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Abstract. Reliable forecasting of traffic flow requires efficient model-
ing of traffic data. Indeed, different correlations and influences arise in
a dynamic traffic network, making modeling a complicated task. Ex-
isting literature has proposed many different methods to capture traffic
networks’ complex underlying spatial-temporal relations. However, given
the heterogeneity of traffic data, consistently capturing both spatial and
temporal dependencies presents a significant challenge. Also, as more and
more sophisticated methods are being proposed, models are increasingly
becoming memory-heavy and, thus, unsuitable for low-powered devices.
To this end, we propose Spatio-Temporal Lightweight Graph GRU,
namely STLGRU, a novel traffic forecasting model for predicting traffic
flow accurately. Specifically, our proposed STLGRU can effectively cap-
ture dynamic local and global spatial-temporal relations of traffic net-
works using memory-augmented attention and gating mechanisms in a
continuously synchronized manner. Moreover, instead of employing sepa-
rate temporal and spatial components, we show that our memory module
and gated unit can successfully learn the spatial-temporal dependencies
with reduced memory usage and fewer parameters. Extensive experimen-
tal results on three real-world public traffic datasets demonstrate that
our method can not only achieve state-of-the-art performance but also
exhibit competitive computational efficiency. Our code is available at
https://github.com/Kishor-Bhaumik/STLGRU
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1 Introduction

A traffic network can be represented as a graph, with the locations of the sensors
and the connections among them acting as the nodes and edges, respectively.
In the same way, flow at a particular junction or node is defined as the total
number of people or vehicles passing through that junction at a given time.
Specifically, the goal of traffic flow prediction algorithms is to predict the flow of
future time steps by exploiting the complex spatialtemporal features of histor-
ical traffic data. Indeed, many cities are currently developing Intelligent Traffic
⋆ Corresponding Author
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Systems (ITS) [29] and predicting traffic flow is a key part of many of these
systems’ services. In particular, a large amount of collected traffic data have
made urban data mining study much easier than ever before, such as traffic flow
prediction [9], arrival time estimate [12], traffic speed analysis [2,4], and so on,
thanks to the promising advancement of intelligent sensors. To be more spe-
cific, spatio-temporal traffic prediction aims to forecast future traffic trends by
analyzing previous spatio-temporal features [30]. Furthermore, predicting traffic
flow has become essential for several downstream applications, such as intelli-
gent route planning [18], dynamic traffic management [27], and location-based
services [16]. However, the efficiency and accuracy of traffic flow prediction algo-
rithms are limited by the high variance in the spatial and temporal dimensions
of traffic data. In addition, the observations made at different locations and time
stamps are not independent, but they are rather dynamically correlated. Hence,
traffic data has a nonlinear and complex spatial-temporal relationship, and its
modeling is critical for designing effective prediction algorithms.

To address the aforementioned challenges, in this paper, we propose a novel
traffic flow prediction model, called Spatio-Temporal Lightweight Graph GRU
(STLGRU). Our model takes advantage of graph convolution to model localized
spatial relations. We then use an attention mechanism with a memory module to
directly model the long-range local and non-local spatio-temporal dependencies.
To update the memory, we use a gating mechanism, where our gating strategy
records the key local and global spatio-temporal information and forgets the
redundant ones when moving to the next time step. In addition, we carefully
design our model to be lightweight, as the memory module uses fewer parame-
ters than the existing baselines. Consequently, it can effectively learn long-range
dependencies without the need to use multi-scale causal convolution or stacking
past time step features. In summary, we make the following contributions:

– We propose STLGRU, a novel time series traffic flow prediction model. Our
model captures the long-range global and local relationships of a traffic net-
work more accurately by using memory-augmented attention module and
gating mechanism.

– We carefully design our network to be lightweight by utilizing a memory
module with minimal parameters, thus making it suitable for environments
constrained by computational resources.

– We conduct extensive experiments on three popular traffic prediction bench-
mark datasets. Our results show that our model not only surpasses other
baseline models in performance but also necessitates less memory usage in
comparison.

2 Related Work

Spatio-temporal time series traffic forecasting. Deep learning has been
successfully applied to many tasks, such as image analysis [21,22], natural lan-
guage processing [8], activity recognition [20] etc. Recently, such learning tech-
niques have been quite extensively applied to traffic flow prediction task. Amongst
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these methods, STGCN [28] is the first pioneering work to model the traffic
network with a fully convolutional structure. In this study, spatio-temporal re-
lationships are effectively captured by including a graph convolution module in-
side temporal convolution modules. Moreover, DCRNN [17] introduces diffusion
convolution to propagate information in the graph. PM-MemNet [15] learns to
match input data to representative patterns with a key-value memory structure.
Song et al. proposes STSGCN [23], which captures complex localized spatial-
temporal correlation to find the heterogeneities in the spatial-temporal data.
STSGCN [23] deals with spatial and temporal dimensions individually by utiliz-
ing various modules and calculates spatio-temporal attention within a restricted
temporal frame.

In addition, Lin et al. [19] propose self-attention Conv-LSTM to capture
long-range temporal dependencies for general spatio-temporal prediction task.
A significant limitation of their approach is its reliance solely on convolution
layers, confining their method to spatio-temporal prediction tasks representable
by image grids. However, the traffic network has an inherent graph structure
that needs to be exploited for reliable prediction. Yuzhou et al. [5] tackles this
problem by enriching DL architectures with salient time-conditioned topological
information of the traffic data. This study introduces the zig-zag persistence
concept into time-aware graph convolutional networks.

However, most of the cutting-edge models fail to handle the challenge of
being lightweight. RNN-based networks (including LSTM) are widely known
to be difficult to train and computationally heavy [28]. For example, Mega-
CRN [14] proposes Meta-Graph Convolutional Recurrent Network (MegaCRN)
by plugging multiple Meta-Graph Learner powered by a MetaNode Bank into
the encoder-decoder module. As a consequence, it becomes memory-heavy due
to its large number of parameters. STSGCN [23] uses a certain length of time
window to collect graph structure information and fuse the findings to forecast
the following time steps. The computational cost is thus increased by employing
repeated shots of graph aggregation. StemGNN [1] introduces a neural network
that captures inter-series correlations and temporal dependencies in the spectral
domain by aggregating numerous modules in separate blocks while disregarding
the model’s complexity. To solve the aforementioned issues, we present a simple
but effective traffic forecasting model that is computationally cheap, lightweight,
and capable of capturing both local and global long-range dependencies in a
traffic network.

Attention Mechanism. Because of the high efficiency and versatility in
modeling dependencies, attention mechanisms have been extensively used in a
variety of domains [24,6]. The basic principle behind attention mechanisms is
to concentrate on the most relevant features of the input data [6]. Recently,
researchers used attention processes to graph-structured data to model spatial
correlations for graph classification [25]. We expand the attention method to syn-
chronize spatial and temporal dependencies while sequentially predicting traffic
data.
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Fig. 1: Overall architecture of STLGRU designed for multivariate traffic forecast-
ing. Our model consists of a memory-augmented attention module and a gated
unit, which capture the long-range local and global dependencies. It takes input
from a single time step with an initial hidden state and outputs a hidden state
for the next time step.

3 Proposed Model

3.1 Preliminaries and Problem Definition

A graph G = (V, E) models the traffic topological network, where V represents
nodes and E signifies edges. An edge eij ∈ E connects nodes vi and vj , where each
node has junctional features (e.g. inflow, outflow). Then, we define the spatio-
temporal traffic data forecasting problem using a mapping function fθ, where
it takes the historical series ⟨X(t−T+1), X(t−T+2), . . . , Xt⟩. And, it predicts the
future series ⟨X(t+1), X(t+2), . . . , X(t+T ′)⟩, where T is the length of the historical
series and T ′ is the length of the target forecast series, and, Xi ∈ RN×C , where
N is the number of nodes and C is the number of information channels (speed,
flows, etc.).Thus, the time series forecasting model can be defined as follows:

⟨X(t−T+1), X(t−T+2), . . . , Xt⟩
fθ−→ ⟨X(t+1), X(t+2), . . . , X(t+T ′)⟩

3.2 Graph Convolution

Here, we first define the graph convolution, where the initial input matrix is
denoted as X ∈ RN×T×C . As our focus is solely on traffic flow, C is consequently
set to 1, resulting X ∈ RN×T×1. And, we take Xt′ ∈ RN×1 as input from a single
time step t, where t ∈ T , and pass it through a convolutional layer ξθ to transform
the input feature into high-dimensional space C ′ to increase the representation
power of the network as follows:

Xt = ξθ (Xt′) ; θ ∈ R1×C′
(1)

Then, Xt ∈ RN×C′
is used as an input to the original network at time step t.
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Fig. 2: Graph generation from learnable node embeddings E

As shown in Fig. 2, let E ∈ RN×d be the learned node embedding matrix,
where d represents the embedding dimension. In addition, Ω represents the prob-
ability matrix, and each Ωij ∈ Ω corresponds to the probability of preserving
the edge between time series i and j, respectively. This relationship is formally
expressed as follows:

Ω = EET (2)

In particular, we use the Gumbel softmax method [13] to obtain the final
sparse adjacency matrix A ∈ RN×N to effectively assure a sufficient amount
of sparsity in the graph structure. And, let σ and τ be the activation function
and the temperature variable, respectively. Then, we can define sparse adjacent
matrix A as follows:

A = σ((log(Ωij/(1−Ωij) + (n1ij − n2ij)/τ)

s.t. n1ij , n
2
ij ∼ Gumbel(0, 1)

(3)

Eq. (3) implements Gumbel Softmax for our task, where Ai,j = 1 with prob-
ability Ωi,j and Ai,j = 0 with the remaining probability. In particular, Gumbel
Softmax maintains the same probability distribution as the normal Softmax, en-
suring statistical consistency in generating the trainable probability matrix for
the graph forecasting network. Next, let I be an identity matrix and D be a
diagonal degree matrix satisfying Dii = ΣjAij . Then, the specific operation of
graph convolution network (GCN) with the learnable weight W ∈ RC′×C′

can
be expressed as follows:

GCN (Xt) =W (I +D− 1
2AD− 1

2 )Xt ∈ RN×C′
(4)

3.3 Memory-Augmented Attention (MAA) Module

As discussed before, many state-of-the-art models struggle with maintaining a
lightweight design. For instance, models proposed by Jiang et al. [1] and Yu et
al. [2] have learned spatio-temporal relations by combining GCN and GRU mod-
ules and they further stack these fused modules multiple times. However, when
stacking multiple layers to capture long-term dependencies in traffic data, they
encounter a significant increase in memory usage during inference. To mitigate
this issue, we introduce a memory-augmented attention (MAA) mechanism by
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continuously synchronizing relevant features in both spatial and temporal data
in each timestep. In particular, Figure 1 illustrates the MAA module’s struc-
ture, where it combines the graph convolution output Jr ∈ RN×C′

with the
randomly initialized hidden input Ht−1 ∈ RN×C′

through concatenation, and
pass it through a convolutional function as follows:

Jr = GCN (Xt) , (5)
M = Jr ⊕Ht, (6)
P = ψw (M) , (7)

where ψ is a 1D convolutional function with parameter w ∈ RC′×C′
, and M

and P both have the same dimension of R2N×C′
. We use the softmax specified

by Pu,v to calculate the attention score for both spatial characteristics from the
GCN output and temporal features from the hidden input in the following way:

Pu,v =
expPu,v∑N
v=1 expPu,v

, u, v ∈ {1, 2, . . . , N}. (8)

After the above step, P ∈ R2N×C′
is divided into Ps and Pt, which have the

same size, (Ps, Pt) ∈ RN×C′
. Next, we element-wise multiply Ps and Pt with Jr

and Ht−1 respectively, as follows:
as = Ps ⊙ Jr, (9)
at = Pt ⊙Ht−1, (10)

where ⊙ represents the Hadamard product. Rather than exclusively representing
spatial context, as also includes temporal information for a specific timestamp,
while at serves a similar dual role, encompassing both spatial and temporal
context. We then add these two context vectors, finally producing Jz as follows:

Jz = as + at; Jz ∈ RN×C′
(11)

3.4 Memory Updating

Prior traffic forecasting models [28,10,11] often use graph and temporal con-
volution independently, overlooking the heterogeneities within spatial-temporal
data. To tackle this problem, our approach involves a continuously synchronized
gating mechanism to update the hidden state Ht, allowing MAA to capture
long-range dependencies across both spatial and temporal domains effectively.
The update process is defined as follows:

g = σ (Wz · Jz + Uz ·Ht−1) , (12)
r = σ (Wr · Jr + Ur ·Ht−1) , (13)

h̃ = tanh (Wh ·Xt + r ∗ Uh ·Ht−1) , (14)

Ht = g ∗H(t−1) + (1− g) ∗ h̃, (15)
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where (W,U) ∈ RC′×C′
are the learnable parameters and σ is the sigmoid func-

tion. Compared with the original memory cell in the GRU [7] that is updated
only by current input Xt and previous hidden state Ht−1, Our proposed memory
cell updates based on the original input Xt, graph convolution Jr, aggregated
context vector Jz, and the previous hidden state Ht−1, which effectively captures
both local and global spatio-temporal dependencies in real-time.

On the other hand, similar to the standard GRU mechanism, we use the final
output at the last time step, denoted as HT ∈ RN×C′

, and process it through
two fully connected layers for prediction as follows:

Ŷ = ReLU (HTW1 + b1) ·W2 + b2, (16)

where Ŷ ∈ RN×T ′
denotes the prediction of the overall network, and W1 ∈

RC′×C′
, b1 ∈ RC′

,W2 ∈ RC′×T ′
, and b2 ∈ RT ′

are learnable parameters. Finally,
to train the model, we use the loss function as follows:

L(θ) =
∥∥∥Ỹ − Ŷ

∥∥∥2
2

(17)

where Ỹ denotes the ground truth and Ŷ denotes the prediction of the model,
respectively. The detail of our training algorithm is provided in the
supplementary material.

4 Experimental Results and Analysis

Datasets. We perform experiments on three publicly available popular bench-
mark traffic datasets, which are PeMSD4, PeMSD7, and PeMSD8 from Cali-
fornia Transportation Agencies [3]. In these datasets, each vertex on the graph
represents a sensor node to collect the traffic flow data and the flow data is ag-
gregated to 5 minutes. Thus, each hour has 12 data points in the flow data. We
apply zero-mean normalization for preprocessing these datasets.
Baselines. We compare our proposed STLGRU against the following popular
as well as SoTA baseline models on spatio-temporal prediction task: 1) Spatial-
temporal synchronous modeling mechanism (STSGCN [23]), 2) Spectral Tem-
poral Graph Neural Network for time series forecasting (StemGNN [1]), 3) Time
Zigzags at Graph Convolutional Networks (Z-GCNETs [5]), 4) Graph-Wavenet
(GW-Net [26]), 5) Pattern Matching Memory Networks (PM-MemNet [15]), and
6) Meta-Graph Convolutional Recurrent Network (Mega-CRN[14]). We use de-
fault settings for each baseline when performing comparisons.
Evaluation Metrics. We apply three widely used metrics to evaluate the per-
formance of our model, (1) Mean Absolute Error (MAE), (2) Mean Absolute
Percentage Error (MAPE), and (3) Root Mean Squared Error (RMSE).
Implementation Details. We divide all the datasets with a ratio 6:2:2 into
training, testing, and validation sets, respectively. We use Adam optimizer with
a learning rate of 0.001 and set 16 as the batch size. We conduct experiments
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Table 1: The overall performance of STLGRU and baseline methods.
15 min 30 min 60 minDatasets Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

STSGCN 19.41 30.69 14.82 21.83 31.33 15.54 23.19 33.65 16.90
StemGNN 20.24 28.15 13.03 20.68 30.88 14.21 22.92 33.74 15.65
Z-GCNETs 19.50 28.61 12.78 23.21 30.09 13.12 29.24 32.95 16.14

PeMSD4 GW-Net 18.15 25.24 13.27 22.12 30.62 16.28 21.85 33.70 17.29
PM-MemNet 18.95 30.16 13.79 20.01 31.47 14.17 26.85 32.14 17.21
Mega-CRN 19.25 24.88 12.72 19.60 25.96 13.84 22.82 26.33 14.87

STLGRU(Ours) 17.59 23.24 11.02 18.73 24.61 12.85 21.05 25.41 13.87
STSGCN 16.17 23.15 16.51 22.19 34.87 19.88 24.26 39.03 20.21
StemGNN 15.77 22.68 13.97 22.38 33.69 18.99 24.54 34.41 19.45
Z-GCNETs 15.64 25.19 15.47 23.78 33.64 19.05 26.12 34.78 23.47

PeMSD7 GW-Net 18.74 26.14 16.58 23.64 34.82 24.65 24.15 34.12 29.02
PM-MemNet 15.25 24.14 15.17 21.12 34.41 19.97 25.39 33.50 21.29
Mega-CRN 14.23 21.05 13.11 22.86 33.19 18.40 23.55 33.54 19.29

STLGRU(Ours) 13.79 19.12 12.31 20.89 31.45 15.56 23.06 32.19 19.12
STSGCN 15.97 23.14 14.79 16.45 24.78 18.47 19.13 29.80 18.96
StemGNN 15.83 24.93 10.26 15.95 23.88 19.98 24.10 28.13 23.79
Z-GCNETs 15.76 25.11 10.01 15.64 23.29 16.67 17.55 29.67 19.19

PeMSD8 GW-Net 14.95 24.92 12.79 15.92 24.99 18.97 17.69 28.92 22.67
PM-MemNet 14.10 22.15 10.41 16.65 24.17 13.77 19.13 28.16 16.68
Mega-CRN 14.07 22.53 9.54 16.10 22.42 17.97 18.12 27.29 21.05

STLGRU(Ours) 13.93 20.94 8.84 15.03 22.18 12.64 16.83 26.35 14.74

with our model using non-overlapping time windows in the time series data. The
entire experiments are run on a single GPU (Nvidia TITAN RTX). If the test
scores of a baseline are unknown for a dataset, we run their publicly available
code based on their suggested settings to obtain the results.
Results. Table 1 compares the performance of our model to the baseline models
in 15, 30 and 60 minutes traffic forecasting, respectively. As shown in Table 1,
our model outperforms all of the baseline models in both long and short-term
forecasting. StemGNN, Z-GCNET, STSGCN, GW-Net, and PM-MemNet stack
multiple layers of spatio-temporal modules by optimizing a probabilistic graph
model. Our proposed method demonstrates improvements over the comparative
models, achieving an average increase of 2.7%, 3.1%, and 2.3% in MAE, RMSE,
and MAPE, respectively. Mega-CRN, which utilizes trainable adjacency matri-
ces to understand node relationships and employs an encoder-decoder structure
to manage traffic data heterogeneity, is also surpassed by our STLGRU model.
Overall, STLGRU demonstrates superior performance, exhibiting average im-
provements of 2.9%, 3.1%, and 2.6% in MAE, RMSE, and MAPE, respectively.

Furthermore, Table 2 presents the maximum memory footprint, computa-
tional complexity, and the number of parameters of the baseline models on
PeMSD4 dataset. Because we use the same model for each dataset, we present
the experimental results with one dataset. Results with additional datasets are
provided in Suppl. To compute a model’s GPU memory usage during inference,
we use the Linux command line “gpustat” with a minibatch size of 1 and with
no gradients. We can observe that STLGRU requires the least memory during
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Table 2: In-depth comparison of different model efficiency on PeMSD4. We show
that STLGRU achieves high memory efficiency with less computational power
and parameters in all three datasets. The second best is shown with underline
(See Supp. for more results with additional datasets).

Model Memory (MB) FLOPs Parameters
STSGCN 1028 282.24G 550.48K
GW-Net 1031 189.16G 610.25K

StemGNN 1220 378.98G 1.64M
Z-GCNETs 1473 389.49G 1.08M
Mega-CRN 1409 311.97G 669.14K

PM-MemNet 1052 421.49G 1.34M
STLGRU (Ours) 990 77.93G 348.54K

inference than baseline models. It also has the least computation complexity and
number of parameters. In Table 2, we present the memory footprint, computa-
tional complexity, and the number of parameters used to train STLGRU. Our
model stands out, as it demands the least memory, with fewer parameters, and
ours exhibits reduced computational complexity. This efficiency positions our
model as an ideal choice for integration into real-world, low-powered devices.

5 Ablation Study

We verify the effectiveness of STLGRU with additional ablation experiments.
We dissect our model and focus on two main components: the Gumbel softmax
and the memory augmented attention (MAA). As illustrated in Table 3, the
absence of MAA leads to a remarkable decline in performance. The role of Gum-
bel softmax is pivotal in ensuring optimal sparsity within the graph. When we
substitute Gumbel softmax with only the learnable embedding matrix, there is
a noticeable decline in our model’s performance. However, this is not surprising,
given that irrelevant connections can reduce the model’s ability to capture the
dynamic interrelations between nodes accurately.

Table 3: Ablation study for the effectiveness of the memory augmented attention
(MAA) and gumble softmax module used in our method.

Gumble Softmax MAA Error Score (MAE)
× × 23.12
× ✓ 21.74
✓ × 19.83
✓ ✓ 16.83
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Fig. 3: Performance comparison of spatio-temporal models and STLGRU with
different settings. MAE, RMSE and MAPE of 1-hour forecasting on three
datasets are plotted.

Afterwards, as demonstrated in Figure 3, we compare our model against
traditional spatio-temporal configurations. Specifically, we evaluate (1) Graph
convolution for capturing spatial knowledge and 1D CNN to capture tempo-
ral dependencies, (2) Graph convolution for capturing spatial knowledge and
LSTM to capture temporal dependencies, (3) Graph convolution for capturing
spatial knowledge and vanilla GRU to capture temporal dependencies. From our
observations in Figure 3, it is evident that STLGRU consistently outperforms
other methods significantly. We thus argue that memory-augmented attention
can capture more fine-grained spatio-temporal patterns and trace the crucial
interdependencies among the road network.

6 Conclusion

In this work, we introduce STLGRU, a uniquely lightweight and efficient model
for traffic flow prediction task. Our model incorporates a memory module en-
hanced with attention mechanism, capable of synchronizing spatial correlations
within node networks and long-term temporal patterns in a continuous man-
ner. Our experimental results showcase its superior performance across three
benchmark traffic prediction datasets while maintaining a significantly reduced
computational overhead compared to baseline models. For future work, we plan
to adapt STLGRU for other spatial-temporal forecasting challenges, and explore
how to model spatio-temporal dependencies when long-term data is scarce.
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Supplementary Material for
STLGRU: Spatio-temporal Lightweight Graph

GRU for Traffic Flow Prediction

1 Proposed Training Algorithm for STLGRU

We describe the training algorithm of our proposed STLGRU in Algorithm 1.

Algorithm 1 STLGRU

1: Input: X = ⟨X(t−T+1), X(t−T+2), . . . , Xt⟩; X ∈ RN×T×1

2: Output: Ỹ = ⟨X(t+1), X(t+2), . . . , X(t+T ′)⟩; Ỹ ∈ RN×T×1

3: Parameters: Randomly initialize Θ and hidden state Ht−1

4: for all T do
5: Xt′ ← X[:, t, :]; Xt′ ∈ RN×1

6: Xt = ξθ (Xt′) ; Xt ∈ RN×C′
▷ followed by eq. 1

7: Ht−1 = STLGRUΘ (Xt, Ht−1)
8: end for
9: Ht = Ht−1

10: Ŷ = OutputLayer(Ht) ▷ followed by eq. 16
11: calculate loss L using eq. 17
12: return Ŷ

2 Memory consumption

In this section, we compare our proposed model with existing baselines using
PeMSD7 and PeMSD4 datasets.

Table 4: In-depth comparison of different model efficiency. We show that STL-
GRU achieves high memory efficiency with less computational power and pa-
rameters in all three datasets. The second best is shown with underline.

Model PeMSD7 PeMSD8
Memory (MB) FlOPs Parameter Memory (MB) FlOPs Parameter

STSGCN 1420 384.27G 895.73K 920 88.55G 98.7K
StemGNN 1816 589.94G 1.87M 1111 271.51G 1.22M
Z-GCNETs 1753 442.629G 1.45M 1314 298.26G 987.25K
Mega-CRN 1638 421.85G 1.12M 1312 245.68G 889.79K
GW-Net 1920 497.64G 827K 1037 144.91G 247.63K

PM-MemNet 1267 512.73G 1.64M 934 437.61G 1.07M
STLGRU(Ours) 1328 295.54G 634.89K 893 52.15G 79.82K

3 Prediction visualization

We visually plot the time series alongside its ground truth in Figure 4. This
comparative visualization underscores STLGRU’s superior predictive capabili-
ties compared to the baseline Mega-CRN.
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Fig. 4: Visualization of the predicted traffic flow.

4 Dataset discription

The summary statistics of the key elements of the datasets are shown in Table 5.

Table 5: Dataset Statistics.
Datasets Nodes Edges Timesteps Periods
PeMSD4 307 340 16,992 2018/01/01 - 2018/02/28
PeMSD7 883 866 28,224 2016/07/01 - 2016/08/31
PeMSD8 170 277 17,856 2016/07/01 - 2016/08/31

PeMSD4 PeMSD7 PeMSD8

Fig. 5: Sensor Distribution of three traffic datasets, where the dots are the traffic-
sensor locations.

5 Baseline discription

We compare our proposed STLGRU against the following baseline models on
spatial-temporal prediction task.

✧ STSGCN: STSGCN captures the complex localized spatial-temporal corre-
lations through a spatial-temporal synchronous modeling mechanism.

✧ StemGNN: StemGNN combines Graph Fourier Transform (GFT) which mod-
els inter-series correlations and Discrete Fourier Transform (DFT) which
models temporal dependencies in an end-to-end framework.
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✧ Z-GCNETs: Z-GCNETs proposes to enhance DL architectures with the most
salient time-conditioned topological information of the data and introduce
the concept of zigzag persistence into time-aware graph convolutional net-
works.

✧ GW-Net: Graph-Wavenet developed a novel adaptive dependency matrix
and learned it through node embedding which can precisely capture the
hidden spatial dependency in the data.

✧ PM-MemNet: PM-MemNet learns to match input data to representative
patterns with a key-value memory structure.

✧ Mega-CRN: Meta-Graph Convolutional Recurrent Network (MegaCRN) uses
the Meta-Graph Learner incorporating a MetaNode Bank into GCRN encoder-
decoder.

6 Evaluation metrics

Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and
Root Mean Squared Error (RMSE) are derived as follows:

MAE =
1

n

t=n∑
t=1

|y′ − y| (18)

MAPE =
1

n

t=n∑
t=1

|y′ − y|
y

∗ 100% (19)

RMSE =

√√√√ 1

n

t=n∑
t=1

(y′ − y)
2 (20)
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