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Abstract. This study addresses the challenge of detecting semantic col-
umn types in relational tables, a key task in many real-world applica-
tions. While language models like BERT have improved prediction accu-
racy, their token input constraints limit the simultaneous processing of
intra-table and inter-table information. We propose a novel approach us-
ing Graph Neural Networks (GNNs) to model intra-table dependencies,
allowing language models to focus on inter-table information. Our pro-
posed method not only outperforms existing state-of-the-art algorithms
but also offers novel insights into the utility and functionality of var-
ious GNN types for semantic type detection. The code is available at
https://github.com /hoseinzadeehsan/GAIT
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1 Introduction

Accurately identifying (or tagging) the semantic types of columns inside a table
is crucial for different information retrieval tasks like data cleaning [16], schema
matching [17], and data discovery [6]. One emerging application is automati-
cally tagging sensitive columns in a table, such as personal information, before
deciding what information can be released. Previous works showed that machine
learning approaches outperform traditional methods in predicting semantic types
[9,26,1,2]. Sherlock [9], a single-column prediction framework, feeds various fea-
tures of a column to a deep feed-forward neural network to get the prediction.
This method ignores the global context and the dependencies between columns,
making it difficult to distinguish the semantic types in cases like in Figure 1.
SATO [26] improves upon Sherlock by adding a topic modeling module and
a structured prediction module on top of Sherlock, to jointly predict semantic
types of all the columns in a table by leveraging the topic of a table and the
dependencies between columns in a table.

Building on the trend of applying machine learning to tabular data, re-
searchers have started using language models like BERT [5]. By feeding tables
to BERT, which was originally designed for textual data, they exploit its ex-
tensive pre-training. This adaptation has created new frameworks that fine-tune
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Single-Column Multi-column |, Multi-column |,
prediction Prediction Prediction

Capital?

City? / ! ! \ ‘ ' v
Birthplace? Name Age Sex Birthplace Country Capital Population
Paris Greg 45 M Paris France Paris 2.161
Ottawa Emily 21 F Ottawa Canada Ottawa  0.995
London Adam 34 M London England London  8.982

Table 1: Employee information Table 2: World Capital Cities

Fig. 1. The two tables on the right both have the column containing the values “Paris”,
“Ottawa” and “London”. Without considering information coming from other columns
it is difficult for a single-column prediction model to detect the actual semantic types
of these columns. The multi-column prediction will label these columns correctly by
jointly predicting all columns in a table.

BERT for column type annotation [4]. In addition to the values of the target
column, two other sources of information can be used to improve the accuracy of
semantic type annotation: intra-table information refers to other columns in the
same table and inter-table information refers to other tables in the data. Given
that language models have a small limit on the number of input tokens (BERT
takes a maximum of 512 tokens), column type annotation models are developed
to handle only one of the two mentioned sources of information.

Incorporating intra-table information has led to multi-column prediction ap-
proaches [25] that are designed to address the limitation of single-column pre-
diction models in situations like Fig 1 by accounting for broader table context,
specifically column relationships and information. TABBIE [10] encodes rows
and columns of a table respectively to get a better understanding of tables. The
most prominent work in this category is Doduo [18] where BERT is modified to
receive the whole columns of a table and predict their semantic types together.

Having inter-table information [21] can be a huge help in cases where the
target column does not have enough high-quality data to make a good semantic
prediction. For example, if a table has a column with entries like 'Orange’ and
"Peach’, the semantic type is ambiguous. However, by identifying and augmenting
this column with columns of similar tables that have entries like 'Red’ and "Blue’,
the semantic type becomes clearer, indicating that this column is likely about
colors rather than fruits. The most recent work, RECA [19], in addition to the
values of the target column, identifies values of the most useful similar tables
and feeds them to BERT to get the semantic type of the target column.

However, due to the small limit on the number of input tokens of language
models like BERT, Doduo and RECA have the following drawbacks:

1. Doduo feeds the whole table to BERT and because of that, it poses difficulties
in handling wide tables. For instance, the average number of columns of
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tables in Open Data is 16, but there’s a large variance with some tables
having hundreds of columns. Furthermore, Doduo is not designed in a way
that can incorporate inter-table context information and ignores this useful
source of information [19].

2. RECA incorporates inter-table but not intra-table information, predicting
the semantic type of each column individually. This approach enables RECA
to handle wide tables within the language model’s small token limit, as it
doesn’t need to model the entire table at once. However, this means it over-
looks the valuable information in column relationships, crucial in complex
scenarios like Fig 1, where semantic types are difficult to distinguish.

Thus, a question is whether it is possible to incorporate both inter-table and
intra-table information without suffering from the difficulty of handling wide
tables as in Doduo and to benefit from the generalization power of the language
model based approach. Inspired by recent developments in computer vision such
as visual reasoning, object detection, and scene graph generation [3,14] where
a main task is tagging the objects inside an image by leveraging the relations
among the objects in the image, we propose to augment any single-column pre-
diction framework, especially those incorporating inter-table information like
RECA (addressing the drawback of Doduo) by a graph neural network (GNN)
module to model the whole dependencies between columns. Thus, our frame-
work incorporates both inter-table and intra-table information. In particular,
we model each table by a graph with the nodes representing the columns and
the edges representing the dependencies between columns through Message Pass-
ing of GNN. By considering the dependencies between all pairs of columns, this
approach, called GAIT (Graph bAsed semantIc Type detection), addresses the
above drawback of RECA, making it a multi-column prediction framework. The
challenge is how to represent the features of a column by a node so that Message
Passing can leverage the dependencies among columns.

GAIT stands out in efficiently handling wide tables and benefiting from a
language model based approach by building on top of models like RECA that
are single-column predictions and language model based. While Doduo’s effec-
tiveness decreases in scenarios with minimal column dependency, and RECA
faces challenges when similar tables are scarce, GAIT’s integration of both inter-
table and intra-table information makes it a competitive model in these diverse
scenarios. This dual-data approach enables GAIT to maintain its performance
and effectively address the limitations encountered by models focusing on either
inter-table or intra-table information alone.

2 Related works

Column type prediction methods are typically grounded into two categories, i.e.,
deep learning based frameworks and language model based frameworks.

Deep learning based models. ColNet [1] uses DBpedia cell value lookups
to create examples and trains a CNN with Word2Vec embeddings. HNN [2],
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models intra-column semantics, enhancing Colnet. Sherlock [9] employs column
statistics, paragraph, word, and character embeddings to predict column types
through a neural network. SATO [26] builds on Sherlock, adding topic modeling
features and adjusting predictions for column dependencies using a CRF.

Language model based models. Language models, like BERT [5], have
been adopted for table tasks [23] including column type prediction. TaBERT [25]
utilizes BERT as a base model to capture the table content features. TURL [4] is
pre-trained unsupervisedly, using a visibility matrix for row and column context,
and then fine-tuned for table-related tasks. TABBIE [10] separately processes
the rows and columns of tables to give a better understanding of them. Doduo
[18] predicts all the columns of a table together by feeding the whole table to
BERT. RECA [19] incorporates inter-table context information by finding and
aligning relevant tables. TCN [21] suggests using both intra-table and inter-table
information for column type prediction. However, it needs table schema and page
topic, which many datasets, like Webtables and Semtab don’t have.

Summary: Most of the previous works [25,18,4,10], except for TCN and
RECA, do not incorporate inter-table information for prediction. TCN [21]
requires having table schema and page topic, which does not exist in many
datasets. RECA does not incorporate intra-table dependencies. Our GAIT pre-
dicts semantic types of columns exclusively based on the content of the tables
by integrating both intra-table and inter-table information.

3 Problem Definition

We aim to predict the semantic types of the columns of a given table with
missing column headings. This problem is called table annotation. To learn to
predict semantic types, a collection of labeled tables is given as the training
data D, where each table t(cy, ¢a, ..., ¢, ) consists of n columns and each column
is labeled as one of the k pre-defined semantic types, also called classes, e.g., Age,
Name, Country (note that semantic types are different from atomic types like
integer and string). Note that the number of columns n and rows can differ for
different tables. Typically, the first step is to extract a feature vector (embedding)
to represent a column c¢;. After applying a feature extractor function ¢ to the
values of a column ¢; and potential inter-table information related to ¢;, an m-
dimension feature (embedding) vector v; is generated for column ¢;. The rest of
the task is to learn a mapping f that, given 1) =< )1, ...,1, > of a table of n
unlabeled columns, predicts the classes for the n columns in the table.

4 GAIT

Figure 2 shows the framework of GAIT. It is built on a single-column predic-
tion provided by RECA. We opted for RECA due to its high performance in
column type annotation as a result of incorporating useful inter-table informa-
tion from other relevant tables. That said, GAIT’s design is versatile. While we
utilize RECA, other single-column prediction modules can be integrated. GAIT
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Fig. 2. The framework of GAIT: GAIT adds a GNN learning on top of the single-
column prediction module, which is RECA in this work. The output of RECA is a
class distribution for each column in a table, which provides the initial hidden state of
the node representing that column in the GNN. For a table with n columns, RECA
is performed n times. Then, the GNN learns the best representations of the hidden
states of all nodes to minimize a loss function, through Message Passing that models
the dependencies between columns.

employs a GNN in which each graph represents a table with the nodes repre-
senting the columns in the table. The initial representation of each node is the
logits outputted by RECA for the represented column. Once fed with such class
distributions as input, the training of GNN is responsible for capturing the de-
pendencies of classes among columns and does not further involve the lower-level
single-column prediction module. This approach treats the preliminary predic-
tion of the single-column prediction of RECA as the node features for training
GNN, which is more efficient than concatenating the networks of low-level mod-
ules into a giant neural network. Our method stacks a GNN as a meta-learner
on top of RECA (i.e., two classifiers) instead of concatenating RECA and GNN
into one classifier, which improves the overall performance according to stacked
generalization technique [24]. We now present more details.

4.1 Single-column Prediction

The single-column prediction is responsible for generating the preliminary pre-
diction of each column. We use RECA [19] for this task. In the RECA process,
the primary goal is to improve the understanding of a target column in the main
table by integrating relevant data from other tables. The process begins by iden-
tifying named entities across all tables. Each entity is assigned a type from a
predefined set, with the most common type within a column being selected as its
representative named entity type. Following this, RECA constructs the named
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entity schema for each table, which includes the named entity types of all its
columns. The next step is to find the topical relevance of other tables to the
main table. This is done by calculating the Jaccard similarity between the words
in the main table and other tables. Tables that are similar enough are chosen
as candidate tables for further analysis. Among these candidates, tables with
the same named entity schema as the main table are labeled as relevant tables.
Additionally, tables with similar, but not identical, named entity schemas are
called sub-related tables. The final step involves combining the data from the
target column in the main table with data from columns having the same named
entity type in both related and sub-related tables and feeding it to a language
model, BERT, to find the semantic type of the target column.

4.2 Graph-based Prediction

Graph Modeling of a Table The training data for GNN is a collection of
graphs organized into several mini-batches, where each graph corresponds to
a table in the original training data. For a table with n columns, we create a
graph of n nodes where each node represents a column in the table and create
an edge between each pair of columns. Initially, each node u of a graph has the
representation h? initialized to the logits < o1, ..., 0, > outputted by RECA for
the corresponding column, which has one value for each class. This initial state
represents the class bias of single-column prediction. In addition, each node is
associated with the true class of the represented column.

Message Passing Subsequently, the representation of all the nodes in a
mini-batch of graphs is updated through the Message Passing mechanism of
GNN along edges. For this purpose, we consider three different types of GNNs,
graph convolutional network (GCN) [11], gated graph neural network (GGNN)
[15], and graph attention network (GAT) [20], with the following UPDATE
functions where o is the activation function, N(u) is a list of nodes connected to
node u, hf is the representation (also called embedding) of node u at step s > 0,
W) is a model parameter:

— GCN: assigns equal weights to all the neighbor nodes while updating the
embedding of each node (Eq 1).

(s W(s h(s
o 3 0

vEN (u)Uu V |N HN

— GGNN: uses gated recurrent unit (GRU) to evaluate messages coming from
adjacent nodes while updating the embedding of each node (Eq 2).

ht = GRU(hy, Y W) (2)
vEN (u)

— GAT: updates node embedding (Eq 3) according to the multi-head attention
weights (Eq 4), where K is the number of attention heads, a(**) and W ()
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are model parameters for attention head k, and @ is concatenation.
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The UPDATE function is applied to each node u in the mini-batch of graphs
for S steps, where S is the number of hidden layers and output layer. h° has
one unit for each of the k classes and serves the final output for the k classes.
The class prediction for the node u is given by applying softmax to h?.

The main difference among GCN, GGNN, and GAT is in their treatment of
adjacent nodes (columns). GAT uses an attention mechanism to assign varying
weights to these nodes based on their importance. In contrast, GCN averages
the features of neighbor nodes, while GGNN processes these features through a
GRU to determine their relevance before updating the node embeddings.

Loss Function Given the logit vector hY for a node u with the true class
class,, the loss for this node is computed by the negative log-likelihood. The
loss for a mini-batch of graphs is the sum of the loss of all the nodes inside the
mini-batch of graphs (Eq 5). We update the model parameters to minimize the
loss of a mini-batch by performing stochastic gradient descent.

#node S
loss — o exp(h: [classy)) 5
2 T epingim)) )

4.3 Overall Prediction

After training the GNN, to classify columns in a new table ¢, we first get the
output of RECA (before softmax) for each column in ¢. These outputs are the
initial representation h0 of nodes u in the graph representing the table ¢. Then,
message passing is done using the learned parameters in the training phase
to get the predicted class for each node, which is the predicted class for the
corresponding column in ¢. Fig 2 shows how GAIT predicts labels of a table.

5 Evaluation

5.1 Evaluation Method

Performance metrics. Like previous works [9,26,18,19], we collect weighted f-
score and macro f-score on the test data. The former is the average of f-score of all
classes, weighted by class frequencies, and the latter is the average of treating all
classes equally, regardless of their frequencies. The macro f-score better reflects
the model performance on infrequent classes. We evaluate model performance
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Table 1. Datasets used and the number of tables with the specified number of columns.

Dataset #types #tables #Col avg col
Semtab 275 3045 7603 4.5
Webtable 78 32262 74141 2.3

using 5-fold cross-validation, reporting the mean and standard deviation of the
above f-scores from the test split of each fold.

Datasets. We use two datasets summarized in Table 1.

Webtables [26,18,19]: This dataset contains 32262 tables and 78 unique classes
extracted from the Webtables directory of VizNet [8]. We use ezactly the same
5-fold cross-validation split as in [19] , which splits the tables (not columns) into
a train set and test set in 5-folds. So, we copy directly the f-scores of the baseline
algorithms (more details on the baselines below) except for RECA from [19].

Semtab2019 [19]: It contains 3045 tables and 275 unique classes. While this
dataset covers wider tables (an average of 4.5 columns per table), only 7603
columns are annotated. The split proposed in RECA [19] randomly divided
columns (not tables) into train, validation, and test sets. Although the column-
wise splitting of data makes sense for RECA due to the column-wise prediction
of RECA, GAIT requires having a full table to model the dependencies between
columns in the table. Therefore, our 5-fold validation splits tables (instead of
columns) into the train set and test set for this dataset. At each fold, we further
split the train set into 80% for training and 20% for validation.

Algorithms for comparison. All experiments were conducted with Tesla
V100s. We used the publicly available source code of RECA! for the single-
column prediction module of GAIT. The GNN module of GAIT was implemented
using the deep graph library [22] , Adam optimization with a learning rate of
le — 3 and weight decay of 5e — 4 for training. We trained GCN, GGNN, and
GAT for 100, 200, and 100 epochs respectively. To optimize the GAT structure,
we tested various # attention heads ([1, 2, 4, 8, 12]) and update steps S ([1,
2, 3, 4]), selecting the best model from the validation set as default. Similarly,
for GGNN and GCN, we determined the default model by experimenting with
different update steps S ([1, 2, 3, 4]). Three algorithms for GAIT were finally
chosen: GAITgaT (GAT with S = 2), GAITgenn (GGNN with S = 3), and
GAITgen (GCN with S = 2)

Since GAIT incorporates RECA as its single-column prediction module, nat-
urally we evaluate GAIT against the baseline methods outlined in RECA’s paper
and RECA itself. These baselines are described below and their source codes are
publicly available and are used for our evaluation:

— Sherlock [9]: Sherlock is a deep learning model that extracts character-level,
word-level, paragraph-level and global-level statistical features from tables
to form vector representations for table columns.

! https://github.com/ysunbp/RECA-paper
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Table 2. Macro f-score and weighted f-score.

9

Semtab Webtables
Model Weighted f-score Macro f-score  Weighted f-score Macro f-score
sherlock [9] 0.63840.009 0.41740.017 0.84440.001 0.670+0.010
TaBERT [25] 0.756+0.011 0.401+£0.025 0.896+0.005 0.650+0.011
TABBIE [10] 0.798+0.012 0.542+0.022 0.92940.003 0.7344+0.019
Doduo [18§] 0.819+0.010 0.565+0.021 0.928+0.001 0.742+0.012
RECA [19] 0.825+0.015 0.583+0.019 0.935+0.032 0.783+0.017
GAITganN 0.84440.003 0.606+0.018 0.936+0.003 0.797+0.022
GAITgen 0.84540.006 0.62240.020 0.93940.004 0.79440.017
GAITgar 0.852+0.004 0.643+0.017 0.940+0.003 0.799+0.019

— TaBERT [25]: TaBERT simultaneously analyzes queries and a table, select-
ing three crucial rows to create table content snapshots. It then uses BERT
to develop representations for each table column, aiding in classification.

— TABBIE [10]: improves TaBERT by separately processing the rows and
columns of tables. The embedding of the target column is used for prediction.

— Doduo [18]: Modifies BERT to feed the whole columns of a table to BERT
and predicts the semantic types of all of the columns in a table together.

— RECA [19]: RECA finds relevant tables for the target table and uses the
information coming from these tables and the values of the target column to
predict the semantic type of the target column.

We do not compare with SATO [26] and TURL [4] as Doduo outperformed them.
Since TCN [21] requires having table schema and page topic [19], it cannot be
applied to our datasets.

5.2 Results

Table 2 Shows the performance of GAIT and the baseline algorithms. GAIT
outperforms Sherlock by a large margin. The main reason behind the poor per-
formance of Sherlock compared with other models is its simplicity. While other
models including GAIT utilize language models for semantic type prediction,
Sherlock relies on simple semantic features to do so. Furthermore, Sherlock does
not use intra-table or inter-table information for prediction.

Among language model based models TaABERT shows the worst performance
because it was initially developed for table semantic parsing and column em-
beddings generated by TaBERT are not suitable for column type annotation
[19]. RECA, single-column prediction module of GAIT, outperforms both TAB-
BIE and Doduo. TABBIE and Doduo use the limited input tokens of language
models to process intra-table context while ignoring the inter-table context infor-
mation when generating the embeddings of the target columns. However, RECA
mainly focuses on extracting useful inter-table context information to enhance
the embeddings of the target columns [19].
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GAIT with different GNNs outperforms RECA, and by extension TABBIE
and Doduo in both datasets. In particular, GAIT shows about 6% and 2.7%
improvement in macro and weighted f-scores over RECA in the Semtab-dataset.
These results prove that modeling the dependencies between columns in a table,
which is the main advantage of GAIT over RECA, is useful. GAIT successfully
applies a GNN on top of RECA to do so. Among different variations of GAIT,
GAT shows the best performance. Assigning different weights to adjacent nodes
(columns) according to their importance when updating representation of a node
is the key to the superior performance of GAT compared to GCN and GGNN.

In both datasets, GAIT’s improvement is larger on the macro f-score than
the weighted f-score. This means that infrequent classes that label fewer columns
benefit more from the whole dependency approach of the GNN approach. Such
classes have less presence in the data and their learning tends to rely on the de-
pendencies on other columns in a table. GAIT provides a mechanism to leverage
such dependencies. This also explains why GAIT shows a better enhancement in
the Semtab dataset compared to Webtables dataset. The 3045 tables of Semtab
have 275 semantic types for columns while the 32262 tables of Webtables are
limited to 78 semantic types. Consequently, many more infrequent classes in
Semtab can benefit from modeling the whole dependencies of GAIT.

To provide a better insight into this improvement, we divide the 275 classes
of Semtab dataset into three equally sized bins of High, Medium, and Low fre-
quencies (about 92 classes in each bin) according to the columns labeled by
classes and show the macro f-score of the classes in each bin for GAITgaT (best
GAIT) and RECA (best baseline) in Fig 3. While GAITgar improves RECA in
all the three bins, the bigger improvements happen in the low-frequency bins,
for example, the absolute improvement of 11% or the relative improvement of
96.5% for the Low bin. Fig 3 also demonstrates that the real challenge in de-
veloping column type annotation models is how to have a reliable prediction for
medium and low-frequency classes as the performance for high-frequency classes
is already good enough. The large improvements of GAITgar over RECA in
low-frequency classes is a clear sign of its superiority in handling such classes.

We also study the impact of the number of columns in a table on both
GAITgaT and RECA. Table 3 shows the improvement of GAITgaT on macro
and weighted f-scores over RECA separately for tables of a different number of
columns. As the number of columns in a table increases, the performance of
RECA, which is also the single-column prediction module of GAIT, increases.
Having more columns in a table better reveals context of that table, so RECA
can find more relevant inter-table information which is beneficial to both RECA
and GAIT. Thus, the need for dependencies between columns in GAITgar de-
creases. The column dependency method GAIT improves RECA mainly for low-
frequency classes and tables of 2 to 4 columns, as in case of Semtab.

6 Conclusion

Language model based approaches recently showed promising results in column
type annotation thanks to the semantic knowledge preserved in them. This pa-



Graph Neural Network Approach to Semantic Type Detection in Tables 11

0.837

High Medium Low
Frequency

RECA ®GAITgar

Fig. 3. The macro f-score of GAITgar and RECA on Semtab dataset, for High,
Medium, and Low-frequency classes.

Table 3. The f-score improvement of GAITgar over RECA by tables of different
number of columns.

Semtab Webtables

macro f-score weighted f-score macro f-score weighted f-score
#colRECA  GAITgar RECA GAITgar RECA GAITgar RECA GAITgar

2 0.563 0.603 (+4.0%) 0.798 0.828 (+3.0%) 0.738 0.758 (+2.0%) 0.932 0.936 (+0.4%)
3 0.545 0.616 (+7.1%) 0.797 0.827 (+3.0%) 0.743 0.762 (+1.9%) 0.927 0.930 (+0.3%)
4 0.566 0.618 (+5.2%) 0.865 0.880 (4+1.5%) 0.727 0.746 (+1.9%) 0.960 0.961 (+0.1%)
5 0.664 0.682 (+1.8%) 0.862 0.862 (4+0.0%) 0.540 0.548 (+0.8%) 0.978 0.978 (+0.0%)

NN NN
NSRS NN

per addresses some drawbacks of previous language model-based approaches,
namely, failing to incorporate inter-table and intra-table information simulta-
neously due to the input token limit of language models. Our solutions, GAIT,
employ graph neural networks to model the intra-table dependencies, letting lan-
guage models focus on handling inter-table information. Experiments on different
datasets provide evidence of the effectiveness of our solutions. Looking ahead,
considering the recent advancements in large language models (LLMs) for col-
umn type annotation [7,12,27,13] exploring alternative LLMs beyond BERT to
address inter-table information could be a promising future research.

Acknowledgement. The work of Ke Wang is supported in part by a discov-
ery grant from Natural Sciences and Engineering Research Council of Canada.
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