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Abstract. We propose a variational autoencoder (VAE)-based model
for building forward and inverse structure-property linkages, a problem
of paramount importance in computational materials science. Our model
systematically combines VAE with regression, linking the two models
through a two-level prior conditioned on the regression variables. The
regression loss is optimized jointly with the reconstruction loss of the vari-
ational autoencoder, learning microstructure features relevant for prop-
erty prediction and reconstruction. The resultant model can be used for
both forward and inverse prediction i.e., for predicting the properties of a
given microstructure as well as for predicting the microstructure required
to obtain given properties. Since the inverse problem is ill-posed (one-to-
many), we derive the objective function using a multi-modal Gaussian
mixture prior enabling the model to infer multiple microstructures for a
target set of properties. We show that for forward prediction, our model
is as accurate as state-of-the-art forward-only models. Additionally, our
method enables direct inverse inference. We show that the microstruc-
tures inferred using our model achieve desired properties reasonably ac-
curately, avoiding the need for expensive optimization loops.

Keywords: Materials Infromatics · Inverse Problems · Variational In-
ference · Microstructure design

1 Introduction

Materials science and engineering involve studying different materials, their pro-
cessing and the resulting properties that govern the performance of the material
in operation. Processes such as heating, tempering and rolling modify the ma-
terial’s internal structure, altering properties such as tensile strength, ductility
and so on. The structure is commonly represented by microscopy images known
as the microstructure, which contain information about the micro-constituents
(also known as phases), the grains, their geometry (shape, size), and their ori-
entations. These structural features impact the material properties. Modeling
the relationships between processing, structure and properties (also known as
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the P-S-P linkages) is at the core of computational materials science. Materials
scientists and engineers are often interested in inverse analysis i.e., predicting
the candidate structure for target properties and the processing route required
to get the target structure. This involves systematically exploring a large design
space consisting of several possible initial compositions, processing steps, param-
eters of these processing steps and the resulting structures. Also, the problem
is often ill-posed since multiple processing routes can lead to the same struc-
ture and multiple structures can lead to the same selected target properties.
Traditionally, materials scientists have used a combination of experimentation
and physics-based numerical simulations for inverse analysis. However, experi-
mental exploration has limitations because of the time and cost involved. On
the other hand, physics-based models, which are based on solving underlying
differential equations, are only useful for predicting the forward path. That is,
predicting structure from composition and processing conditions, and properties
from structure. They cannot be used directly for the inverse problem. Instead,
they have to be used inside an optimization loop [23]. However, physics-based
models are often computationally too expensive to be useful for design space
exploration and optimization.

Machine learning can be an alternative to physics-based simulations for for-
ward prediction. For example, deep convolutional neural networks have been used
for predicting properties from microstructure images ([3,16]). Recently, proba-
bilistic deep generative models have been proposed to learn features from unla-
beled (i.e. no properties data) microstructure images and then train a property-
prediction model in the low-dimensional feature space using small labeled data
([2,18]). This is an advantage since labeled data is more challenging to get. How-
ever, these models are not capable of inverse inference themselves. They still
have to be used inside an optimization loop. While probabilistic deep generative
models can be leveraged for direct inverse inference, they have not been explored
much for this purpose. Our work is aimed at addressing this gap.

We propose a probabilistic generative model of structure-property linkage
by combining variational autoencoder (VAE) with regression such that the joint
model can be used for both forward and inverse inference without requiring
the optimization step for the inverse. The VAE and the regression model are
joined through the VAE prior by making the prior conditional on the predicted
property. After training, latent representations for a target property value can
be sampled from the conditional prior and decoded to get microstructures with
that property value. Further, since there can be more than one microstructure
for a target property value, the commonly used uni-modal Gaussian prior does
not model this accurately. So we replace it with a mixture of Gaussians.

Our contributions are - i) a method for forward prediction of properties
from structure, ii) a method for direct inverse prediction of candidate structures
given the target properties, effectively handling ill-posedness. Using a reference
dataset of 3-D microstructures and elasticity properties, we show that our model
is as accurate as state-of-the-art methods for forward inference (table 1) while
additionally enabling direct inverse inference. For inverse inference, we show



Microstructure Design Using VAE-Regression 3

that the microstructures inferred using our model achieve the desired properties
reasonably accurately (fig. 3b). Further, we show that optimal points lie very
close to these inferred microstructures and more precise solutions can be quickly
found by searching in the neighborhood of these microstructures using a detailed
physics based model (fig. 4b and 4c).

2 Methodology

Variational autoencoders ([14]) pose the problem of representation learning as
probabilistic inference with the underlying generative model p(x, z) = p(x|z)p(z),
where x is the input and z is the latent representation. The posterior p(z|x) is
to be inferred. An approximate posterior q(z|x) is found by minimizing the Evi-
dence Lower BOound (ELBO): L = −DKL(q(z|x)∥p(z))+Eq(z|x)[log p(x|z)] (1)

The KL-Divergence term enforces the prior p(z) as a regularization while the
second term quantifies how well an x is reconstructed.
VAE-Regression The use of VAE in semi-supervised or supervised regression
settings (predicting a scalar or vector of real numbers from an image) has been
relatively less explored. A “VAE for regression” model was proposed by Zhao
et al. [22] for predicting a subject’s age from their structural Magnetic Res-
onance (MR) images, as follows. Assuming that the latent representation z
is also dependent on the quantity c to be predicted, the generative model is:
p(x, z, c) = p(c)p(z|c)p(x|z), leading to a two-level prior (see fig. 1a). The ap-
proximate posterior q(z, c|x) is found using variational inference assuming that
q factorizes as q(z, c|x) = q(z|x)q(c|x) 3. Note however that the dependence
between z and c is indirectly preserved through the prior p(z|c). With that as-
sumption, Zhao et al. [22] derive the modified ELBO as:

L = −DKL (q(c|x)∥p(c))︸ ︷︷ ︸
Regression loss

+Eq(z|x)[log p(x|z)]︸ ︷︷ ︸
Rec loss

−Eq(c|x)[DKL(q(z|x)∥p(z|c))]︸ ︷︷ ︸
Regularization (cond. prior)

(2)

In supervised settings, the first term can be replaced by log q(c|x), which is
proportional to the mean squared error (i.e. regression loss) when q(c|x) is a
Gaussian. So q(c|x) is parameterized by a “regressor” network. The second term
– the reconstruction loss – is the same as in the original ELBO from equation
(1), so q(z|x) and p(x|z) are parameterized by “encoder” and “decoder” networks,
respectively. The last term is a counterpart of the regularizer from equation (1),
except the prior is now conditional on c and the KL divergence is now in ex-
pectation with respect to q(c|x). This term encourages the encoder posterior
q(z|x) and the conditional prior p(z|c) to be similar, aligning the features for
reconstruction and property prediction. Since the expectation is with respect to
q(c|x), it links the VAE and the regressor. During training, the expectation is
estimated Monte-Carlo, using the c predicted by the regressor (i.e., one sample
from q(c|x)). The distribution p(z|c) is parameterized by a “generator” network.
3 The mean-field assumption [1], commonly used in variational inference derivations

(e.g., [15])
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(a) Graphical Model (b) Detailed Architecture

Fig. 1: Architecture : VAE-Regression with Style Loss.

After training, inverse inference can be performed by sampling latent represen-
tations for a target c from the generator and decoding them.

We make two modifications to the original formulation from [22] to make it
suitable to our use case. First, we replace the reconstruction loss with the style
loss, which is based on comparing the statistics of the microstructures. Second,
instead of the standard, uni-modal Gaussian prior, we incorporate a Gaussian
mixture prior which models the many-to-one structure-property relation better.
VAE-Regression with Style Loss The reconstruction loss from vanilla VAE
objective function typically leads to a pixel-by-pixel comparison between input
and reconstruction, which is not suitable for microstructure images [18]. Rather,
only a comparison between statistics is suited to quantify the difference between
two microstructures. The “style loss”, originally proposed for the problem of style-
transfer [6], is based on a comparison between statistics. It is the sum of squared
differences between Gram matrices of the input and reconstruction as computed
from a deep pre-trained network such as VGG19 [20]. Say layer l has Cl fea-
ture maps of size Wl ×Hl then the Gram matrix at layer l is Gl

ij = ΣkF
l
ikF

l
jk,

and the style loss is: Lstyle(x, x̂) =
∑L

l=0 wl

[
1

4C2
l M

2
l

∑
i,j(G

l
ij − Ĝl

ij)
2
]

Where,

Ml = Wl∗Hl and F l is the Cl×Ml matrix of flattened feature maps. We propose
to replace the reconstruction loss from the modified ELBO (equation (2)) with
the style loss. The architecture of “VAE-regression” after incorporating the style
loss is shown in Fig. 1b.
Multi-modal Prior Since multiple structures can lead to the same proper-

ties, there could be more than one likely latent representation z, for a given c.
So, the standard Gaussian prior, which a uni-modal distribution is not suitable
for modeling p(z|c). Instead, we propose a mixture-of-Gaussians prior p(z|c) ∼∑K

k=1 πkNk(µk, σ
2
k) with K components, where π are the probabilities of com-

ponents. We assume a diagonal co-variance matrix for all mixture components.
The generator network outputs K pairs of µ and σ and the K component
probabilities. Note that K is a hyperparameter that needs to be tuned. Since
the posterior q(z|x) is still a Gaussian, the reparameterization trick from the
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original VAE works. The only difficulty is in computing the KL-Divergence
of the posterior from the conditional prior, that is the third term from equa-
tion (2). We need to compute the KL-Divergence of a Gaussian from a mixture-
of-Gaussians, which is intractable. We use a variational approximation proposed
in speech recognition literature [9], which for Gaussian mixtures f and g is:

DKL(f∥g) ≈
∑

k ωklog

∑
i ωie

−DKL(fk∥fi)∑
j πje−DKL(fk∥gj)

where fk, fi and gj denote the com-

ponent Gaussians of f and g and ω and π are their component weights re-
spectively. Since in our case the first distribution f which is the posterior, is a
uni-modal Gaussian, the numerator reduces to 1 (since DKL(f∥f) = 0). So the
expression is:

DKL(f∥g) ≈ log
1∑

j πje−DKL(f∥gj)
(3)

We replace the third term from equation (2) with the RHS of eq. (3) to get our
final loss function as follows:

LV AE−REG = −log (q(c|x)) + Lstyle − log
1∑

j πje−DKL(q(z|x)∥pj(z|c))
(4)

3 Related Work

Due to recent advancements in machine learning, there is a renewed interest
among materials scientists to leverage state-of-the art deep learning models for
P-S-P linkages [3,16,21]. However, all these works focus on forward prediction
using discriminative models. While Cang et al. [2] propose a generative VAE
model, new images are generated unconditionally and used as additional train-
ing data for a downstream forward property-prediction model. In contrast, our
approach enables forward and direct inverse inference combining VAE and re-
gression through a conditional prior.

Recently, deep generative models such as variational autoencoders and Gen-
erative Adversarial Networks (GAN) have been explored for inverse inference in
structure-property linkage [12,23] and other similar problems such as drug de-
sign [7,8]. These methods train a forward regression model from the GAN/VAE
latent space to properties. For inverse inference, an optimization loop is setup
around the forward model. While the GAN/VAE latent space enables efficient
navigation through the space of microstructures, it does not alleviate the need
for optimization. As opposed to this, in our approach once the model is trained,
inverse inference is same as prediction and does not need optimization. More
recently, Mao et al. [17] extended the GAN-based inverse inference method from
Yang et al. [23] using mixture density networks (MDN). The GAN is trained
on microstructure images and used to create training data for MDN. A set of
images are generated from the GAN and the corresponding properties are ob-
tained through FEM simulations on these images. The MDN is then trained
to predict the GAN inputs z from the properties c. While this method does
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not need optimization every time, it can’t utilize existing labeled data between
microstructures and properties since the MDN needs pairs of z and c.

In machine learning literature, use of VAE in semi-supervised settings has
been explored for various objectives such as conditional generation [13], learn-
ing disentangled representations [10], multi-modal representation learning [11]
and so on. Most works on conditional generation treat the label (c) as one
more latent variable, leading to a graphical model like z → x ← c, where x
is the input and z is the latent representation. However in our problem, c rep-
resents the material property which affects the microstructure features relevant
for that property. So we treat the label as an auxiliary variable affecting the
latent representation, leading to c→ z → x. Probably the closest to our work is
Characteristic Capturing VAE [10], which focuses on capturing the label char-
acteristics in the latent representation. While our probabilistic generative model
is same as theirs, the variational assumptions are slightly different. We assume
that the variational posterior factorizes as q(c, z|x) = q(c|x)q(z|x) whereas they
assume q(c, z|x) = q(c|z)q(z|x). Our assumption greatly simplifies the math-
ematical derivation while preserving the essential dependencies indirectly (via
KL-divergence).

Some recent works have focused on incorporating stronger priors (including
Gaussian mixture) in VAE (e.g., [4,15]) to improve the quality of generations.
However, in these formulations, c is typically a discrete latent variable that rep-
resents hidden modalities of data, making the joint p(z, c) a Gaussian mixture.
Whereas our motivation for a multi-modal prior comes from the many-to-one
relationship between structures x and properties c. So c is observed and contin-
uous, and the conditional p(z|c) itself is a Gaussian mixture. This introduces an
intractable KL divergence term in our loss function unlike others, which we have
dealt with using variational approximation, as explained in section 2.

4 Experimental Results

We now describe the results obtained on a dataset of 3-D microstructures of a
high-contrast composite and the associated elastic stiffness property.
Dataset We use a dataset presented in Fernandez-Zelaia et al. [5] as part of
their work on an efficient finite element method for micro-mechanics simula-
tion in high-contrast composites. The authors first synthetically generated a
large ensemble of voxelized 3D microstructures with diverse morphological fea-
tures. This was done by starting with random 3D inputs of size 51x51x51 in
[0,1] and convolution with various Gaussian filters with zero mean and diago-
nal covariance, and thresholding the results to obtain a binary microstructure.
The diagonal of the covariance matrix of the 3D Gaussian filters was of the form
σ = [i, j, k], i, j, k ∈ {1, 3, 5, 7}. Thus there are 64 different Gaussian filters, which
were applied to 150 random inputs resulting in ∼8900 3D microstructures with a
wide variety of morphologies. For example, σ = [1, 1, 1] results in small, isotropic
grains whereas σ = [7, 7, 7] results in very large grains. Other asymmetric choices
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such as σ = [7, 1, 1] or [1, 1, 7] result in anisotropic grains with elongation in the
corresponding directions. Please see Fig. 2a and 2b for examples.

The authors further estimate the effective elastic stiffness property of these
microstructures using FEM simulations [5]. The crucial assumptions are: The
black and white colors correspond to the hard and soft phases, with Young’s
moduli 120GPa and 2.4GPa, respectively, and the Poisson’s ratio for both phases
is 0.3. Elastic stiffness relates stress σ with strain ϵ. Since these are second-rank
tensors, a fourth-rank tensor is required to relate them, i.e., σij = Cijklϵkl (Gen-
eralized Hooke’s law [19]). The effective elastic stiffness parameter mentioned
above is the element ⟨1, 1, 1, 1⟩ of the stiffness tensor C, and is denoted as C11

for short.
Training We split the data into 60% training, 20% validation, and 20% test
data. The validation data is used only to decide when to stop training (we stop
when the validation loss does not decrease for ten consecutive epochs). The
model is trained end-to-end using Adam optimizer with learning rate 0.0005,
β1 = 0.75, β2 = 0.999 and batch size 8. We found that with 16 latent dimensions
and a weight of 10 for regression loss (after normalizing the scales of all three
losses) we got the best forward prediction accuracy with good reconstructions.
More details of architecture, training and hyperparameter tuning appear in ap-
pendix A.
Forward Inference Table 1 shows accuracy in the prediction of C11 using
different methods. MAPE is the mean absolute percentage error (MAPE =
1/nΣi|yi − ŷi|/ȳ, where ȳ is the mean observed value and ŷ are the predictions)
and R2 is the coefficient of determination. The first block corresponds to two
physics-based methods, the numbers reproduced from [21]. The next block cor-
responds to VAE and Gaussian process regression (GPR) trained separately.
Appendix B shows similar results obtained using other regression models such
as support vector regression. The second last row corresponds to a state-of-the-
art 3D CNN [21] for forward prediction only (we implemented this to repro-
duce the results), while the last row corresponds to our model. These numbers
were obtained by averaging over ten random initializations and train-test splits
(standard deviations in brackets). While our model is much more accurate than
separately trained VAE and regression, it is comparable to the state-of-the-art
regression-only model (considering the standard deviations) and additionally
provides direct inverse inference.
Inverse Inference The effective elastic stiffness property C11 is largely depen-
dent on the volume fractions. However, this function changes with the morphol-
ogy. This is apparent from Fig. 2. Fig. 2a and 2b show microstructures with
C11 ≊ 25GPa, generated from σ = [1, 7, 7] and σ = [7, 1, 1] having black phase
volumes 74.49% and 26.02%, respectively. Fig. 2c, shows C11 against the volume
fraction of the black phase in the microstructures from these two morphologies.
Thus, a given value of C11 can be achieved by multiple microstructures, possibly
each coming from a different morphology with a different volume fraction of the
black phase. This motivates the use of a multi-modal conditional prior.

To demonstrate the effectiveness of multi-modal inverse inference, we chose
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Table 1: Forward Prediction Accuracy. Our method performs much better than
traditional methods (first block) and separately trained VAE and regression
(second block), and is as accurate as the state-of-the-art fwd model (Reg-Only).

Method MAPE R2

V-R-H Avg [21] 46.66 -
2pt Stats+Reg [21] 6.79 -
VAE + GPR 7.23 (±0.15) 0.97 (±1e-3)
Reg-Only [21] 3.69 (±0.17) 0.99 (±4e-4)
VAE-Reg (ours) 3.50 (±0.24) 0.99 (±5e-4)

(a) σ = [1, 7, 7] (b) σ = [7, 1, 1] (c) C11 vs. volume frac-
tion of black phase

Fig. 2: Two microstructures with C11 ≊ 25GPa. The volume fraction of black
phase in (a) is 74.49% and in (b) is 26.02%, as shown by the green line in (c)

a subset of microstructures from the data, corresponding to σ = [1, 1, 7] and
σ = [7, 1, 1], which have remarkably different morphologies (see Fig. 2a and 2b
for an example) and are well-separated in the property space, but with some
overlap at the extremes, as shown in Fig. 2c. We perform inverse inference for
six target values of C11 spread across the complete range observed in the data.
For each target C11 value, we obtain the mean of the conditional prior (for the
multi-modal prior, the means of each component) and decode it. For illustration,
we discuss the inverse inference for C11 = 30GPa. Fig. 3a shows the real (top)
and inferred microstructures from the uni-modal Gaussian prior (middle) and
the two components of the Gaussian mixture prior. Note that the uni-modal prior
tends to infer an average of the two possible solutions. Whereas the Gaussian
mixture prior learns the solutions separately under different mixture compo-
nents, with suitable weights.

Further, we validated the inferred microstructures through FEM simulations
to estimate the achieved properties. Fig. 3b shows the absolute percentage error
between target and achieved properties using the mean solutions under uni-
modal and multi-modal priors for a range of C11 values. The solutions inferred
from the Gaussian mixture prior achieve the target properties better than those
inferred from the uni-modal Gaussian prior. The difference is more pronounced
for target C11 values in the middle (e.g., 35GPa), where both the morphologies
are likely. The average absolute error using Gaussian mixture prior is about 16%,
with an R2 value of 0.97.
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(a) Target C11 = 30GPa

(b) Inverse Inference - Abs. % Error

Fig. 3: (a) Inverse inference for target C11 = 30GPa. Top row shows real mi-
crostructures with the target C11. The microstructures inferred using a uni-
modal Gaussian prior (middle row) tend to be like an average, whereas the
multi-modal Gaussian mixture prior learns the multiple possible solutions un-
der separate mixture components (last row). (b) Evaluation of inverse inference
through FEM simulations to get the achieved C11 and compute the absolute
% error between target and achieved C11. The multi-modal prior learns multi-
ple solutions under separate components unlike the uni-modal Gaussian prior,
leading to more accurate inference (error within 20% in most cases).

Comparison with optimization
As discussed in sections 1 and 3, some recent works have proposed optimization
in the latent space of VAE or GAN for inverse inference. However, exploring the
latent space efficiently and finding multiple optima can be difficult [7]. Searching
from multiple random initial points may be required to find good solutions. In
contrast, our inverse inference method directly provides some good initial can-
didates in the optimal regions. Detailed search can then be efficiently performed
in the neighborhood to reach high-quality solutions.

To demonstrate this, we implemented simulated annealing optimization in
the VAE latent space. The objective function is implemented using the forward
prediction model referred to as Reg-only in table 1. For each target property
value, we performed the optimization starting at multiple random initial points
and those inferred by our method. As an example, figure 4a shows the results for
target C11 = 35GPa. The top row shows two real microstructures with C11 ≊
35GPa, the middle row shows two distinct solutions found from optimization
runs starting with 5 random initial points and the last row shows the result of
optimization starting with the points inferred by our method. Similar results
for other target property values are shown in appendix B. The solutions are
validated through FEM simulations as before. The results are shown in fig. 4c.
We found that to ensure that the mean error between the target and achieved
property values is within 10%, we had to run at least 5 searches starting from
different random initializations, with at least 200 iterations each. Due to this,
the average time for a single inverse inference was ∼1.5 hours on a Nvidia V100
GPU, using a reduced-order forward model. Doing this with physics-based FEM
simulation model would be clearly infeasible. Comparatively, when starting from
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(a)

(b)

(c)

Fig. 4: Optimization based inverse inference (a) For target C11 = 35GPa, real
microstructures (top row), those obtained through optimization by starting at 5
random initial points of which two were distinct (middle row), and at the points
inferred by our method (last row). (b) Visualization in latent space. Optimization
starting from the points inferred by our method (red) converges to the orange
points in 10 iterations, leading to high-quality solutions (c) The absolute %
error for a range of target C11 values. When starting at random points, at least
5 searches, 200 iterations each, are needed to achieve mean error <10%. Starting
at points inferred by our method, this is achieved in just 10 iterations

the points inferred by our method, we could get to similar accuracy (i.e. mean
error <10%) within 10 iterations, which took ∼2mins on the same hardware.

This can perhaps be explained as follows: The VAE latent space has regions
of high and low probabilities, with high probability regions being quite sparse.
The optimization algorithm guided only by the forward-prediction model has no
knowledge of this distribution and hence spends considerable amount of time
exploring low probability regions. In our approach, the conditional prior used
for inverse inference is learned jointly with VAE and property prediction which
ensures the conditional prior picks up the true distribution of the latent space.
Figure 4b shows for target C11 = 35GPa, how the latent space points inferred
by our method are just nudged right to improve the error from ∼20% (please
see figure 3b) to ∼6%. The plot is a visualization of the latent space in 2D using
Principal Components Analysis (PCA). The points are colored by the C11 value.
The two large red circles are the points inferred by VAE-Reg multi-modal prior
(component 1 and 2), which are fed as initial points for optimization. The large
orange circles are the points found by optimization after 10 iterations. It can
be seen that the points are pushed towards the right high-probability regions,
leading to microstructures with C11 very close to 35GPa.
Extension to multiple properties Our model can be easily extended for the
case when c is a vector, by suitably changing the sizes of the regressor’s out-
put and the generator’s input layers. To show this, we extended the dataset by
estimating the entire elastic stiffness tensor C through FEM simulations and
applied our method for forward and inverse inference involving the vector C.
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These experiments are discussed in appendix C.
Discussion and Limitations As discussed already, the number of mixture
components K in the prior is treated as a hyperparameter presently. A good
value of K could be set using Bayesian global optimization, or can be learned
using a suitable hyper-prior for K. In some cases, materials scientists may pro-
vide a heuristic about the number of practically feasible solutions for a target
property value based on domain knowledge of the specific material system under
consideration.

5 Summary and Conclusions

We have developed a model for forward and inverse structure-property linkages in
materials science by combining VAE and regression. For forward prediction, the
combined model performs better than separately trained VAE and regression and
is comparable to the state-of-the-art regression-only model. Whereas for inverse
inference, the candidate microstructures inferred using our model achieve the
target properties reasonably accurately and a local optimization search around
these candidates using a reduced-order model quickly reaches target accuracy.
Thus a detailed exploration in the small optimal region using physics-based
simulations or experiments becomes feasible.
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A Architecture and Training Details

Architecture Table 2 shows the architecture of encoder and regressor. The
two networks have a common convolution part after which, two branches fork
out - one for encoder and the other for regressor. Output of encoder is of size 16
(number of latent dimensions) and output of regressor is the number of properties
(1 or 6). They output µ and σ of q(z|x) and q(c|x) respectively, where x is the
microstructure, z the latent representation and c is the property.

Table 2: Encoder Architecture
Layer #Filters Activation Pool/Stride Output Size

C
om

m
on

Input - - - (51,51,51,1)
Conv1 16 LReLU(0.2) Max/2 (25,25,25,16)
Conv2 32 LReLU(0.2) Max/2 (12,12,12,32)
Conv3 64 LReLU(0.2) Max/2 (6,6,6,64)
Conv4 128 LReLU(0.2) Max/2 (3,3,3,128)
Conv5 256 LReLU(0.2) Max/2 (1,1,1,256)
Flatten - - - 256
Dense1 - ReLU - 2048

E
nc

od
er Dense2 - ReLU - 1024

z_mean - - - 16
Dense2_1 - ReLU - 1024
z_log_var - - - 16

R
eg

re
ss

or Dense2_2 ReLU 1024
c_mean - 1 or 6
Dense2_3 ReLU 1024
c_log_var - 1 or 6

Table 3 shows the decoder architecture. The generator takes the c predicted

Table 3: Decoder Architecture
Layer #Filters Activation Upsampling Output Size
Input - - - 16
Dense1 - LReLU(0.2) - 32
Dense2 - LReLU(0.2) - 64
Dense3 - LReLU(0.2) - 13824
Reshape - - - (6,6,6,64)
DeConv1 64 LReLU(0.2) Nearest, 2 (12,12,12,64)
DeConv2 32 LReLU(0.2) Nearest, 2 (24,24,24,32)
DeConv3 16 LReLU(0.2) Nearest, 2 (48,48,48,16)
DeConv4 1 Sigmoid - (51,51,51,1)

by regressor as input and produces the µ and σ of conditional prior p(z|c) as
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output. When p(z|c) is a Gaussian mixture prior with k components, the outputs
are - component probabilities π (softmax layer of size k), and µ’s and σ’s of all
the components (two layers of size latent_dim ∗ k). The two variants of the
architecture (Gaussian prior and Gaussian mixture prior) are shown in table 4
and 5, respectively.

Table 4: Gaussian prior
Layer Activation Output Size
Input - 1/6
pz mean - 16
pz log var - 1/6

Table 5: Gaussian mixture prior
Layer Activation Output Size
Input - 1/6
Dense Tanh 8
pz pis Softmax k
pz means - 16*k
pz log vars - 16*k

Training The model is trained end-to-end using using Adam optimizer with
learning rate 0.0005, β1 = 0.75, β2 = 0.999 and batch size 8. Because of 3D style
loss the effective batch size increases many fold, so we use a relatively small
batch size to avoid exhausting the memory. For number of latent dimensions,
we tried the values 2, 4, 8, 16, 32, 64. We found that with 16 latent dimensions
we got good reconstructions while keeping the right entropy of posteriors q(z|x)
(i.e., neither peaky nor too wide) and good prediction accuracy. Note that if
the posteriors are peaky (low entropy), the encoder is learning almost determin-
istic representations, possibly leading to a non-continuous latent space which
is difficult to sample from. On the other hand, if the posteriors are too wide
(high entropy), the representations of most inputs will be similar, loosing the
discriminative power.

The loss function contains three terms - the regression loss, the style (recon-
struction) loss and the KL-divergence from prior (regularization). Since these
terms have different numerical scales, we first normalize them to the same scale
(order of magnitude) by using suitable multipliers for the regression loss (2) and
the KL divergence (20). We then searched for weights of regression loss and KL
divergence in 1, 2, 5, 10, 100 and 0.1, 0.2, 1 respectively. We got the best results
with weight 10 for regression loss and 1 for KL-Divergence. In the next section
we explain why it is necessary to choose 2D slices from all three directions to
compute the style loss between.

Style loss computation Style loss between 2 3D inputs is computed using 2D
slices so that we can use the pre-trained VGG19. We found that to ensure a
match between the 3D features (such as elongation), slices from all three axial
directions need to be matched, as shown in figure 5. Since the input size is
51x51x51, we get 51*3=153 slices. This increases the effective batch size for
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style loss computation by 153 times, so we use a relatively small batch size of 8.

Fig. 5: 3D Style loss from 2D slices - (a)The observed microstructure,
(b)Reconstruction by matching 51 slices in x direction, (c)&(d) Center slices
of (b) in x and y directions, and (e)&(f)Center slices of a reconstruction by
matching slices in all directions. Features in y direction are left unmatched in
(d), as compared to (f).

B Additional Experimental Results

In this section, we present additional experimental results including example
reconstructions and inverse inferred microstructures for a range of C11 values
using our method as well os optimization-based method.

B.1 Reconstruction

Fig. 6 shows example reconstructions of the test set microstructures with differ-
ent morphological features. The reconstructions are not exactly a replica of the
inputs. Rather they are statistically equivalent. The average grain sizes, elon-
gation, and volume fraction of the black phase are similar in the input and the
reconstruction. This shows that the latent representation captures these physi-
cally significant attributes of the microstructure.

B.2 Learned Microstructure Representations

The motivation for combining VAE and regression was to enable VAE to learn
microstructure features salient for reconstruction and property-prediction. In
this section we show that the combined VAE-regression model indeed learns
a latent space which is organized by property values and is better suited for
linking with properties than a vanilla VAE latent space. Figure 7a and 7b show
the latent spaces learned using a vanilla VAE and a combined VAE-regression
model, respectively in 2D using PCA. The points are colored by C11 values.
The latent space learned by the combined model is clearly better organized
for property prediction. Moreover, since the latent space is property-aware, it
can facilitate efficient inverse inference (using the conditional prior) avoiding
expensive optimization loops. This is explained in detail in the main paper in
the section "Comparison with optimization".
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Fig. 6: Example reconstructions obtained from the learned VAE model. The in-
puts and reconstructions are not pixel-wise replicas. Rather, they are statistically
equivalent.

(a) Vanilla VAE (b) Combined VAE-Reg

Fig. 7: Comparison of latent spaces learned by vanilla VAE and a combined VAE-
regression model

B.3 Inverse Inference

Figure 8 shows the inverse inferred microstructures for all target values of C11

using the two priors. GM C1 and GM C2 denote microstructures obtained from
means of the two components of the Gaussian mixture prior, whereas Gaussian
denotes those obtained from uni-modal Gaussian prior. While all the microstruc-
tures inferred using one component of a Gaussian mixture prior seem to be the
same, they actually have increasing volume fractions of black phase for increas-
ing target C11 . This is shown in table 6. Please note that the two morphologies
are clearly separated by the two components of the mixture prior. Whereas the
Gaussian prior tends to infer an average or mix of the two morphologies. This
can be seen for the target values 30GPa and 35GPa which are likely under both
the morphologies. It can also be seen from the volume fractions in the inferred
microstructures using uni-modal prior shown in table 6.

Comparison with Optimization Figure 9 shows the results for various target
C11 values. In each part, the top row shows real microstructures with (approx-
imately) the target C11. The middle row shows distinct solutions found from 5
optimization runs (at least 200 iterations each), starting with 5 random initial
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Fig. 8: Inverse inference for a range of target C11 values using the two priors

Table 6: Volume fraction of black phase in the inferred microstructures
Target C11 GM C1 GM C2 Gaussian

20 0.32 0.61 0.64
25 0.35 0.63 0.63
30 0.38 0.64 0.57
35 0.42 0.64 0.55
40 0.44 0.65 0.56
50 0.47 0.65 0.58
60 0.49 0.65 0.59
80 0.5 0.66 0.6

points and the last row shows result of optimization (10 iterations) starting with
the points inferred by the multi-modal prior of VAE-Reg. As can be seen, in
each case, starting with the inverse inferred points, optimization quickly reaches
diverse optimal solutions, one for each component of the multi-modal prior.

C Extension to multiple properties

In the experimental results discussed in the main paper, regression variable c was
a scalar, C11. However, our model can be easily extended for the case when c is
a vector, by suitably changing the sizes of regressor’s output generator’s input
layers. To show this, we extended the dataset by estimating other elements of
the stiffness tensor through FEM simulations.

C.1 Extending the dataset

Following the FEM simulation method described in [5], we performed additional
simulations to estimate all the elements of the stiffness tensor. Elastic stiffness
relates stress σ with strain ϵ. Since σ and ϵ are second-rank (3 × 3) tensors, a
fourth-rank 3 × 3 × 3 × 3 tensor is required to relate them, i.e., σij = Cijklϵkl
However, due to symmetry of stress and strain, a 6 × 6 matrix is enough to
represent C. We performed FEM simulations to estimate the complete C6×6

matrix. In the current configurations which lead to orthotropic materials, this
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(a) C11 = 25GPa (b) C11 = 35GPa

(c) C11 = 40GPa (d) C11 = 80GPa

Fig. 9: Inverse Inference for various target C11 values using Optimization. In
each part, top row is real microstructures with the target C11, middle row is op-
timization starting from 5 random initial points and the last row is optimization
starting from inverse inference using VAE-Reg.

matrix is symmetric and the off-diagonal elements after first 3×3 sub-matrix are
insignificant. Thus, we use C11, C21, C31, C22, C32 and C33, in our experiments.4
Note that C11 in the new data is the same as C11 in the existing data since we
are not replacing the original data, rather just augmenting it with additional
properties.

C.2 Forward inference

Table 7 and 8 show the forward prediction accuracy using different methods
for the diagonal and off-diagonal elements of C respectively. The first block
corresponds to separately trained VAE and regression. For regression we exper-
imented with linear regression (LIN), neural network (NN), Gaussian process
regression (GPR) and SVR. The second last row corresponds to the regression-
only CNN [21] model, and the last row corresponds to our VAE-regression model.
The numbers are averaged over ten runs with random initialization and train-test
splits. Note that we extended the state-of-the-art architecture from [21] for the
vector case by adding more output neurons. Our model consistently performs as
good as or better than the state-of-the-art, considering the standard deviations.

4 please refer to standard texts on generalized Hooke’s law, e.g. [19]
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Table 7: Forward Prediction Accuracy - Vector Case, Diagonal Elements

Method C11 C22 C33

MAPE R2 MAPE R2 MAPE R2

VAE+LIN 14.25
(±0.19)

0.9228
(±0.0028)

14.65
(±0.37)

0.9138
(±0.0033)

12.87
(±0.26)

0.9322
(±0.0019)

VAE+NN 7.60
(±0.11)

0.9717
(±0.0012)

7.46
(±0.20)

0.9716
(±0.0014)

7.259
(±0.09)

0.9736
(±0.0008)

VAE+GPR 7.23
(±0.15)

0.9729
(±0.0015)

6.97
(±0.13)

0.9737
(±0.0009)

6.84
(±0.11)

0.9752
(±0.0013)

VAE+SVR 6.76
(±0.12)

0.9763
(±0.0013)

6.56
(±0.11)

0.9764
(±0.0010)

6.43
(±0.07)

0.9779
(±0.0010)

Reg-Only ([21]) 4.27
(±0.29)

0.9923
(±0.0009)

4.16
(±0.29)

0.9921
(±0.0010)

4.15
(±0.3)

0.9923
(±0.0011)

VAE-Reg (ours) 3.99
(±0.3)

0.9932
(±0.0010)

3.77
(±0.18)

0.9933
(±0.0010)

3.82
(±0.16)

0.9934
(±0.0006)

Table 8: Forward Prediction Accuracy - Vector Case, Off-diagonal Elements

Method C21 C31 C32

MAPE R2 MAPE R2 MAPE R2

VAE+LIN 19.4476
(±0.3370)

0.8657
(±0.0030)

18.9616
(±0.2750)

0.8734
(±0.0034)

17.0849
(±0.2472)

0.894
(±0.0020)

VAE+NN 9.6434
(±0.3462)

0.9575
(±0.0031)

9.2863
(±0.1511)

0.961
(±0.0013)

9.2004
(±0.2123)

0.9608
(±0.0017)

VAE+GPR 8.1671
(±0.1726)

0.9644
(±0.0016)

7.9095
(±0.1849)

0.9676
(±0.0020)

8.0401
(±0.1558)

0.9662
(±0.0014)

VAE+SVR 7.59
(±0.15)

0.969
(±0.0014)

7.36
(±0.17)

0.9717
(±0.0023)

7.58
(±0.12)

0.9695
(±0.0014)

Reg-Only ([21]) 5.82
(±0.43)

0.9855
(±0.0021)

5.78
(±0.67)

0.9858
(±0.0031)

6.0
(±0.72)

0.9846
(±0.0031)

VAE-Reg (ours) 5.48
(±0.32)

0.9872
(±0.0011)

5.33
(±0.21)

0.9880
(±0.0009)

5.35
(±0.23)

0.9880
(±0.0018)
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Fig. 10: Inverse inference for a vector of properties using Gaussian and Gaussian
mixture priors.

C.3 Inverse Inference

We perform inverse inference for vectors [C11, . . . , C33] chosen from the test data
since it’s easier to validate the results on them as reference structures with these
properties are already available in the test data. We discuss the inverse inference
for an example property vector:

[C11 C22 C33 C21 C31 C32]

= [8.24 38.07 43.22 4.44 3.99 10.70]

Fig. 10 shows the observed and inferred microstructures for this target elastic
stiffness vector. The leftmost image is the observed microstructure, while the
rest (from the second) are inferred using the mean of the uni-modal Gaussian
prior, and the two means of the Gaussian mixture prior with two components.
The microstructures inferred from the mixture prior are closer to the real mi-
crostructure and hence achieve the target set of properties better (as explained
next).

Inverse inference was performed similarly for 10 target property vectors
C11 . . . C33 from the test-set. Table 9 shows the property vectors and figure 11
shows microstructures inferred for these target vectors. Note that many of the
target vectors are quite similar and so the inferred microstructures too are sim-
ilar.

h

Fig. 11: Inverse inference for target vectors [C11 . . . C33] shown in table 8

The inferred microstructures were then validated through FEM simulations
to get the achieved properties, as before. Table 10 shows the mean absolute
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Table 9: Target vectors [C11 . . . C33] from the test data
No. C11 C21 C31 C22 C32 C33

1 8.24 4.44 3.99 38.07 10.7 43.22
2 14.64 6.94 7.29 64.97 19.02 63.03
3 14.07 7.09 6.99 67.95 19.72 65.22
4 7.83 3.11 3.64 31.74 8.84 40.6
5 16.59 7.28 7.45 66.93 19.65 65.84
6 12.75 6.42 6.39 74.23 21.55 70.61
7 9.8 4.68 4.57 51.51 15.23 57.91
8 16.83 7.75 7.51 80.56 24.3 79.55
9 16.83 8.07 7.9 79.87 24.4 79.67
10 10.42 5.02 4.84 53.46 14.83 54.41

percentage error between target and achieved values of C11, . . . , C33 for the two
priors. The solutions inferred using Gaussian mixture prior consistently achieve
the target sets of properties with better accuracy.

Table 10: Abs. % Error Between Target and Achieved Cij

Prior Mean Absolute % Error
C11 C21 C31 C22 C32 C33

Gaussian 35 38 36 29 34 27
Gaussian Mixture 13 13 12 12 13 9
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