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Abstract. Good arm identification (GAI) is a pure-exploration bandit
problem in which a single learner outputs an arm as soon as it is identified
as a good arm. A good arm is defined as an arm with an expected
reward greater than or equal to a given threshold. This paper focuses
on the GAI problem under a small threshold gap, which refers to the
distance between the expected rewards of arms and the given threshold.
We propose a new algorithm called liI’HDoC to significantly improve the
total sample complexity of the HDoC algorithm. We demonstrate that
the sample complexity of the first A output arm in li'HDoC is bounded
by the original HDoC algorithm, except for one negligible term, when the
distance between the expected reward and threshold is small. Extensive
experiments confirm that our algorithm outperforms the state-of-the-art
algorithms in both synthetic and real-world datasets.

1 Introduction

The stochastic multi-armed bandit problem (MAB) is a well-known task with
various applications. In this problem, there are K arms in the environment, and
in each round, denoted by ¢, the learner selects an action a; € [K] based on
a policy and then pulls the corresponding arm. The selected arm generates an
independent and identically distributed (i.i.d) reward X,, (¢) from an unknown
distribution v; with an unknown expectation wu;. Subsequently, the learner ob-
serves the exact reward and updates its policy to achieve a specific objective. The
classical objective of MAB is to minimize cumulative regret, where the learner
aims to maximize the cumulative reward over a fixed number of trials [2]. In
this setting, the learner faces the exploration-exploitation dilemma, where ex-
ploration involves pulling seemingly sub-optimal arms to discover the arm with
the highest expected reward, while exploitation involves selecting the arm with
the highest empirical reward to increase the cumulative reward.

One well-studied variant of MAB is best arm identification (BAI), a pure
exploration problem where the learner aims to find the arm with the highest
expected reward with as few samples as possible [12/10]. In 2016, Locatelli et al.
[13] proposed the threshold bandit problem (TBP), a specific instance of the pure
exploration bandit framework [3]. TBP divides all arms into two groups based on
whether their expected reward is above a given threshold or not, using minimal
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samples. However, in some real-world applications, neither identifying the best
arm (BAI) nor correctly partitioning all the arms (TBP) is necessary. Instead, it
is more desirable to quickly identify a set of reasonably good arms. For example,
in recommendation tasks, the goal is not necessarily to identify the most popular
item or all popular items, but rather to quickly identify a set of items that are
popular enough to recommend. To address this, Kano et al. [I1] proposed the
good arm identification (GAI) framework. GAT has the same goal as TBP, but
it aims to minimize the sample complexity not only of identifying all good arms
but also of identifying the first A good arms, where A € N. GAI faces a new
type of exploration-exploitation dilemma, the exploration-exploitation dilemma
of confidence, where exploration means the learner samples suboptimal arms to
identify a good arm, and exploitation means the learner continues to sample the
currently best arm to increase the confidence in its goodness.

HDoC [11] has been proposed as the SOTA method to solve the GAI task.
However, the sample complexity shown in Table [1| suggests that HDoC can be
quite expensive to use when the threshold gap is small. This is because it requires
a large number of samples on a single arm in order to determine whether it is
a good or bad arm. For example, consider a recommendation system that uses
bandit to determine which items to recommend, with rewards associated with
click-through-ratio (CTR). In such systems, many items may have very small
CTR (e.g. close to zero), while the good arms (e.g. CTR much larger than zero)
are sparse. In this scenario, A is likely to be small, which can significantly hurt
the GAI performance. Therefore, we propose to decrease the confidence bound
in the identification method of HDoC.

In this paper, we consider the GAI framework with i.i.d Bernoulli reward
when the threshold gap is small (< 0.01). Inspired by the challenging situation,
we propose a new algorithm called ”1iI’HDoC” where "1il” stands for the Law
of Tterated Logarithm. In the bandit problem, the operation of sampling (or
pulling the arm) is considered as acquiring information about the sampled arm.
HDoC suggests that at the beginning of the algorithm, each arm should be
sampled once. However, if the threshold gap is small, sampling each arm only
once might not be sufficient to make the right decision in the subsequent sampling
algorithm because we have less confidence in the goodness/badness of each arm.
One change we propose in our algorithm is to sample each arm more than once
in the beginning, denoted as T' > 1. We will show that the value of T can be
determined based on the acceptance error rate and the number of arms. Sampling
each arm for 7' times in the beginning can harm the sample complexity when
it is easy to identify the goodness/badness of arms. However, in a challenging
situation where a large number of samples is needed to identify one arm, the
effect of sampling each arm 7T times is negligible. By sampling each arm more
than once in the beginning of the algorithm, we have more confidence in the
goodness/badness of arms, and therefore can obtain a tighter confidence bound
than HDoC. However, T cannot be too large, otherwise, it can hurt the overall
performance. Thus, determining a suitable value for T while still maintaining the
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theoretical performance guarantee is the main challenge we address. We need to
adjust the confidence bound for identification to reach the theoretical guarantee.
Our contribution is as follow:

— Applying the law of iterative logarithm to design a new algorithm, named
li'HDoC that improves the total sample complexity of the HDoC algorithm
in the context of Good Arm Identification (GAI).

— Exhibiting a PAC bounded sample complexity, particularly when the dis-
tance between the expected reward and the threshold is small.

— Providing various experiments to show that the lil'HDoC algorithm surpasses
state-of-the-art algorithms in both synthetic and real-world datasets.

This paper is organized as follow. Section [2 reviews the related works on GAI
and threshold bandit problem. Section [3] and [4] provide the basics about GAIL
Our algorithm and the proof of the theoretical guarantee is provided in section
Section [6] describes the experiment results before the conclusion in section

2 Background

2.1 Good Arm Identification

Kano [I1] proposed a formulation of the good arm identification problem, de-
rived from the threshold bandit problem. This formulation addresses a new type
of exploration-exploitation dilemma, called the dilemma of confidence. In this
dilemma, exploration refers to the agent pulling other arms, rather than the cur-
rently best one, to increase confidence in identifying whether it is good or bad.
Exploitation involves pulling the currently best arm to increase confidence in
its goodness. The algorithm is decomposed into two parts: the sampling method
and the identifying method. The former is responsible for selecting the arm to
sample in each round, and the latter decides whether an arm is good or bad. For
the sampling method, Kano et al. proposed a Hybrid algorithm for the Dilemma
of Confidence (HDoC) and two baseline algorithms: the Lower and Upper Confi-
dence Bounds algorithm for GAI (LUCB-G), based on the LUCB algorithm for
best arm identification [I0], and the Anytime Parameter-free Thresholding algo-
rithm for GAI (APT-G), based on the APT algorithm for the thresholding bandit
problem [I3]. The lower bound on the sample complexity for GAI is .Q(/\log%),

1Ko 1 K
and HDoC can find A good arms within O( Alog 5 +(K )‘)Z)zg log 5+ K log 5 ) samples.

3 Problem Setting

Let K denote the number of arms, £ the threshold, and § the acceptable error
rate. The reward of each arm ¢ € [1,..., K] follows a Bernoulli distribution with
mean p;, which is unknown to the learner. We define ”good” arms as those whose
means are larger than the threshold . Without loss of generality, we can assume
that the means of the arms are ordered such that:
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HDoC
Mog L + (K — M) loglog L + K log &
First A arm||O( 0g 5+ ( )Azg o8+ Klog
Klog !+ Klog K + K log &
Total O( = )

Table 1: Sample Complexity of HDoC

K Number of arms.
A Set of arms, where |A| = K.
& || Threshold determining whether an arm is good or not.
) Acceptance error rate. § < 1/e
i The true mean of i*"® arm.
it The empirical mean of 7" arm at time t.
T Round that learner identifies A good arms.
Tstop Round that learner identifies every arms.
N;(t)||The number of samples of arm ¢ by the end of round ¢.
Ti(t) The number of times of arm ¢ be pulled at t.
it Upper confidence bound of arm 7 at time ¢.
By Lower confidence bound of arm i at time ¢.
A; i — €]
A Hi = kg
A min(minse x Ag, minjepx_q Aj’Qj“ )
Table 2: Notation list
P = pe = 2 i 2 € g1 = 2 UK (1)
Note that the learner is unaware of the number of "good” arms and their

indexing.

In each round ¢, the agent selects an arm a(t) to pull and receives a reward
that is i.i.d. generated from distribution v,(;). The agent identifies one arm as
the good arm and the rest as bad arms based on the rewards received from them
in previous rounds. The agent stops at time 7., When all the good arms are
identified. The objective is to minimize the upper bound of 7, (i.e., the number
of sample times to identify A good arms) and Tsp (i-€., the number of samples
required to identify all good arms) with an acceptance error rate of 4.

4 Preliminary

The notation is listed in Table [2| Two important lemmas are stated below. The
first is the finite form of the Law of Tterated Logarithm [§] which is the kernel of
our new confidence bound. The second is the inequality involving the operation
of iterated logarithm.
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li'HDoC
Mog + + (K — ) loglog 1 + K log &
+ Az

First A arm|| O (K log(K + 1) log[max(3,e)]

Klog% + KlogKJrKloglog%
AQ
Table 3: Sample Complexity of lilHDoC

Total 0] (

)+ O(K log(K + 1) log(max(3,€)))

Lemma 1 (Finite form of LIL). Let X1, Xo,...X,, be i.i.d. o—sub—gaussian

log (1
random variables. Then for algorithm parameters e € (0,1) and p € (0, M),
e
with probability at least 1 — c.p'te,
t
1
for allt > 0. Here, U is the upper confidence bound
202(1 1 1 t
Ut) = (14 ey 220 g 2B 1) 0
2 1+e€
o — +€ 1 (1)
e |log(1l+e¢)

Proof. See Section 4, Lemma 1 in [§].

We will use U (¢, w) and ¢, throughout the paper for brevity. It is worth noting
that the Bernoulli distribution is %—sub—gaussian.

Lemma 2. [J] Fort>1,e€ (0,1),¢>0, and 0 <w < 1,

llog [log [(1+ e)t]

21og [(14—6)
t w {

cw]} 5

}zcﬁtglog
c w

Proof. Direct calculation. For details, see [9].

5 Algorithm

We propose a new algorithm, lil'HDoC. This algorithm improve the complex-
ity of HDoC by sampling every arms more than one time in the beginning and
redesigning the confidence bound in the identifying method. The algorithm is
provided in Algorithm and its sample complexity is listed in Table In
li'HDoC, the confidence bound in the identification method has a faster con-
vergence rate than HDoC algorithm, thanks to the term related to V;(t) being
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Algorithm 1 liI'HDoC

Input: K, 6 (< 1/e)

1: Ti(K) =1, Vi € [K]
2: A=[K]

3 B=K+1

4: C = max(3,¢)

5. r = (14+/€)*(1 +¢)
6

7

8

. _ _ : loglog B loglog C
CEe= a’rgmaxee[o,l] (T 1 S min ( logB 7’ logC )

2

T = argminbo(m > LR e))
: for s € A do

9: Pull arm s T times

10: Ti(s)=T

11: end for

12: while A # ¢ do

13: for s € A do

14: Ui, T; (t) € %

15:  end for

16: hy = argmax; g (ﬂi’Ti(t) + ui,Ti(t))

17: Pull A

18 if fii 1) — U(Nn, (t), 22%) > € then

19: Output h: as a good arm

20: Delete h; from A

21:  else if i 1,) + U(Ni, (t), %) < € then
22: Delete h; from A

23:  end if

24: end while

in the form of %, instead of lof;vf\éitgt). Consequently, the required

number of samples decreases. It can be observed that for any cy,: co € R™, there
exists a value T such that for all ¢t > T,

/1 [log
o OtthCQ ogtogt (6)

This implies that after sampling arm ¢ T times, li'HDoC can identify it as well
as HDoC.

Moreover, the explicit form of T is easy to handle, and we apply binary search
to determine its value in li'lHDoC. We can consider sampling each arm for T
times as a way to gain sufficient confidence in the goodness or badness of the
arms, which enables us to develop a more precise confidence bound for identifying
the arms in li'HDoC. In the complexity analysis of the first A arm in Table [3]
the first term corresponds to 7', while the second term corresponds to the sample
complexity of HDoC. In challenging situations, the terms divided by A dominate
the sample complexity, making the K log(K +1) log[max(%7 e)] negligible. Thus,
the sample complexity of the first A arms is the same under big-O notation
in challenging situations. Additionally, when an arm is sampled more than T
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times, liI'HDoC requires fewer samples to identify that arm. While the total
complexity in Table [3| could potentially be O(K log(K + 1)log(max(%,€))), we
will demonstrate in section that this scenario can be easily avoided. We will
now establish the theoretical guarantee for the li’'HDoC algorithm by proving
the correctness of the algorithm, providing the sample complexity for identifying
the first A good arms and obtaining the explicit form of 7', and lastly proving
the sample complexity for identifying all arms.

5.1 Correctness of li’HDoC

Theorem 1. With probability at least 1 — 6§, lil’HDoC correctly identifies every
arms.

Proof (Proof of Theorem/[1]). Let D as an event that Vi € [K] and ¢ > 1,

4
=) (7)

|ﬂi,t - M%' < U(t7 c

€

By Lemma [I] and the union bound, we know that event D happen with proba-
bility at least

5 5
_ €> 1 — Y>> 1=
1 Kce(ceK) > 1 Kce(ceK) >1-96 (8)

Inequalityis because € € [0,1] and ¢, > 1. So event D happens with probability
at least 1 — §. Therefore, if

. )
firie — UTi(), =) = € 9)
holds under event D,
N )
i — U(L(), =) 2 € (10)
= Qi) — i) — il =€ (11)
= > € (12)
and if 5
firie +UT(), =) <€ (13)
holds under event D,
N 0
fi, ) + U(Ti(t), c K) < (14)
= fi, 1, (6 F |y 0) — pal <€ (15)
=i <§ (16)

So our algorithm output the correct answer when event D holds, so the error
rate of our algorithm is at most 9.
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5.2 First A Arms Sampling Complexity

Theorem 2 (First A Arms Sample Complexity). After conducting at most
O(log(K + 1) log(max(5,e€))) samples on each arm, our confidence bound will
be less than that of HDoC.

Proof. See Appendix 2.

5.3 Total Sample Complexity

Theorem 3 (Sample Complexity). Let T = 1, then with probability at least
1—9, Ll’HDoC identifies arm i with at most

2c K(1++/6)%(1 + 6)2}

2¢.K log [ SA?

2(1 +€)(1 + Ve)?
A? log 5

times of sampling.

Proof. See Appendix 3.

6 Experiment

The goal of our experiments is to learn (1) li'HDoC improves the sample com-
plexity of identifying first A good arms in practice, (2) lil'HDoC improves the
sample complexity of identifying all arms in practice. In the following experi-
ment, we will focus on the datasets given the challenging situation.

6.1 Dataset

Syntactic Dataset One syntactic dataset is provided. It has six arms with
expected reward 0.007, 0.006, 0.005, 0.003, 0.002, 0.001 respectively, and the
threshold is 0.004. We conduct the experiment over 10 independent runs.

Real World Dataset We generate the experiment data from three real-world
datasets: Covertype [I], Jester [6], and MovieLens [7]. We conduct the experi-
ment over 25 independent runs. The Covertype dataset classifies the cover type
of northern Colorado forest areas in 7 classes. For Covertype, we use the method
similar to [BJ4IT4] to transform multi—class dataset to bandit dataset, and we di-
vide the mean by 10 to make the dataset more challenging. The threshold is set
as the arithmetic mean of the reward of the 3rd best arm and the 4th best arm.
We conduct the experiment over 25 independent runs. Jester dataset provides
continuous ratings in [-10, 10] for 100 jokes from 73421 users. For Jester, we
create a recommendation system bandit problem as follows. We first count the
average rating of 100 jokes and divide then by 10 in order to increase difficulty,
and scale the rating from [—10, 10] to [0, 1]. The threshold is set as the arithmetic
mean of the reward of the 25-th best arm and the 26-th best arm. We conduct
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the experiment over 25 independent runs. MovieLens dataset provides 100,000
ratings ranging from [0, 5], from 1000 users on 1682 movies. For MovieLens, we
first average the rating of each movie, and divide the average ratings by 100.
The threshold is set as the arithmetic mean of the reward of the 168-th best arm
and the 169-th best arm. Here we provide the sample complexity of identifying
the first 25 good movies. We conduct the experiment over 20 independent runs.

6.2 Baseline

We choose HDoC and LUCB-G as the baseline since they are the top-2 models
compared here [IT]. All algorithms including ours consist of two stages, sampling
and identifying. The former decides which arm to pull in the next round, and
the latter decides whether the pulled arm can be identified as a good or bad
arm.

Sampling Method

log(t)

1. HDoC : Pull arm a* = argmax;c ofi; ; , Where f1; ; = fi; ¢ +

2N ()
2. LUCB-G : Pull arm ¢* = argmax;¢ 47i; , , where i, ; = fl; ¢ + w
3. li'HDoC : Pull arm a* = argmax;¢ 4/, ¢, where 11, ; = fli s + 21]35(3)

Identifying Method Here we show the confidence bound of algorithms

. [logdKN2(t)/s
. [logdKN2(t)/6
2. LUCB-G : /=5y
3. HIHDOC : (14 /6), /155 log -/ 1os((aN. (1)
6.3 Results

The experimental results are listed from Figure [La] to Figure In these figures,
the x axis indicates the number of identified good arms, and the y axis indicate
the number of sample times. The detailed information of Figure [Ta] to Figure
is in Table @ to Table @ In addition, we only list the Ty, in the table since
it is often very large with respect to 7.

In every experiments, li'HDoC outperforms HDoC, especially when an arm
required more sample times to identify it. We can see this from Table Ta-
ble [AD] Table [Ad and Table [d} From the last row of the three table, we can
also see that the sampling times of identifying all arms in li’HDoC outperforms
the sampling times of identifying all arms in HDoC and LUCB-G. The effect
of li'HDoC is not obvious when the required sample times is small. It is be-
cause that although the rate of convergence is faster in the confidence bound of
li'HDoC, the constant in the confidence bound of li'HDoC is larger than that
of HDoC, so when the sample times is not large, the effect will be diluted. The
other issue is that in Jester and MovieLens, LUCB-G may identify many bad
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HDoC LUCB-G li'HDoC
Tl 3.92+024 |1.98 £+ 0.06 | 2.67 £ 0.18
T2 9.30 £ 0.21 | 22.91 + 0.48 | 6.00 £ 0.24
T3 30.10 £ 0.78 | 55.56 = 1.01 | 17.60 + 0.51
Tstop||D51.13 £ 10.89(555.58 + 10.12|315.85 + 6.49

(a) Average and standard deviation of sampling times over synthetic dataset. All num-
ber is divided by 100000.

HDoC LUCB-G li'HDoC
71 |[0.14 £ 0.02/0.13 &+ 0.02| 0.15 £+ 0.01
T2 [/0.29 £ 0.03|104.64 £+ 3.50| 0.25 + 0.02
T3 ||137.55 £ 3.24|317.71 + 0.71| 83.26 + 2.13
Tstop||3225.9 £ 53.1|3177.1 £+ 71.4|1860.3 £ 38.2

(b) Average and standard deviation of sample times over Covertype dataset. All num-
bers in this table is divided by 10000.

HDoC LUCB-G li'HDoC

73 ||1.61 £ 0.23|5.92 + 64.6| 1.42 + 0.24
T¢ [|2.69 £+ 0.30|95.79 + 72.5| 2.35 + 0.25
To ||4.18 £ 0.33|217.78 £+ 93.3| 3.57 &+ 0.30
T12 || 6.26 £ 0.42 |275.79 £+ 55.1| 4.85 + 0.49
715 || 8.31 £ 0.50 |301.77 &+ 32.4| 6.55 + 0.50
718 || 18.30 + 1.97|320.13 £+ 55.9| 13.94 4+ 1.18
To1 || 51.87 + 4.47 |478.79 £+ 79.2| 36.18 + 2.92
To4 || 95.10 £ 4.75 |551.42 £+ 36.2| 63.47 + 4.24
Tstop ||963.63 £ 21.1560.40 £ 31.6{324.70 & 19.5

(c) Average and standard deviation of sampling times over Jester dataset. All number
is divided by 100000.

HDoC LUCB-G li'HDoC

T3 27.02 £ 0.83 NA 24.39 + 0.70
T6 29.16 = 0.93 NA 26.07 £+ 0.90
To 31.38 £ 1.11 NA 28.47 £+ 1.01
Ti2|| 85.36 &£ 4.17 NA 76.49 £+ 4.56
Ti5|| 98.47 £ 3.19 NA 87.14 + 3.85
Tig|| 107.14 £ 4.31 NA 94.71 + 3.09
To1|| 123.67 £ 7.59 NA |106.60 + 3.61
T24(|/162.94 + 11.58) NA |146.25 + 5.88

(d) Average and standard deviation of sampling times over MovieLens dataset. All
number is divided by 1000000. NA in the entries means that the sample times is more
than 1.5e+8

Table 4: Experiment results of 4 dataset. Best results are in bold fonts.
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Fig. 1: Experimental Results

arms before all good arms is identified. This is because the sampling method
of LUCB-G doesn’t put the total sampling times ¢ into consideration, so its
exploration part would be less than HDoC and liI'HDoC. Thus, LUCB-G will

exploit the suboptimal arms.

7 Conclusion

In this paper, we propose a new algorithm liI'HDoC, based on the HDoC al-
gorithm in GAI [II]. Intuitively, we leverage the fact that under challenging
situation (when the threshold gap is small < 0.01) every arms require a huge
number of sample times. Thus, we can sample each arm for a rather small num-
ber of times in the beginning to obtain more confidence on the goodness/badness
of arms, which can lead to a tighter confidence bound in the identifying method.
From the theoretical perspective, the first A good arms of li'HDoC is bounded
by the original HDoC algorithm except for one negligible term under challeng-
ing situation, and the total sample complexity of liI'HDoC is less than HDoC
by decrease the % log % term to % loglog %, which makes a conspicuous im-
provement when A is small. From the practical perspective, on both synthetic
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and read world dataset, li’'HDoC outperforms HDoC under the same acceptance
rate. Therefore, we conclude that li'HDoC outperform HDoC and LUCB-G from
theoretical and empirical performance under challenging situation.
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