
Hyperparameter Tuning MLP’s for Probabilistic
Time Series Forecasting

Kiran Madhusudhanan∗[0000−0001−6356−8646], Shayan
Jawed∗[0009−0001−9130−8208], and Lars Schmidt-Thieme[0000−0001−5729−6023]

Information Systems and Machine Learning Lab
& VWFS Data Analytics Research Center

University Of Hildesheim
Hildesheim, Germany

{madhusudhanan,shayan,schmidt-thieme}@ismll.uni-hildesheim.de

Abstract. Time series forecasting attempts to predict future events by
analyzing past trends and patterns. Although well researched, certain
critical aspects pertaining to the use of deep learning in time series
forecasting remain ambiguous. Our research primarily focuses on ex-
amining the impact of specific hyperparameters related to time series,
such as context length and validation strategy, on the performance of
the state-of-the-art MLP model in time series forecasting. We have con-
ducted a comprehensive series of experiments involving 4800 configu-
rations per dataset across 20 time series forecasting datasets, and our
findings demonstrate the importance of tuning these parameters. Fur-
thermore, in this work, we introduce the largest metadataset for time
series forecasting to date, named TSBench, comprising 97200 evalua-
tions, which is a twentyfold increase compared to previous works in the
field. Finally, we demonstrate the utility of the created metadataset on
multi-fidelity hyperparameter optimization tasks.

Keywords: Time Series Forecasting · Hyperparameter · Metadataset

1 Introduction

Time series forecasting is a machine learning technique that aims to capture
historical patterns and use these patterns to predict the future values of the
variables.

Time series datasets are generated by various physical phenomena that change
over time and can be described by different mathematical equations or functions.
Using deep learning techniques to model the underlying distribution is a fre-
quent approach. However, choosing the optimal hyperparameters for a learning
algorithm is a challenging problem in deep learning, known as hyperparameter
optimization (HPO). HPO methods have been widely researched and applied in
domains such as computer vision [20], and tabular datasets [2], but they have
received less attention within the time series domain.

* These authors contributed equally to this work

ar
X

iv
:2

40
3.

04
47

7v
1

 [
cs

.L
G

]
 7

 M
ar

 2
02

4

2 K. Madhusudhanan et al.

Table 1. Summary statistics for evaluations considered in prior works.

Paper Venue # HPs # Datasets # Evaluations

[3] ArXiv’22 107 44 4.7K
[5] ECML/PKDD’23 200 24 4.8K

Our TSBench - 4860 20 97 K

For instance, the context length, a crucial parameter that determines the
extent of immediate history available to the model for forecasting, is often as-
signed a constant value across different datasets without careful tuning [27,15].
Despite evidence suggesting the importance of a context length as a hyperparam-
eter [26,5], subsequent research appears to overlook this parameter’s significance,
maintaining a constant value across various datasets. While it could be argued
that a longer context length is invariably beneficial, our experiments challenge
this assumption. We demonstrate that the optimal context length is dependent
on the dataset and varies according to the frequency and prediction horizon of
the time series dataset.

Another point of contention within the time series forecasting community
pertains to the use of validation splits. The validation split is typically chosen to
best represent the test distribution. In most domains, a random sample of x%
of the training dataset can be used for validation, as the test dataset is usually
an unknown random subset of the dataset during the training process. However,
this is not the case for time series forecasting where, the test split is definitively
the last few samples when the samples are arranged in chronological order, i.e.,
the test split is a time-wise split.

While current works employ a time-wise validation split, the community lacks
consensus on whether the forecasting model should be retrained on the valida-
tion split using the same hyperparameters, as done in [16], or whether not to
retrain on the validation split, as is common in other domains and in more recent
time series forecasting papers such as [26,25,14]. This divergence underscores the
need for further research and discussion within the community. In this paper,
we rigorously benchmark across many configurations and datasets and analyze
these specific validation split defining strategies that are applicable to time series
forecasting.

Despite the general nature and extensive research in the field of time series
forecasting, there is a noticeable lack of studies on hyperparameter optimization
compared to other domains. In [5], the authors suggest the use of an AutoML
framework that simultaneously optimizes the architecture and corresponding
hyperparameters for a given dataset. However, this AutoML framework falls
short in its ability to apply the knowledge gained from tuning one dataset to
another. A study more closely related to our work is [3], where the authors
compare various deep learning and classical models on 44 datasets and provide
a metadataset consisting of evaluations and forecasts for all methods. However,
this metadataset is limited to nearly five thousand runs, as reported in Table 1.

Hyperparameter Tuning MLP’s for TS Forecasting 3

Our work diverges from the aforementioned studies based on the number
of evaluations performed. We evaluate 4860 configurations of the state-of-the-
art muli-layer perceptron (MLP) model, named NLinear [26] for 20 datasets,
creating the largest metadataset of 97200 evaluations for time series forecasting.
In addition to the evaluations and forecasts, our work differs in the fact that
we adapt the NLinear to probabilistic outputs while logging also the gradient
statistics as in [28], enabling the metadataset to be used for Learning Curve
Forecasting techniques [9]. This comprehensive approach sets our work apart in
the field of time series forecasting. Concretely, we summarize the contributions
of the paper as follows.

1. We analyze the importance of time series specific hyperparameters like the
validation strategy and context length for time series forecasting.

2. We introduce TSBench, a benchmark for multi-fidelity optimization that pro-
vides probabilistic time series forecasts for 97200 hyperparameter evaluations
on 20 datasets from the Monash Forecasting Repository [8].

3. As a secondary task, we show the effectiveness of the TSBench dataset on
multi-fidelity hyperparameter optimization.

2 Related Works

The field of time series forecasting, particularly for long horizons, has recently
garnered increased attention [27,15]. Numerous transformer models[27,15], orig-
inally developed for the natural language processing (NLP) field where they
have achieved significant results, have been adapted for this purpose. However,
despite the sequential nature of both NLP and time series data, their distinct
characteristics mean that directly applying transformer models from NLP to the
time series domain may not yield optimal results. This is demonstrated in [26],
where a simple linear layer model with a specific normalization method outper-
forms transformer-based models on benchmark datasets. This finding is surpris-
ing given the relative simplicity of the linear model compared to the transformer
models. In this work, we utilize the NLinear model proposed by [26] and assess
its performance on the Monash Forecasting Repository [8]. The rapid execution
time of the NLinear model enables us to test a larger number of configurations of
a state-of-the-art model within a reasonable timeframe. This approach allows for
a more comprehensive exploration of the model’s parameter space, potentially
leading to improved performance and insights.

In the realm of increasingly expansive search spaces, the utilization of a meta-
dataset with offline evaluations emerges as a technique that, while prevalent in
other domains, appears to be rare in the literature pertaining to Time Series
forecasting. The most widely adopted HPO method, Bayesian optimization, ef-
fectively maps a hyperparameter configuration to a corresponding validation
loss, which is subsequently generated by the machine learning model. This tech-
nique was initially popularized by [23], thereby paving the way for subsequent
research into the application of transfer and non-transfer black box HPO [22,7].

4 K. Madhusudhanan et al.

Metadatsets have also been extensively employed as a warm-start initialization
technique [7] or for the purpose of transferring learning to the surrogate model
[24]. Furthermore, offline evaluations have been applied in the context of learn-
ing curve forecasting, where the objective is to predict the characteristics of a
learning curve by embedding meta-knowledge that enables the model to exploit
latent correlations among source dataset representations [9].

Despite the considerable body of research conducted on offline evaluations,
the focus of these studies has predominantly been on simple regression and clas-
sification problems derived from the OpenML dataset [21], with a noticeable gap
in the time series forecasting literature. To our knowledge, the work most closely
aligned with ours is that of [3], in which the authors evaluate 4.7K configura-
tions across 44 datasets. However, our work diverges in three key respects: (1)
we tune hyperparameters specific to time series, (2) we log gradient statistics at
each epoch similar to [28] and (3) we provide evaluations that are 20 times more
extensive in comparison to the aforementioned study.

3 Problem Statement

Given a time series (x, y) ∼ q drawn from an unknown random distribution q
where x = (x1, . . . , xC) and y = (xC+1, . . . , xC+δ) represent the observed history
and future values, respectively. Here, xi ∈ R (D ∈ N) denotes the observation
made at relative time i. x and y are called univariate time series if D = 1 and
multivariate time series if D > 1. Additionally, C and δ represents here the
Context Length and Forecast Horizon, respectively.

Univariate time series forecasting task attempts to find a modelm : RC → Rδ

such that the expected loss ℓ : Rδ × Rδ → R between the ground truth (y) and
forecasted future values (ŷ = m(x)) is minimal:

E
(x,y)∼q

ℓ(y,m(x))

4 MLPs for Time Series Forecasting

4.1 Nlinear Model

In our research, we utilize a variant of linear MLP models, known as the NLinear
[26]. This model employs an N-normalization technique to tackle the prevalent
issue of distribution shift in time series datasets. The methodology involves sub-
tracting the last value (xC) of the sequence from the input (x), which is then
passed through a linear layer to generate intermediate embedding (z). The sub-
tracted values are subsequently added back to generate the forecasts (ŷ).

z = x− xC

z = Linear(z)

ŷ = z + xC (1)

Hyperparameter Tuning MLP’s for TS Forecasting 5

Fig. 1. Model Architecture. The parameters C and δ are indicative of the context
length and forecast horizon, respectively. The hidden layers within the model are rep-
resented by f , g, and h, and are interspersed with ELU non-linearity. The parameter
d signifies the distribution parameters that is learned per prediction time step.

The effectiveness of this approach has been demonstrated by [26] on seven
benchmark datasets, thereby questioning the efficacy of current transformer-
based models for time series forecasting. The study also claims that deeper
models fail to enhance performance of the Linear model on the seven benchmark
datasets. This raises an interesting question : Can linear models outperform their
deeper non-linear counterparts in general?.

5 Hyperparameters

To address the previous question, we construct deeper model architecture vari-
ants in line with the methodology outlined by [10], by augmenting the NLinear
model with three submodules, (f ◦ g ◦h), each implemented as a fully connected
layer with ELU [4] activation function as in Figure 1.

1. Model Architectures
– Base: We choose the NLinear model as proposed in [26], a single layer

network without any non-linearity as the base model. For instance, the
structure could be represented as C-δ, where C denotes the Context
length (Input layer) and δ (Output layer) signifies the forecast horizon.

– Diamond: The depth of the NLinear model is augmented by incorporating
hidden layers that feature an expanding layer at the center, separated by
ELU nonlinearity, thereby adopting a diamond-like shape. The structure
could C-f -g-h-δ be represented as C-32-64-32-δ.

– Contracting: The hidden layers of the model are designed with decreas-
ing number of neurons at each successive layer. eg: C-128-64-32-δ.

– Square: The hidden layers have the same number of neurons at each
hidden layer. eg: C-64-64-64-δ.

– Funnel: The inverse of the Diamond architecture with a contracting layer
at the middle of the network, eg: C-64-32-64-δ

– Expanding: The hidden layers of the model are designed with decreasing
number of neurons at each successive layer. eg: C-32-64-128-δ

6 K. Madhusudhanan et al.

The MLP architectures delineated previously have been adapted to leverage
the probabilistic forecasting capabilities provided by the GluonTS framework [1].
This is achieved by predicting the parameters of distribution d at each predictive
timestep. For instance, under the assumption of a Gaussian distribution, the
model is tasked with learning the mean and variance as distribution parameters
for each timestep. The aforementioned MLP architectures can be extended to
generate probabilistic forecasts by incorporating a distribution layer atop the
model, as depicted in Figure 1. In our experimental setup, we utilize the Student-
T distribution, which is the default distribution in GluonTS, and we experiment
with varying the number of hidden parameters in the distribution layer.

2. Distribution hidden layer (d) : The selection of the distribution hidden
layer is made from a grid that includes the values 1, 2, and 10. Default size
in GluonTS is 1, however the size is increased to 2 and 10 as increase in layer
size have been observed to enhance the performance of the model.

5.1 Time Series Specific Configuration

The context length, also known as the lookback window, is a critical param-
eter in time series forecasting. It determines the amount of historical data used
to predict future values of a time series. In their study [26], the authors exam-
ined the effects of context lengths on long-term forecasting. They found that the
performance of most transformer-based methods deteriorates with an increase
in context length. Similarly, [5] compared the importance of various parameters
used in time series forecasting and found that context length is one of the most
important hyperparameters to tune. Despite these findings, recent literature on
time series forecasting often uses a constant context length across multiple fore-
casting tasks [25,27,15]. Our work aligns with these previous studies in analyz-
ing the importance of context length. However, unlike [5], who consider context
length as multiples of seasonality, we do not make any assumptions about the
context length for a dataset. Our grid of context length ranges from very short
to very long across all datasets.

3. Context Length (C):
In our study, the specific values we have selected for our grid are 2, 7, 24,
100, 300. These values represent a summary of the default context lengths
provided in the Monash Forecasting Repository.

Validation Strategy for time series forecasting is not standardized in the
literature. For instance, a well-known forecasting model NBEATS [16] uses a
validation set to select the hyperparameters and then re-trains the model on
the combined training and validation sets, while some recent forecasting models
such as NLinear [26] skip the re-training step altogether. Therefore, we consider
the validation strategy as another hyperparameter to be optimized.

4. Validation Strategy:

Hyperparameter Tuning MLP’s for TS Forecasting 7

Table 2. Summary of configurations used for generating the TSBench metadataset.

Configuration Hyperparameter Values

Time Series
Context Length [2, 7, 24, 100, 300]
Validation Strategy [OOS, Re-OOS]

Model
Architecture

[Base, Diamond, Contracting,
Square, Funnel, Expanding]

Distribution Hidden State [1, 2, 10]

Training
Learning Rate [0.01, 0.001, 0.0001]
Weight Decay [0, 0.1, 0.5]
Seeds [100, 101, 102]

– Out-of-Sample (OOS): The validation split is a time-wise split replicat-
ing the test split, however the model is not retrained.

– Retrain-Out-Of-Sample (Re-OOS): The validation split is a time-wise
split replicating the test split, but the model is retrained on the validation
split using the hyperparameters chosen from the validation split.

– In-Sample (IS): The validation split is randomly sampled from the dataset
as in [18].

5.2 Training Specific Configurations

In our comprehensive evaluation, we take into account not only the specificities
of time series and model configurations, but also the configurations of model
training hyperparameters. To this extent we tune two training hyperparamters
namely the learning rate and the weight decay. For the learning rate, we choose
from the possible options of 0.01, 0.001 or 0.0001, while retaining the default
value of 0.001 in the selection. To our understanding, previous studies have not
considered regularized time series forecasting evaluations [3], [5]. The significance
of effective regularization for neural network models in the tabular domain has
been emphasized in recent research [11]. Consequently, we have incorporated the
option for our model to apply regularization through weight decay. Finally, we
repeat each experiment 3 times for consistency and report the standard devia-
tion. The configurations are summarized in Table 2.

5.3 TSBench-Metadataset

Metadatasets have shown to improve the performance of hyperparameter op-
timization [10,2] and often provide a qualitative basis to focus efforts in both
manual algorithm design and automated hyperparameter optimization. In this
paper, we follow the notable metadataset work by [19], where the authors record
arguably the most important metafeatures required for the secondary tasks like
learning curve forecasting [9] or transfer hyperparameter optimization [2]. We
evaluate 4800 configurations per dataset for 20 datasets, each evaluated for 50
epochs, and log the results as our TSBench metadaset.

8 K. Madhusudhanan et al.

Table 3. Summary of metrics logged for generating the TSBench metadataset.

Granularity Metric Value

Epoch

Losses Negative log likelihood loss

Metrics
MSE, MASE, MAPE, QuantileLoss at quantile interval of 10,
RMSE, NRMSE, ND, MAE and weighted QuantileLoss

Layer-wise Gradients Max, Mean, Median, Std, and quantiles at intercal of 10
Learning Rate -
Runtine -

Configuration
Architecture

Activations, Model Architecture, Hyperparameters,
Model Complexity,

Dataset Features Context Length, Prediction Length, Seasonality, Frequency

In our work, we collect metafeatures for each run at two levels of granularity.
Firstly, we log metafeatures per configuration on a coarse scale, and secondly, on
a fine-grained scale per epoch. At the coarse scale, we log the basic hyperparam-
eter configurations mentioned in the previous sections and additionally include
features such as the number of trainable parameters and dataset metafeatures
like time series data frequency, seasonality, etc. At the fine-grained per epoch
scale, we capture the train, validation, test losses and various metrics reported
per epoch. This allows the user of the metadataset to perform hyperparameter
optimizations based on metrics other than the train loss. GluonTS [1] offers nu-
merous probabilistic and point-wise evaluation metrics for time series forecasting
including the Quantile Loss, CRPS, seasonal error to name a few. In addition,
learning curve forecasting methods like [9] could benefit from layer-wise gradient
statistics such as the max, mean and quantiles as additional covariates to pre-
dict the trajectory of a particular hyperparameter run. TSBench also logs this
information along with learning rate and runtime information. Table 3 provides
an overview of all the logged metadataset features.

6 Experimental Setup

Evaluation: All models were trained using the negative log likelihood loss to
generate probabilistic forecasts, and CRPS score [17] was reported as an uncer-
tainty error metric in the supplementary material. However, in order to compare
with the Monash Forecasting Repository results [8], we evaluate using MASE
error metric.

MASE =
1

δ

δ∑
j=0

|yj − ŷj |
|yj − ŷj

Naive|
(2)

Data: Monash Forecasting Repository [8], which is a collection of 50 datasets
that are derived from 26 original real-world datasets by sampling time series data
at different frequencies. We randomly select 20 datasets from this collection that
do not have missing values and have varying characteristics, such as length,
number of series, etc., to capture the diversity of real-world time series data.

Hyperparameter Tuning MLP’s for TS Forecasting 9

Table 4. Comparison of TSBench results with the best performing model (TBATS)
from Monash Benchmark reported on the MASE error. Best results are marked in bold.
Standard deviations over multiple runs are indicated in brackets. We also provide the
best overall result on the dataset across different models for reference.

Datasets Train Retrain Monash - TBATS Monash - Best Overall

Aus. Elecdemand 1.693 (0.133) 1.667 (0.199) 1.174 0.705
Bitcoin 7.370 (2.207) 8.351 (1.30) 4.611 2.664
FRED-MD 0.569 (0.019) 0.580 (0.029) 0.502 0.468
Hospital 0.787 (0.020) 0.794 (0.025) 0.768 0.761
KDD 1.172 (0.011) 1.131 (0.016) 1.394 1.185
M1 Monthly 1.565 (0.017) 1.577 (0.030) 1.118 1.074
M1 Quarterly 2.360 (0.239) 2.511 (0.283) 1.694 1.658
M1 Yearly 4.537 (0.028) 4.393 (0.018) 3.499 3.499
M3 Monthly 1.143 (0.006) 1.137 (0.011) 0.861 0.861
M3 Quarterly 1.327 (0.025) 1.313 (0.031) 1.256 1.117
M3 Yearly 4.168 (0.063) 35.640 (33.024) 3.127 2.774
M4 Hourly 1.421 (0.192) 1.188 (0.114) 2.663 1.662
M4 Weekly 0.438 (0.014) 0.434 (0.002) 0.504 0.453
NN5 Daily 0.800 (0.004) 0.803 (0.007) 0.858 0.858
NN5 Weekly 0.875 (0.063) 1.143 (0.050) 0.872 0.808
Tourism Monthly 1.603 (0.002) 1.628 (0.077) 1.751 1.409
Tourism Quarterly 1.731 (0.018) 1.631 (0.038) 1.835 1.475
Tourism Yearly 6.283 (1.816) 5.744 (2.22) 3.685 2.977
Traffic Hourly 0.802 (0.002) 0.801 (0.013) 2.482 0.821
Traffic Weekly 1.187 (0.006) 1.187 (0.010) 1.148 1.094

Framework: In our experiments, we set a batch size of 64 and a number of
batches per epoch of 50 for all runs. The models were trained for a total of 50
epochs, and the model with the lowest validation loss was selected for evaluation
on the test set. For the Re-OOS validation strategy, since the model was trained
using an average loss instead of sum of losses, retraining the model with the
validation split (Re-OOS) should have only a negligible impact on the chosen hy-
perparameters. In-Sample validation implementation was not straight forward
in GluonTS, as the framework expects the splits to be in continuous time and
limiting our study to Re-OOS and OOS. All experiments were conducted on Intel
E5-2670v2 CPU cores using Pytorch 1.12, Pytorch-lightning 1.6.5, and MXNet
1.9. The training process took approximately one month on 40 nodes with the
same CPU configuration. Code1 is made public and can be easily reused to gener-
ate a larger metadataset with other state-of-the-art models from the GluonTS[1]
framework, including NBEATS [16], DeepAR [18], among others. For HPO meth-
ods, we use the SMAC3 framework [13].

7 Results

In Table 4, we present a comparison between the best performing NLinear and
the best performing model TBATS from the Monash forecasting repository re-

1 https://github.com/18kiran12/TSBench.git

10 K. Madhusudhanan et al.

Fig. 2. Prediction length vs Con-
text Length colored by Frequency of
dataset. Longer Prediction length.

Fig. 3. Prediction length vs Con-
text Length colored by Frequency of
dataset. Shorter Prediction length.

sults. It is important to note that the TBATS model was able to outperform
several powerful models, including NBEATS, DeepAR, and Transformer models
across the different datasets, making it a really strong baseline to outperform.

RQ1 How does NLinear compare to Monash’s best model? The NLin-
ear model outperforms the best model TBATS from the Monash Forecasting
repository on 7 out of 20 datasets of varying granularities. Additionally, when
compared to the best overall results from the Monash, the NLinear model per-
forms well on 5 out of 20 datasets. Given that a data-specific baseline is a chal-
lenging benchmark to surpass, the NLinear model performs on par with, if not
better than, other deep learning baselines from the Monash forecasting results.
This underscores the importance of considering carefully tuned linear models as
a baseline for time series forecasting.

RQ2: Should we retrain on the validation data? One of the contribu-
tions of this work is to address the uncertainty regarding whether deep learning
models need to be retrained on validation data. Our results, presented in Table
4, indicate that Re-OOS offers only a slight advantage compared to OOS. This
is consistent with current trends in time series forecasting, where retraining on
validation data is ignored. We reason that this may be due to suboptimal hy-
perparameter fitting, as the addition of validation data may require changes to
the hyperparameters selected on the training data.

It is of significant importance to highlight that a considerable decline in the
performance of the M3 yearly dataset was observed after the retraining process.
This shows an extreme scenario where the retraining process adversely impacted
the dataset’s performance.

RQ3: What is a useful Context Length? The length of context required by
a model is influenced by several factors. Our analysis suggests that the context

Hyperparameter Tuning MLP’s for TS Forecasting 11

Fig. 4. Hyperparameter importance
score

Fig. 5. Architecture selection globally
across multiple datasets

length is a function of both the frequency of the dataset and the length of
the forecast horizon. When given the option to select from a range of model
complexities and context lengths, the model often chose longer context lengths
for longer forecast horizons, as shown in Figure 2 and 3. Additionally, our findings
indicate that the frequency of the dataset also impacts the chosen context length.
For instance, datasets with hourly (1H) and daily (1D) frequencies are more
likely to have longer context lengths than those with yearly (1Y) or quarterly
(1Q) frequencies. Figure 2 depicts the correlation between the length of the
context and the prediction horizon, as well as the frequency of a specific time
series dataset. Generally, a more extensive context is advantageous for the model
when a larger forecast horizon is required. However, this pattern diminishes for
monthly, yearly, and quarterly datasets. In these instances, the model performs
satisfactorily with a shorter context length.

RQ4: What hyperparameters are Important? To evaluate the significance
of various hyperparameters in forecasting, we utilized an fANOVA test as out-
lined in [5]. This test employs a random forest model to capture the relationship
between the hyperparameters and forecast accuracy, using the hyperparameters
as input. A functional ANOVA is then applied to determine the importance of
each hyperparameter. The results are depicted in Figure 4. The initial learning
rate selected appears to have a substantial impact on model performance, even
when the model is configured with the Adam optimizer. Additionally, the hid-
den layer used to learn the probabilistic distribution of the forecast is also an
important parameter. And most importantly, context length has a significant
effect on model accuracy and needs to be carefully tuned per dataset.

RQ4: Can linear models outperform non-linear models? In this study, we
allowed the model to experiment with deeper architectures and ELU activations
to determine whether a linear model consistently outperforms deeper models

12 K. Madhusudhanan et al.

with various architectures, as described in Section 5.1. Our findings, presented in
Figure 5, indicate that deeper models can indeed be useful, however, considering
the hyperparameter importance of architecture in Figure 4, a Linear MLP is a
strong baseline in most cases.

RQ5: Can TSBench be effectively used for HPO? The utilization of HPO
as a supplementary meta-task to demonstrate the efficacy of the constructed
metadataset is a prevalent approach [2]. In this study, we applied four distinct
HPO techniques to the TSBench dataset. We start with a rudimentary baseline
that randomly selects a single hyperparameter from a pool of 50 trials. Secondly,
we employed the HyperBand [12], a bandit-based HPO approach that conducts
multiple successive halving operations to identify optimal configurations. Fur-
ther, we utilized model-based algorithms such as SMAC [13] and BOHB, which
utilize surrogate models to select the most promising hyperparameter evalua-
tions. Specifically, SMAC employs a random forest model as its surrogate, while
BOHB [6] adopts a Bayesian optimization algorithm. Each algorithm was per-
mitted a total of 50 trials per dataset to select the best hyperparameters. The
outcomes, presented in Figure 6 across the 20 datasets in a critical difference di-
agram [2], reveal that SMAC, HyperBand and BOHB outperform the Random
strategy showing the effectiveness of the TSBench for HPO.

Fig. 6. Critical Difference Diagram Rank@50

8 Conclusion

Clarity regarding the significance of hyperparameters and the choice of validation
strategy in time series forecasting literature is often lacking. This study aims to
address these ambiguities by assessing the performance of the state-of-the-art
MLP model on 20 univariate datasets. Our findings highlight the importance
of tuning the context length for time series forecasting tasks and treating the
validation strategy as a hyperparameter. Interestingly, while deeper MLP models
may offer performance enhancements on certain datasets, our results affirm the
robustness of a linear MLP model as a formidable baseline. Furthermore, we
introduce TSBench, an extensive metadataset for time series forecasting to date,
and demonstrate its efficacy in HPO tasks.

Hyperparameter Tuning MLP’s for TS Forecasting 13

References

1. Alexandrov, A., Benidis, K., Bohlke-Schneider, M., Flunkert, V., Gasthaus, J.,
Januschowski, T., Maddix, D.C., Rangapuram, S., Salinas, D., Schulz, J., et al.:
Gluonts: Probabilistic time series models in python. ArXiv (2019)

2. Arango, S.P., Jomaa, H.S., Wistuba, M., Grabocka, J.: Hpo-b: A large-scale repro-
ducible benchmark for black-box hpo based on openml. In: NeurIPS Datasets and
Benchmarks Track (2021)

3. Borchert, O., Salinas, D., Flunkert, V., Januschowski, T., Gunnemann, S.: Multi-
objective model selection for time series forecasting. ArXiv (2022)

4. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network
learning by exponential linear units (elus). ICLR (2015)

5. Deng, D., Karl, F., Hutter, F., Bischl, B., Lindauer, M.: Efficient automated deep
learning for time series forecasting. In: ECML PKDD. pp. 664–680. Springer (2023)

6. Falkner, S., Klein, A., Hutter, F.: Bohb: Robust and efficient hyperparameter op-
timization at scale. In: ICML. pp. 1437–1446. PMLR (2018)

7. Feurer, M., Springenberg, J., Hutter, F.: Initializing bayesian hyperparameter op-
timization via meta-learning. In: AAAI. vol. 29 (2015)

8. Godahewa, R., Bergmeir, C., Webb, G.I., Hyndman, R.J., Montero-Manso, P.:
Monash time series forecasting archive. NeurIPS Datasets and Benchmarks (2021)

9. Jawed, S., Jomaa, H., Schmidt-Thieme, L., Grabocka, J.: Multi-task learning curve
forecasting across hyperparameter configurations and datasets. In: ECML PKDD.
pp. 485–501 (2021)

10. Jomaa, H.S., Schmidt-Thieme, L., Grabocka, J.: Dataset2vec: Learning dataset
meta-features. Data Mining and Knowledge Discovery 35, 964–985 (2021)

11. Kadra, A., Lindauer, M., Hutter, F., Grabocka, J.: Well-tuned simple nets excel
on tabular datasets. NeurIPS 34, 23928–23941 (2021)

12. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A
novel bandit-based approach to hyperparameter optimization. JMLR 18(1) (2017)

13. Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins,
C., Ruhkopf, T., Sass, R., Hutter, F.: Smac3: A versatile bayesian optimization
package for hyperparameter optimization. JMLR 23(54), 1–9 (2022)

14. Madhusudhanan, K., Burchert, J., Duong-Trung, N., Born, S., Schmidt-Thieme,
L.: U-net inspired transformer architecture for far horizon time series forecasting.
In: ECML/PKDD (2021)

15. Nie, Y., Nguyen, N.H., Sinthong, P., Kalagnanam, J.: A time series is worth 64
words: Long-term forecasting with transformers. ICLR (2023)

16. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis
expansion analysis for interpretable time series forecasting. In: ICLR (2020)

17. Rasul, K., Sheikh, A.S., Schuster, I., Bergmann, U.M., Vollgraf, R.: Multivariate
probabilistic time series forecasting via conditioned normalizing flows. In: ICLR
(2021)

18. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: Probabilistic
forecasting with autoregressive recurrent networks. JMLR 36(3), 1181–1191 (2020)

19. Shah, S.Y., Patel, D., Vu, L., Dang, X.H., Chen, B., Kirchner, P., Samulowitz, H.,
Wood, D., Bramble, G., Gifford, W.M., et al.: Autoai-ts: Autoai for time series
forecasting. In: SIGMOD. pp. 2584–2596 (2021)

20. Ullah, I., Carrión-Ojeda, D., Escalera, S., Guyon, I., Huisman, M., Mohr, F., van
Rijn, J.N., Sun, H., Vanschoren, J., Vu, P.A.: Meta-album: Multi-domain meta-
dataset for few-shot image classification. NeurIPS 35, 3232–3247 (2022)

14 K. Madhusudhanan et al.

21. Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked science
in machine learning. ACM SIGKDD Explorations Newsletter 15(2), 49–60 (2014)

22. Volpp, M., Fröhlich, L.P., Fischer, K., Doerr, A., Falkner, S., Hutter, F., Daniel, C.:
Meta-learning acquisition functions for transfer learning in bayesian optimization.
ICLR (2020)

23. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Learning hyperparameter opti-
mization initializations. In: DSAA. pp. 1–10. IEEE (2015)

24. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Scalable gaussian process-based
transfer surrogates for hyperparameter optimization. Machine Learning 107(1),
43–78 (2018)

25. Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting. In: NeurIPS. vol. 34, pp. 22419–
22430 (2021)

26. Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series
forecasting? AAAI (2023)

27. Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang, W.: Informer:
Beyond efficient transformer for long sequence time-series forecasting. In: AAAI.
vol. 35, pp. 11106–11115 (2021)

28. Zimmer, L., Lindauer, M., Hutter, F.: Auto-pytorch tabular: Multi-fidelity met-
alearning for efficient and robust autodl. IEEE Transactions on Pattern Analysis
and Machine Intelligence 43(9), 3079 – 3090 (2021)

	Hyperparameter Tuning MLP's for Probabilistic Time Series Forecasting

