised Fine-tuning Text Only 42.83 0.460 0.256 0.391
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(a) Accuracy Scores (b) Rouge Scores

Fig. 4: Comparison of the accuracy and rouge scores of different LLaVA variants when
trained using (MI-CoT) Prompting vs their non-CoT prompted supervised fine-tuned
(SFT) counterparts

6.2 Zero Shot Prompting vs Supervised Fine-tuning

Table 3 shows the performance of LLaMA2-7b and Mistral-7b with zero-shot prompt-
ing and supervised fine-tuning. There is a marked improvement in the accuracy, Rouge1,
Rouge2, and RougeL scores for both the models when fine-tuned on the dataset. This
proves the assertion that current LLM models in their out-of-the-box configurations are
not able to answer physics questions satisfactorily, and there is a need to fine-tune the
models on domain-specific datasets to get better performance.

Zero-shot inferencing was done using the GPT-4 model. In most instances, GPT-4
failed to give correct answers and was not able to extract the entire information from
the image. In some failure cases, GPT-4 needed more context than questions to make
progress toward the solution.

6.3 Effect of Chain of Thought Prompting

For all variants of LLaVA-1.5 that were tested, there was an increase in the accuracy
score when MI-CoT Prompting was employed as seen in Figure 4a except in the case of
LLaVA-1.5 7b model. A smaller number of trainable parameters meant that the model
was not able to process the more complex multi-image input, leading to a sharp dip in
the performance. The difference was the most significant in the case of LLaVA-1.5 13b
trained with LoRA as 128, which also gave the best performance out of all the models
tested when trained using MI-CoT Prompting. The MI-CoT Prompting trained version
also exhibited high rouge scores as seen in Table 2. It can be observed from Figure 4b
that the rouge scores were higher in the LLaVA-1.5 13b CoT variants, showcasing the
fact that models that were able to leverage the MI-CoT prompt also showed a bump in
the reasoning capabilities. A marked improvement in all metrics, when multiple images
were provided in the prompt in the case of LLaVA-1.5 13b variants, provides evidence
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that the models were able to segregate and recognize the image that has to be used for
each question present in a single prompt.

6.4 Error Analysis

Different types of errors were explored in [11]. We investigated the error cases that were
thrown by the best-performing model, LLaVA-1.5 13b. Figure 5 shows the different
types of errors that were encountered. Their descriptions are as follows:

⋄ Conceptual Error: The model is not able to identify the concepts that have to
be involved correctly. For instance, in Figure 5a, the model fails to identify that
Kirchhoff’s loop rule has to be applied.

⋄ Grounding Error: The model is able to identify the concept that has to be applied
but does not formulate the correct equation. In the case of Figure 5b, the model
is not able to apply the correct equation to get the centripetal acceleration of the
cyclist.

⋄ Computational Error: The model makes an algebraic mistake. In Figure 5c, the
concept and the equations are correct, but the computation of the final answer is
incorrect.

(a) Conceptual Error (b) Grounding Error (c) Computational Error

Fig. 5: Types of errors encountered by LLaVA-1.5 13b

7 Conclusion

This paper introduces the MM-PhyQA dataset, comprising high-quality problems solved
by tested LLMs, serving as a benchmark for LLM performance in education. From
our experiments, we concluded that the base configurations of Mistral-7b, LLaMA2,
LLaVA-1.5, and GPT-4 struggled with complex reasoning tasks, but fine-tuning, par-
ticularly with MI-CoT prompting, showed promise, notably with the LLaVA-1.5 13b
model. LLaVA’s image extraction abilities yielded high metric scores, and leverag-
ing multimodality and MI-CoT Prompting, improved performance significantly. Fu-
ture work may explore incorporating Reinforcement Learning from Human Feedback
(RLHF) for model alignment and extending MI-CoT Prompting to other multimodal
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tasks.
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