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Abstract. Unlearnable examples (UEs) refer to training samples modi-
fied to be unlearnable to Deep Neural Networks (DNNs). These examples
are usually generated by adding error-minimizing noises that can fool a
DNN model into believing that there is nothing (no error) to learn from
the data. The concept of UE has been proposed as a countermeasure
against unauthorized data exploitation on personal data. While UE has
been extensively studied on images, it is unclear how to craft effective
UEs for time series data. In this work, we introduce the first UE gen-
eration method to protect time series data from unauthorized training
by deep learning models. To this end, we propose a new form of error-
minimizing noise that can be selectively applied to specific segments of
time series, rendering them unlearnable to DNN models while remaining
imperceptible to human observers. Through extensive experiments on a
wide range of time series datasets, we demonstrate that the proposed
UE generation method is effective in both classification and generation
tasks. It can protect time series data against unauthorized exploitation,
while preserving their utility for legitimate usage, thereby contributing
to the development of secure and trustworthy machine learning systems.

Keywords: Time Series Analysis · Unlearnable Example.

1 Introduction

The rapid advancement of deep learning and large models is largely driven by
the vast amounts of data “freely” available on the Internet. While there has
been significant research aimed at training deep learning models with privacy
preservation [30,1,22,23,31], these approaches still neglect the necessity to obtain
users’ consent to use their data. Recent works have proposed useful tools such
as Fawkes [29] to address this gap by promoting consent-based data utilization
and protection. Yet, the issue remains unresolved. Rising public concerns stem
from several instances where personal data, harvested from the Internet without
consent, has been utilized to train commercial machine learning models [10].
Concerns now encompass not only images but also time series and multi-modal
data. This broadening scope underscores the need for thorough data protection
strategies, particularly in the relatively underexplored field of time series data.
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In response to privacy concerns, a number of data protection techniques have
been developed including secure release and protective data poisoning. Among
those works, protective data poisoning techniques have become increasingly at-
tractive as they allow users to actively add poisoning or adversarial noise into
their data (like selfies) before posting them on online social media platforms to
protect data exploits. Recently, more advanced data protection techniques such
as Unlearnable Examples (UEs) [11,25,8,39] have been proposed which can make
(image) data unlearnable to machine learning models. Contrasting this with con-
ventional data protection techniques that simply obscure identifiable data, UEs
ensure that a DNN trained on such examples performs no better than random
guessing on standard test examples.

Existing research on either data poisoning-based data protection or UEs has
primarily focused on image-based applications, overlooking the significance of
time series data which is vital in applications such as financial forecasting [2],
health monitoring [20], energy prediction [7], and transportation [18]. Given
its distinct characteristics and broad applications, there is an urgent need for
time series data protection methods. Image-oriented data protection methods
might not translate well to time series data due to their dynamic and sequential
nature [13]. Although the concept of UEs has predominantly been confined to
computer vision, our research will demonstrate that this concept can also be
effectively extended to time series applications.

Existing methods developed for image-based UEs often apply unlearnable
noise across the whole image. However, this approach is less suitable for time
series data, which is inherently sequential and often requires interventions in cer-
tain segments instead of the entire dataset. Given that a short segment in time
series data can hold critical information about a particular process or entity, the
direct application of image-based UE techniques to time series data encounters
significant challenges. Recognizing these limitations, we propose to make only a
fraction, i.e., the most sensitive or crucial part, of the time series data unlearn-
able. This allows for the protection of specific data segments while maintaining
the usability of the remainder, balancing security with data integrity.

In this work, we extend the concept of UEs to time series data and propose
a novel and effective UE generation method. Our contributions are as follows:

– We introduce a new form of error-minimizing noise that can be applied
selectively to segments of time series. This noise is imperceptible to humans,
preserving the overall utility of the data while ensuring its primary purpose
of rendering the data unlearnable to DNNs.

– We propose a novel unlearnable noise generator that can mitigate the po-
tential risk of the underlying time series data being recognized or trained by
either classification or generative models. By applying this noise, we effec-
tively create a layer of protection around the data, making it ineffective for
exploitation by AI technologies, while preserving its value for legitimate use.

– We conduct empirical studies to demonstrate the effectiveness of our method
in generating unlearnable examples. Our evaluation covers a broad range of
time series datasets, showcasing its versatility and robustness.
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2 Related Work

In this section, we briefly review the most relevant data protection methods
including data poisoning, adversarial attacks, and unlearnable examples.

2.1 Data Poisoning

Data poisoning attacks aim to weaken a model’s performance by altering train-
ing data. Such attacks on Support Vector Machines (SVM) were shown by [3].
Koh et al. [14] expanded this, targeting influential training samples in DNNs
with adversarial noise. This was later adopted into an end-to-end framework
[21]. The work “Poison Frogs!” presents a clean-label poisoning technique that
retains correct labels, making the attack more insidious [26]. Backdoor attacks,
another variant of data poisoning techniques, involve embedding a hidden trigger
pattern into the training dataset. Despite this manipulation, these attacks will
not have a detrimental impact on the model’s performance when evaluated on
benign (clean) data [17,40,13]. Our work diverges from these approaches by gen-
erating unlearnable examples using imperceptible noise to effectively “bypass"
the training process of DNNs, rendering them incapable of learning from the
altered data, thereby offering a more robust strategy for data protection.

2.2 Adversarial Attack

Adversarial attacks are techniques designed to deceive machine learning models,
especially DNNs, by injecting minor, often imperceptible noise that can lead
models to make different predictions. The aim is to identify the minimal input
modification causing misclassification or heightened prediction error. Extensive
research has established adversarial examples that can deceive DNNs during
the testing phase [32,9,15,4,19,5,27]. In these attacks, the adversary identifies a
form of error-maximizing noise that significantly increases the model’s prediction
error. In response to the vulnerabilities exposed by adversarial attacks, adversar-
ial training has emerged as the most robust countermeasure [19,38,33,36,34,28].
This training strategy is formulated as a min-max optimization problem, where
the objective is to minimize the model’s vulnerability to error-maximizing noise
while maximizing its performance on clean data.

2.3 Unlearnable Examples

In contrast to adversarial examples, which focus on error-maximizing noise, un-
learnable examples (UEs) pursue the opposite direction by identifying minimal
noise that reduces the model’s error through a min-min optimization process.
In this regard, Huang et al. [11] proposed the concept of UE, aimed at making
training data ineffective for DNNs. Similarly, Yuan et al. [37] introduced Neural
Tangent Generalization Attacks (NTGAs), a method that proficiently conducts
generalization attacks on DNNs without requiring explicit knowledge about the
learning model. Fu et al. [8] identified privacy limitations using error-minimizing
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noise and introduced robust error-minimizing noise via a min-min-max opti-
mization. This limits adversarial learners from gleaning dataset information.
Ren et al. [25] introduced transferable UEs that can improve their data-wise
transferability. Based on this, Zhang et al. [39] proposed Unlearnable Clusters
(UCs), offering a versatile approach to create UEs adaptable to various label
exploitations. On the other hand, several countermeasures have been proposed
against unlearnable examples, such as UEraser [24] that uses error-maximizing
data augmentation, and Jiang et al. [12] propose a method to revert unlearnable
samples to learnable ones. Our work expands the UE from the image domain to
the time series domain across classification and generation tasks. Our approach
can target the specified segments of data and make them unlearnable, thereby
safeguarding the sensitive time series data against misuse and exploitation.

3 Error-minimizing Noise For Time Series

In this section, we introduce our proposed method for generating error-minimizing
noise selectively on segments of time series data.

3.1 Objective

In this paper, we primarily focus on applications related to time series classifica-
tion and generation tasks. The models of interest in this domain are Recurrent
Neural Networks (RNNs). The goal of our research is to protect time series sam-
ples that contain sensitive information in the public domain from being exploited
by RNNs to ensure sensitive details are not inadvertently learned by machine
learning models. Consequently, the defender’s objectives are twofold. First, given
the open accessibility of the data, it is imperative to inhibit deep learning mod-
els (RNNs) from processing or learning from this sensitive information. Second,
these protective measures should not adversely affect the model’s ability to gen-
eralize or perform its intended functions using non-sensitive information.

3.2 Threat Model

The defenders (data subjects) are aware of the general characteristics of the
dataset into which their data will be collected and incorporated. This knowl-
edge may include aspects such as the type of data, its source, and its intended
application. While the defenders lack the authority to directly access or modify
the dataset, they have the ability to access or alter their own individual data
within it. Additionally, defenders are aware of the architecture of the DNNs be-
ing employed, but they lack information on more granular details such as the
exact training procedure, optimization methods, or hyperparameters. This set-
ting simulates the real-world scenario where defenders are often equipped with
only partial information and lack full access or a complete understanding of the
system. The defenders seek to safeguard their sensitive information from unau-
thorized exploitation by introducing error-minimizing noise into the time series
data. This addition of noise is designed to render only the sensitive portions of
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the data unlearnable for machine learning models. Given the defenders’ limited
knowledge of the exact training model, the noise introduced should be adaptable
across various machine learning models. Defenders, therefore, create noise based
on a model they estimate to be close to the real one. This estimated model aids
in crafting noise that remains effective across different architectures.

3.3 Challenges

Building upon the established concept of unlearnable examples in image data
[11,25,8,39], our research extends this technique to time series data. We aim
to create specific unlearnable (error-minimizing) noise that can be added to
time series samples, hindering DNNs from effectively learning from these mod-
ified samples. While most existing methods focus on images and CNNs, our
approach focuses on time series and RNNs. RNNs operate by processing sequen-
tial elements and retaining information from prior elements, and this iterative,
memory-like nature of RNNs poses unique challenges in generating unlearnable
noise. Unlike image data, where noises added to different locations are more
independent, noises in time series data can be highly interconnected across the
sequence, interfering with each other. Thus, a change at one single time point
can cascade effects throughout the sequence. Given the memory mechanism of
RNNs, even slight perturbations can amplify in later stages, greatly affecting
the final output. Hence, creating error-minimizing noise for RNNs requires a
novel approach that ensures the targeted segments of data are unlearnable while
preserving the integrity and semantic value of the remaining parts.

3.4 Problem Formulation

Consider a time series sequence xi, indexed by time t, which can be formally
represented as x = {x0,x1, . . . ,xt−1,xt}. This sequence is processed through
an RNN model for classification task that yields yi = fθ(xi), where yi serves
as a class probability vector in the context of time series classification, or as a
generated sequence for sequence generation. θ represents the model’s learnable
parameters, which govern the transformation f . Training the RNN model is to
minimize its empirical error on the training samples, which can be achieved via
empirical risk minimization (ERM). The optimization problem can be formu-
lated as follows:

min
θ

E(xi,yi)∈Dℓ(fθ(xi), yi). (1)

where D represents the training data and ℓ is the loss function that quantifies the
dissimilarity between the model’s output and the true target. To ensure minimal
or negligible updates to the model parameters for a given time series sample,
we introduce an error-minimizing noise denoted as δ. The primary objective of
incorporating this noise is to significantly reduce the training loss of a sample
when noise has been added to it. This noise term is designed to have the same
dimensional structure as the input sample x, resulting in a sequence of noise
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values δ = {δ0, δ1, ..., δt−1, δt}. Consequently, when considering the time series
sample xi in conjunction with its sample-specific error-minimizing noise δi, the
combined effect can be mathematically expressed as follows:

ℓ(fθ(xi + δi), yi) → 0. (2)

The objective of this perturbation is to drive the loss ℓ(·) towards zero. By doing
so, the noise serves to minimize the discrepancy between the RNN’s output and
the actual target yi. Consequently, the model is tricked into learning nothing
from these perturbed samples.

3.5 A Straightforward Baseline Approach

A baseline method can be established for the generation of unlearnable exam-
ples in time series data by leveraging the concept of unlearnable examples as
described in [11]. During the training phase of a basic noise generator, denoted
as f ′

θ, the system aims to solve the optimization problem as stated in Equation 3.

min
θ

1

n

n∑
i=1

min
∥δi∥≤ρu

ℓ(f ′
θ(xi + δi), yi). (3)

The generation of an unlearnable example, represented as (x′, y), is accom-
plished using the trained noise generator f ′

θ. This transformed data point is
formally defined in Equation (4).

x′ = x+ arg min
∥δ∥≤ρu

ℓ(f ′
θ(x+ δ), y). (4)

Given the sequential nature of RNNs, Backpropagation Through Time (BPTT)
will be used where the network will be unrolled to match the length of the time
series data. The calculation of the loss with respect to this unrolled RNN model
takes into account these hidden states, allowing for a more detailed understand-
ing of how each temporal data point in the sequence influences the overall loss.

3.6 Controllable Noise on Partial Time Series Samples

A significant limitation of directly translating image-based methods to time se-
ries data is the inability to localize and control the region of noise application.
In this case, noise tends to be distributed uniformly across the entire sequence.
In the context of fixed-sized inputs, such as images, this uniform distribution is
generally acceptable because the noise can be easily processed and interpreted
within a consistent framework. However, given that RNN models process time
series data in sequential order across the time regions, the effectiveness of this
noise is not uniform across different temporal segments. Consequently, some por-
tions of the time series will be more affected than others, leading to inconsistent
training and prediction outcomes.
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Fig. 1. Illustration of the control vector applied on a time series sample of length T .
Data protection is indicated when the control vector highlights particular time stamps
with a value of 1 (marked in black).

We propose a novel control vector, denoted as v, that highlights regions
within the samples that should be “protected” from data exploitation. This con-
cept is depicted in Figure 1. As an example, consider a dialogue that com-
prises speech data from multiple individuals. If there is a need to protect the
speech of a specific individual, their corresponding temporal segments can be
distinctly marked using the control vector. To achieve this, we selectively add
error-minimizing noise to the targeted segments of the time series data. Our
primary objective is to reduce the training loss associated with these specified
regions of the time series samples by solving the following optimization problem:

min
θ

1

n

n∑
i=1

min
∥δi∥≤ρu

|ℓ(f ′
θ(xi + δi ⊙ vi), yi)−

α·ℓ(f ′
θ(xi ⊙ (1− vi)), yi)|, (5)

where ⊙ represents element-wise multiplication on two vectors, and |x| represents
the absolute value of x. Specifically, our objective is to ensure that the training
loss incurred by the sample with noise added to the targeted region (xi+δi⊙vi) is
equivalent to the training loss when the target region is completely omitted from
the time series sample (xi⊙(1−vi)). This is achieved by minimizing the absolute
difference between these two loss terms. By aligning the loss from noise addition
to that of complete removal on the partial time series sample, we ensure that
the model does not derive any insights from the target regions of the sample,
while preserving the consistent learning patterns from the other segments. In
summary, our method endeavors to provide a new solution that bridges the gap
between conventional error-minimizing noise generation methods and the unique
requirements of time series data.

4 Experiments

In this section, we evaluate our proposed controllable error-minimizing noise in
both time series classification and sequence generation tasks.

4.1 Experiment Setup

For our experiments on time series classification tasks, we use a simple RNN
architecture as the backbone model. This architecture consists of an input layer,
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Table 1. Performance degradation results of various noise types introduced into the
training data. Datasets D1 through D6 are univariate, sourced from the UCR Archive;
whereas D7 to D10 are multivariate from the MTS Archive. The 2nd column, labeled
as Clean, depicts the accuracy of models trained on benign data.

Dataset Clean Masking Universal Ours(20%) Ours(50%) Ours(100%)

(D1) BirdChicken 96.0% 80.9% (-15.1%) 39.1% (-56.9%) 19.3% (-76.7%) 12.1% (-83.9%) 8.8% (-87.2%)

(D2) ECG5000 94.6% 78.4% (-16.2%) 41.6% (-53.0%) 16.9% (-77.7%) 11.5% (-83.1%) 7.4% (-87.2%)

(D3) Earthquakes 72.5% 65.1% (-7.4%) 27.7% (-44.8%) 10.7% (-61.8%) 6.4% (-66.1%) 3.1% (-69.4%)

(D4) ElectricDevices 72.3% 63.3% (-9.0%) 22.7% (-49.6%) 10.5% (-61.8%) 7.6% (-64.7%) 5.0% (-67.3%)

(D5) Haptics 50.2% 29.0% (-21.2%) 17.5% (-32.7%) 13.4% (-36.8%) 8.3% (-41.9%) 6.3% (-43.9%)

(D6) PowerCons 88.2% 68.4% (-19.8%) 37.0% (-51.2%) 15.6% (-72.6%) 9.3% (-78.9%) 4.9% (-83.3%)

(D7) ArabicDigits 99.4% 83.0% (-16.4%) 26.1% (-73.3%) 9.4% (-90.0%) 4.7% (-94.7%) 2.1% (-97.3%)

(D8) ECG 87.4% 74.2% (-13.2%) 20.2% (-67.2%) 8.9% (-78.5%) 5.6% (-81.8%) 2.6% (-84.8%)

(D9) NetFlow 89.4% 78.5% (-10.9%) 16.7% (-72.7%) 6.7% (-82.7%) 3.2% (-86.2%) 1.9% (-87.5%)

(D10) UWave 93.4% 80.8% (-12.6%) 26.4% (-67.0%) 10.2% (-83.2%) 7.9% (-85.5%) 4.0% (-89.4%)

the dimensions of which are determined by the feature set of the dataset. The
model includes three recurrent hidden layers, each having 64 hidden units, and
one output layer. For training, we adopted a batch size of 256 and used the
Adam optimizer with a starting learning rate of 0.01. Specific parameters for
RNN training included a 0.01 learning rate for noise generation (γ), a maximum
noise magnitude set to 0.05×maxmagnitude per sample (ρu), a trade-off parameter
of 1 (α), a warm-start duration of 5 epochs (Twarm_start), and a total training
epoch of 50 (Ttraining). We use the model checkpoint at the 55th epoch as the
final error-minimizing noise generator. Subsequently, we applied three different
noise configurations with the control vector v, covering 20%, 50%, and 100% of
the sample with 10% non-overlapping consecutive segments. The positioning of
these segments is selected randomly for every sample.

We use ten unique time series datasets, including six univariate datasets from
the UCR Archive and four multivariate datasets from the MTS Archive. We
also employ two baseline methods including masking and universal adversarial
perturbation (UAP) [16]. In our approach, we use masking to hide specific
segments within time series samples. We randomly choose segments covering 50%
of each sample, dividing them into five non-overlapping regions, each spanning
10% of the sample. This masking serves as a baseline to gauge the model’s
performance with significant data absence. To ensure equitable comparison, the
adversarial perturbation was capped at 0.05×maxmagnitude and integrated into
50% of every sample, specifically at the same regions chosen for masking.

4.2 Against Classification Models

Our experimental results for the controllable unlearnable noise generator, fea-
turing three configurations and two baseline methods, are presented in Table
1. Using the masking baseline, we noticed a 14.18% average drop in accuracy
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compared to the clean model. The unmasked segments, retaining key features,
possibly account for the limited decline. With the time series UAP, the accu-
racy decrease averaged 56.84%. Remarkably, our proposed noise method, target-
ing only 20% of samples, achieved a more significant average accuracy drop of
72.18%, emphasizing its efficacy over the UAP. With 50% targeting, as in the
baselines, accuracy fell to 7.66%, marking a 76.68% reduction from the clean
model. Additionally, our error-minimizing noise demonstrates more significant
impacts on multivariate datasets, which capture the interactions and relation-
ships across multiple variables. This multi-dimensionality allows the unlearnable
noise to envelop both primary and subtle features. As a result, it can reduce the
training loss more effectively, obscuring the genuine data patterns.

Taking a closer look at the accuracy drops, we found that increasing the
amount of unlearnable noise does not linearly decrease classification accuracy.
This suggests a diminishing return on increasing noise levels, indicating that
beyond a certain threshold, the addition of more unlearnable noise might not
yield significantly enhanced privacy protections. This observation implies that
introducing noise to only a segment of the time series might be the most ben-
eficial strategy. By targeting only a small part of the samples, one can achieve
the desired reduction in training effectiveness without compromising the entire
dataset. The results highlight the efficacy of our method, showcasing its adapt-
ability in safeguarding time series data privacy, especially potent against data
misuse in classification tasks.

4.3 Against Generative Models

We extend the evaluation to assessing the application of our proposed unlearn-
able noise in the context of time series generation tasks. We employ 8 multi-
variate time series datasets for this study, encompassing a range of classes and
sample sizes. For the task of data generation, we apply two time series generative
models: the Recurrent GAN (RGAN) [6] and Quant GAN (QGAN) [35]. These
models are then used to generate synthetic data for the first class (class 0) of
each dataset. We follow the training procedure stated in the original papers. The
noise is configured to perturb 50% of the samples in the target class, and every
selected sample is entirely perturbed by the noise.

We apply the Train on Synthetic, Test on Real (TSTR) [6] approach to test
the effectiveness of our proposed unlearnable noise. Specifically, we first train
a GAN model with data perturbed by unlearnable noise, then train a classifier
model using data generated by the GAN and subsequently test it on a separate
set of genuine samples. In this experiment, we subset all samples from the first
class (class 0) of each dataset and then feed them for GAN training. The objective
is to minimize the generator’s reconstruction loss on the entire sample. Then,
we train the time series classifiers using the generated synthetic samples, using
Long Short-Term Memory (LSTM) and Fully Convolutional Network (FCN).

The experimental results shown in Table 2 demonstrate a significant drop in
performance when adding unlearnable noise to 50% of the training samples. The
average classification accuracy drops below 10%, marking an average reduction
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Table 2. Classification accuracy of real or synthetic time series samples using the
"Train on Synthetic, Test on Real" (TSTR) approach. The 2nd column, labeled as
Real, depicts the accuracy of classification models trained and tested on benign data.
The columns presented as Modelc use clean data to train the generative model. The
columns presented as Modeln use unlearnable data to train the generative model.

Dataset Network Real RGANc RGANn QGANc QGANn

(D7)
FCN 99.6% 75.2% 6.2% 78.6% 8.4%
LSTM 98.4% 83.4% 4.2% 81.4% 2.6%

(D8)
FCN 91.2% 77.6% 7.4% 76.0% 7.8%
LSTM 89.4% 72.0% 3.0% 73.6% 5.8%

(D9)
FCN 94.6% 75.4% 11.6% 77.0% 10.6%
LSTM 90.1% 74.0% 6.8% 75.6% 3.4%

(D10)
FCN 95.0% 82.0% 10.5% 84.0% 13.6%
LSTM 93.0% 86.0% 5.2% 88.0% 6.2%

(D11)
FCN 94.2% 80.4% 8.4% 83.2% 9.6%
LSTM 95.0% 76.4% 3.8% 82.4% 5.8%

(D12)
FCN 78.9% 54.2% 6.2% 58.0% 8.4%
LSTM 76.0% 57.8% 2.8% 60.8% 4.0%

(D13)
FCN 86.4% 68.6% 11.6% 73.6% 10.8%
LSTM 75.0% 64.2% 6.0% 72.4% 5.2%

(D14)
FCN 71.0% 54.6% 9.5% 61.2% 10.2%
LSTM 64.0% 49.0% 5.4% 56.0% 4.8%

of over 60% when compared to the results obtained for clean data training. Note
that, while the noise is introduced into only 50% of the samples within a specific
class, it has the capability to render the entire class unlearnable (non-generative)
against the sequence generation model. This implies that our proposed noise has
great potential to be applied to protect sensitive samples from being learned
during the training of a generative model, preventing the model from recreating
or understanding the sensitive or private aspects of the original data.

5 Conclusion

In this work, we have studied the problem of protecting time series data against
unauthorized exploitations. We extended the concept of Unlearnable Examples
(UEs) from the image domain to the time series domain and proposed a novel
method specifically designed for generating unlearnable noise for time series.
The proposed method leverages a novel min-min bilevel optimization framework
alongside a control vector, enabling the creation of unlearnable noise targeted at
the most sensitive parts of a time series. This approach can be selectively used
on specific segments of the time series data. Through extensive experiments on
both time series classification and generation tasks, we demonstrated the effec-
tiveness of our method across different datasets. Our work could help individuals
and organizations protect their time series data from being exploited (without
permission) in the development of commercial models.
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