
A Sample Reuse Strategy for Dynamic Influence
Maximization Problem

Shaofeng Zhang1, Shengcai Liu2, and Ke Tang1

1 Southern University of Science and Technology, Shenzhen 518055, China
2 Centre for Frontier AI Research (CFAR), Agency for Science, Technology and

Research (A*STAR), 138632, Singapore

Abstract. Dynamic influence maximization problem (DIMP) aims to
maintain a group of influential users within an evolving social network,
so that the influence scope can be maximized at any given moment. A
primary category of DIMP algorithms focuses on the renewal of reverse
reachable (RR) sets, which is designed for static social network scenarios,
to accelerate the estimation of influence spread. And the generation time
of RR sets plays a crucial role in algorithm efficiency. However, their up-
date approaches require sequential updates for each edge change, leading
to considerable computational cost. In this paper, we propose a strategy
for batch updating the changes in network edge weights to efficiently
maintain RR sets. By calculating the probability that previous RR sets
can be regenerated at the current moment, we retain those with a high
probability. This method can effectively avoid the computational cost
associated with updating and sampling these RR sets. Besides, we pro-
pose an resampling strategy that generates high-probability RR sets to
make the final distribution of RR sets approximate to the sampling prob-
ability distribution under the current social network. The experimental
results indicate that our strategy is both scalable and efficient. On the
one hand, compared to the previous update strategies, the running time
of our strategy is insensitive to the number of changes in network weight;
on the other hand, for various RR set-based algorithms, our strategy can
reduce the running time while maintaining the solution quality that is
essentially consistent with the static algorithms.

Keywords: Influence Maximization Problem · Dynamic Social Network
· Sample Reuse.

1 Introduction

In recent years, with the rapid development of online social platforms, there is
a huge potential for application analysis of social networks [7]. The influence
maximization problem (IMP) stands as a representative problem within social
network analysis. It aims at discovering a part of influential users, through which
the spread of products or opinions could be maximized in the whole social net-
work [8]. The IMP has a wide range of applications, such as viral marketing [14],

ar
X

iv
:2

31
1.

15
34

5v
1

 [
cs

.S
I]

 2
6

N
ov

 2
02

3

2 S. ZHANG et al.

election campaigns [12], and fake news blocking [4]. However, in real-world sce-
narios, the relationships between users are constantly evolving, indicating that
social networks are not static. The dynamic nature of social networks can af-
fect the spread of influence [15, 20]. Every time the social network undergoes a
change, the algorithms tailored for IMP must be restarted from scratch, resulting
in huge computational overhead. Therefore, the dynamic influence maximization
problem (DIMP) has been formulated, aiming to efficiently solve the IMP within
dynamic social networks.

The primary existing approaches [15,17,25] involve modifying RR set-based
algorithms, which are efficient algorithms designed for IMP, adapting them to
dynamic social networks. In RR set-based algorithms, the efficiency is heavily
dependent on the generation of RR sets. Therefore, they accelerate the evalu-
ation of influence spread by updating previously generated RR sets, which can
reduce the time costs associated with resampling. However, their methods re-
quire sequential updates for each edge change in the network. For example, when
the number of updated edge weights is a, their methods would require a repeti-
tive runs to process each change. In real-world scenarios, the dynamics of social
networks are often captured through snapshots over a period of time, which
can involve a substantial number of updates between two snapshots. In such
instances, the overhead of updating RR sets with their methods would exceed
the cost of regenerating RR sets from scratch, making the updated algorithms
less efficient than the static ones.

In this paper, we propose a new update strategy for RR set-based algorithms
tailored to scenarios of network edge weight changes, which has the ability to
simultaneously process multiple dynamic changes. Our strategy can efficiently
reduce the time costs of redundant sampling by preserving partial historically
generated RR sets, which have a high probability of being regenerated at the
current moment. This method does not require updating the RR sets for each
updated weight, achieving the purpose of batch processing dynamic changes. Ad-
ditionally, we propose a resampling strategy that generates new high-probability
RR sets with previous rejected low-probability RR sets. This approach makes
the final distribution of RR sets remains approximate to the probability dis-
tribution derived from sampling in the current social network. The experiments
indicate that our strategy is scalable. When the number of updated edge weights
increases by 9 times, the running time of our algorithms only grow by 0.3 times,
whereas the running time of the DynIM algorithm [15] increases by more than 60
times. Moreover, our strategy is efficient, it can help RR set-based algorithms,
IMM [22] and SUBSIM [6], achieve up to a 19% and 12% reduction in running
time respectively.

2 Preliminaries and Related Work

2.1 Problem Definition

Dynamic influence maximization problem aims to maintain a group of influen-
tial users in dynamic environments, specifically within dynamic social networks,

A Sample Reuse Strategy for Dynamic Influence Maximization Problem 3

ensuring that their influence spread remain maximized at every moment. In this
section, we will provide a formal definition of the DIMP.

Social Network: The social network G = (V,E, P), where V = {v1, . . . , vn}
represents the set of nodes, E ⊆ V × V represents the edges between nodes,
and P = {p(u,v)|(u, v) ∈ E} represents the weights of the edges, reflecting the
probability of influence propagation between nodes. Here, p(u,v) ∈ (0, 1] indicates
the influence strength of node u on node v.

Seed Set: The seed set refers to the set of seed nodes S ⊆ V that are chosen
to be activated in the initial state.

Budget: The budget k constrains the size of the seed set, meaning that at
most k seed nodes can be selected.

Diffusion Model: The diffusion model M captures the random process of
information dissemination by the seed set in the social graph [11]. The diffusion
model adopted in this paper is the independent cascade (IC) model [8]. In the
IC model, each node has two states: activated and inactivated. The influence
diffusion process unfolds in the following discrete steps:

– In the initial step t = 0, the nodes in the seed set S are activated, while
other nodes remain in inactive state.

– At step t ∈ [0, n], when node u is activated for the first time, it is con-
sidered contagious and has a single chance to activate each of its inactive
out-neighboring nodes v. The probability that node v gets activated is p(u,v).
Then, node u remains in an activate state but becomes non-contagious.

– The influence diffusion process terminates when no new nodes are activated,
that is, when there are no more contagious nodes.

Influence Function: Given a social network G = (V,E, P), a seed set S ⊆
V , and a diffusion model M , the influence function is defined as σG,M (S). It
represents the expected number of nodes influenced (activated) by the seed set
S when the influence diffusion process terminates [11].

Dynamic Social Network: A dynamic social network is defined as a se-
quence of network snapshots evolving over time, G = (G0, G1, . . . , GT), where
Gt = (V t, Et, P t) is a snapshot of the network at time t [20]. This study focuses
on the updates of the network edge weight. Thus, the dynamic changes of the
social network Gt are defined as ∆Gt = (V,E,∆P t).

Dynamic Influence Maximization Problem: Given a budget k, the in-
fluence diffusion model M , the social network snapshot at time t denoted as Gt,
and the dynamic changes ∆Gt, the dynamic influence maximization problem
aims to find the seed set St+1 in the social network snapshot Gt+1 = Gt ∪∆Gt

at time t+1, such that St+1 ⊆ V and |St+1| ≤ k to achieve influence maximiza-
tion.

St+1 = argmax
S∈V,|S|<k

σGt+1,M (S) (1)

2.2 Related Work

The influence maximization problem was first proposed by Kempe [8], drawing
inspiration from viral marketing strategies. They seeks to spread information

4 S. ZHANG et al.

throughout the social network using a word-of-mouth approach. There are two
main difficulties in the influence maximization problem, one is that the influence
of nodes can only be evaluated by Monte Carlo simulation rather than com-
puted analytically, and the other is that the search space grows rapidly with the
network size.

Influence evaluation has been proved as #P-hard problem [2]. Over recent
years, many algorithms have been proved to estimate the influence of nodes.
The simulation-based algorithms aim to reduce the overall evaluation cost by
reducing unnecessary Monte Carlo sampling [10], while still upholding theoretical
guarantees [5, 27]. Nonetheless, these methods still require huge computational
time. The metrics-based algorithms utilize specially designed heuristic measures
to approximate the influence of nodes [2,3], but such methods tend to have lower
accuracy. The sketch-based algorithms, particularly the RR set-based method
[1, 6, 22], are now widely adopted, because of their efficiency and theoretical
guarantees. It employs a series of random generated RR sets R to concurrently
approximate the influence of multiple nodes. Let R represent the RR set. The
specific generation process in IC model is shown in Algorithm 1. At this point,
the influence of the seed set S is n

|R| ·|ΛR(S)|, where n is the number of nodes and
ΛR(S)| is the number of covered RR sets by S [22]. Then we could use the greedy-
based method to select influential seed seeds which ensures an approximation
ratio of (1− 1

e −ϵ) [8]. During the ith iteration, with the current seed set denoted
as Si−1, the greedy algorithm seeks a node v to maximize the marginal coverage
|ΛR(v|Si−1)|, as illustrated in Equation 2.

ΛR(v|Si−1) = ΛR(Si ∪ {v})− ΛR(Si−1) (2)

The ΛR(v|Si−1) denotes the random RR sets within the set R that are covered
by node v but remain uncovered by nodes in Si−1.

However, in real-world scenarios, social networks are constantly evolving.
There are some attempts to address the IMP in the dynamic social networks.
Song pioneered a clear definition of the dynamic influence maximization prob-
lem (DIMP) [20], conceptualizing the dynamic social network as a sequence of
static social networks. As such, DIMP can be seen as a series of static influence
maximization problems. The historical evaluation information can then be used
to help the algorithm efficiently update its estimation of node influence. For the
metrics-based algorithms, updates can be applied to previous calculated metrics
according to the dynamic changes in the network graph [16, 23]. To reduce the
update costs, local update strategies aim to heuristically limit the impact of
network changes, thus preventing the need to update the influence of all nodes
in social network [23, 24]. For the sketch-based algorithms, especially the RR
set-based algorithms, they tried to update the previously simulated RR sets,
avoiding the computational cost associated with resampling [15, 17, 25]. How-
ever, their algorithms need to resample for each changed edge and updating
the affected RR sets, which can only process dynamic updates one by one to
make the sampling probability of the RR sets matches the new social network.
Therefore, their update strategy is effective primarily for scenarios with a small

A Sample Reuse Strategy for Dynamic Influence Maximization Problem 5

Algorithm 1 RR-Set-Generation [22]
Input: social network G.
Output: RR set R.
1: RR set R← ∅;
2: Randomly select a node r ∈ V uniformly as the root node;
3: Add node r to queue Q and RR set R;
4: Set node r as activated, and other nodes as inactivated;
5: while Q has node do
6: v ← Q.pop();
7: for each node u where (u, v) ∈ E do
8: if u is inactivated and rand() ≤ p(u, v) then
9: Add node u to queue Q and RR set R;

10: Mark node u as activated;
11: end if
12: end for
13: end while
14: return R;

number of dynamic changes. As the number of dynamic updates increases, the
cumulative time required for updates can surpass the time needed to regenerate
RR sets from scratch, leading to poorer scalability of these algorithms. Besides,
historical data can also assist in constructing seed sets more quickly. One ap-
proach directly updates the existing seed set. Specifically, it attempts to select
new nodes from the social network to replace nodes in the existing seed set,
aiming to maximize the influence gain [20, 24]. This method can avoid the time
cost of selecting seed sets from scratch. Additionally, when changes in the social
network exhibit a certain pattern, we can leverage historical data to predict the
network’s change in the next time. Based on the predicted network dynamics,
we can pre-select seed sets, thereby accelerating the solution selection [19,26].

3 Method

3.1 Sample Reuse With Importance Mixing

In this section, we introduce a sample reuse algorithm that reuses samples based
on their probability changes, aiming to avoid the computational cost caused by
redundant sampling. RR set-based algorithms require the generation of a series
of random RR sets, transforming the influence maximization problem into a
maximum set coverage problem. In dynamic social networks, when the changes
are relatively small, the random RR set generated at the previous time still have
a high probability of being generated in the current moment. This paper takes
the reverse influence sampling under the IC model as an example (as shown
in Algorithm 1), treats the RR set obtained from sampling as a sample, and
combines it with the Importance Mixing algorithm [18, 21] to reuse samples
based on their probability changes.

6 S. ZHANG et al.

𝑝𝑝𝑡𝑡(𝑅𝑅) 𝑝𝑝𝑡𝑡+1(𝑅𝑅)

ℂ old

ℂ remain

ℂ new

Fig. 1: Reverse reachable (RR) set R probability distribution in time t and t+1

At the new moment t+ 1, changes occur in the edges of the social network,
that is, Gt+1 = Gt ∪ ∆Gt. We could use the Importance Mixing algorithm to
update the series of RR sets Rt generated at the previous moment, ensuring
that the updated RR sets satisfy the probability distribution of sampling under
the new social network Gt+1. Fig. 1 depicts the evolution of the RR set’s proba-
bility distribution. To make the previous RR sets (comprising both the Cold and
Cremain parts) consistent with pt+1(R), the Importance Mixing algorithm first
rejects the Cold part and subsequently introduces the Cnew part. In detail, the
Importance Mixing approach reuses previous sampling RR sets in the following
step:

– Remain Step: For each previous RR set Ri, which was generated in Gt,
the probability of reusing it is min{1, pt+1(Ri)

pt(Ri)
}.

– Sample Step: Generate a new RR set R′
i in the new social network Gt+1.

The probability of accepting it is max{0, 1− pt(R′
i)

pt+1(R′
i)
}.

𝒗𝒗𝟕𝟕

𝒗𝒗𝟑𝟑

𝒗𝒗𝟔𝟔 𝒗𝒗𝟏𝟏

𝒗𝒗𝟐𝟐

𝒗𝒗𝟓𝟓

𝒗𝒗𝟒𝟒

(a) Graph

𝒗𝒗𝟓𝟓𝒗𝒗𝟐𝟐

𝒗𝒗𝟔𝟔

𝒗𝒗𝟏𝟏

𝒗𝒗𝟑𝟑

𝒗𝒗𝟕𝟕

𝒗𝒗𝟒𝟒

BFS Edge
Cross Edge
Dead Edge

(b) RR Set Sampling

Fig. 2: An example of RR set sampling.

The RR set-based algorithm for IMP only stored the activated nodes in the
RR sets. The probability of the RR set is associated with the incoming edges of
all activated nodes {(u, v)|u ∈ R}. According to the definition in [25] and the

A Sample Reuse Strategy for Dynamic Influence Maximization Problem 7

procedure of Algorithm 1, we categorize these edges as BFS edge, Cross Edge,
and Dead edge. For a specific edge (u, v), the BFS edge signifies that node u was
activated by node v; the Cross edge indicates that when node v was activated,
node u had already been activated; the Dead edge means node v tried to activate
node u, but was unsuccessful, as shown in Fig. 2. The probability of generating
an RR set is given by Equation (3).

p(R) =
∏

(u,v)∈EBFS

p(u,v) ·
∏

(u,v)∈EDead

(
1− p(u,v)

)
(3)

However, due to the large number of Cross and Dead edges, storing and
individually calculating probability for each RR set would lead to huge time and
space costs. We develop a approximate method to efficiently calculate the update
probabilities for RR sets, requiring storage of only the BFS edges for each RR
set. When the social network undergoes changes, for each node u, we calculate
the probability of all its incoming edges being Dead edges, as shown in Equation
(4), Where λ is a small value introduced to avoid division by zero.

pDead(u) =
∏

(u,v)∈E

1− pt+1
(u,v) + λ

1− pt(u,v) + λ
(4)

Then, to compute the probability change for a RR set, we simply traverse each
activate node in RR set and update the probabilities associated with the BFS
edges. The resulting updated probability is shown in Equation 5.

pt+1(R)

pt(R)
≈

∏
(u,v)∈EBFS

(
pt+1
(u,v) + λ

pt(u,v) + λ
·
1− pt(u,v) + λ

1− pt+1
(u,v) + λ

)
·
∏
u∈R

pDead(u) (5)

Through the reverse sampling process, as show in Algorithm 1, apart from the
seed node, every activated node u has a unique parent node v. Therefore, each
activated node u corresponds to a unique BFS edge (u, v). and the space occupied
by storing BFS edges is consistent with that of storing activated nodes.

3.2 New Resampling Strategy

In the Sample Step of Importance Mixing algorithm, RR sets are generated
but may be rejected with a certain probability, which in turn wastes the time
spent on sample generation. The purpose of the Sample Step is to generate
RR sets with increased probability, as shown in the Fig. 1 Cnew part. However,
compared to resampling from scratch, updating previously rejected samples is
more likely to generate RR sets with increased probabilities. Specifically, when
sample R is rejected and in the Cold part, it indicates that there is at least one
edge e ∈ {(u, v)|v ∈ R} with a probability decrease.

– If (u, v) is a BFS edge,
pt+1
(u,v)

pt
(u,v)

< 1. Thus, when we remove this edge, it becomes

a Dead edge and makes the RR set probability change to
1−pt+1

(u,v)

1−pt
(u,v)

> 1.

8 S. ZHANG et al.

– If (u, v) is a Dead edge,
1−pt+1

(u,v)

1−pt
(u,v)

< 1, adding the edge results in a RR set

probability change of
pt+1
(u,v)

pt
(u,v)

> 1.

Algorithm 2 Resample-RR-Set

Input: old RR set R, social network Gt+1.
Output: new RR set R′.
1: new RR set R′ ← ∅;
2: Select the root node v ∈ V in old RR set R;
3: Add node r to queue Q and RR set R′;
4: Set node r as activated, and other nodes as inactivated;
5: while Q has node do
6: v ← Q.pop();
7: for each node u where (u, v) ∈ E do
8: if u is activated then
9: Continues;

10: end if
11: if pt(u,v) ̸= pt+1

(u,v) then
12: if rand() ≤ pt+1

(u,v) then
13: Add node u to queue Q and RR set R′;
14: Mark node u as activated;
15: end if
16: else
17: if (u, v ∈ R) or (v ̸∈ R and rand() ≤ pt+1

(u,v)) then
18: Add node u to queue Q and RR set R′;
19: Mark node u as activated;
20: end if
21: end if
22: end for
23: end while
24: return R′;

Therefore, when the sample R is rejected in Remain Step of Importance
Mixing algorithm, in Sample Step, we can resample the edges with changed
probabilities, transitioning sample R from the Cold part to the Cnew part. So, we
propose a resampling strategy to generates new high-probability RR sets with
previous rejected low-probability RR sets, as shown in Algorithm 2.

Besides, we need to adjust the importance sampling part, as shown in Al-
gorithm 3. If the sample R is accepted in Remain Step, it suggests that the
RR set R resides in the Cremain, allowing us to move directly to the next iter-
ation (Algorithm 3 Lines 3-5). However, if the sample R is rejected in Remain
Step, indicating that its position is in the Cold part, we then proceed to Sample
Step. In this step, we resample with previous rejected low-probability RR set
R, as shown in Algorithm 2, and accept it with the change probability to check

A Sample Reuse Strategy for Dynamic Influence Maximization Problem 9

whether the generated new RR set is in the Cnew part (Algorithm 3 Lines 6-11).
Algorithm 3 Lines 16-21 ensure that the size of Rt+1 is NR.

Algorithm 3 RR-Sets-Generation-Importance-Mixing

Input: social network Gt+1, set of old random RR sets Rt, number of new RR sets
NR .

Output: set of new random RR sets Rt+1.
1: Rt+1 ← ∅;
2: for i = 1 to |Rt| do
3: Ri ← Rt[i];
4: if min(1, pt+1(Ri)

pt(Ri)
) ≥ rand() then

5: Rt+1 ← Rt+1.append(Ri);
6: else
7: R′

i ← Resample-RR-Set(Ri, Gt+1)
8: if max(0, 1− pt(R′

i)

pt+1(R′
i)
) ≥ rand() then

9: Rt+1 ← Rt+1.append(R′
i);

10: end if
11: end if
12: if |Rt+1| ≥ NR then
13: break;
14: end if
15: end for
16: while |Rt+1| > NR do
17: remove a randomly chosen RR set R in Rnew;
18: end while
19: while |Rt+1| < NR do
20: R← Generate a new RR set in Gt+1;
21: Rt+1 ← Rt+1.append(R);
22: end while
23: return Rt+1;

4 Experiments

4.1 Experimental Setting

In this section, we will describe the details of the experimental settings. The
experiments were executed on a Linux operating system, driven by an Intel(R)
Xeon(R) Silver 4310 CPU @ 2.10GHz and equipped with 250GB of memory.
Every algorithm we tested was crafted in C++ and compiled using g++, utilizing
version 11.3.0 of the compiler.

Social Network Dataset: This paper utilizes two real-world network graph
datasets for experimental evaluation, as summarized in Table 1. The HepTh
and HepPh datasets [9] are both citation graph, which are derived from the

10 S. ZHANG et al.

electronic literature platform, arXiv. Each node represents a paper, and edges
signify citation relationships.

Table 1: Datasets overview.
Dataset Node Number Edge Number Type
HepTh 27,770 352,807 Directed
HepPh 34,546 421,578 Directed

Probability Setting: In this paper, we use the independent cascade diffu-
sion model for influence spread. Since the weights in the social network are un-
known, we adopt the widely-used weighted cascade (WC) model [8]. Specifically,
for each edge u, v in the network graph, the weight of the edge is p(u,v) =

1
din
v

,
where dinv represents the in-degree of node v.

Algorithms: In this paper, we selected three algorithms, IMM, SUBSIM,
and DynIM, as well as two algorithms proposed in this study, D-IMM and D-
SUBSIM, for comparative experiments.

– IMM [22]: The classic RR set-based algorithm for solving the IMP.
– SUBSIM [6]: The the state-of-the-art algorithm that uses RR sets to solve

the IMP.
– DynIM [15]: The classic algorithm specifically designed to solve the DIMP.
– D-IMM and D-SUBSIM: Our proposed algorithms integrate the RR set-

based algorithms, IMM and SUBSIM, respectively, with the sample reuse
method introduced in this paper.

Parameter Setting: For the IMM, SUBSIM, D-IMM, and D-SUBSIM al-
gorithms, the parameters are configured with values l = 1 and ϵ = 0.1; for the
DynIM algorithm, the parameter is set to ϵ = 0.5. In the experimental setup, the
budget for the seed set k is fixed at 50. For the seed sets obtained by different
algorithms, we use the Monte Carlo simulation method to estimate the influence
spread, with the number of simulations r = 10, 000. Due to the randomness in-
herent in the algorithms, each experiment is repeated 10 times, and the running
time and influence are averaged [13]. Note that when evaluating running time,
since every algorithm needs to compute on in the updated graph, we excluded
the time required to load and update the social network.

4.2 Edge Weight Update Analysis

This experiment aims to examine the algorithms’ efficiency and scalability with
respect to the number of dynamic updates. We focus on scenarios with edge
weight changes to isolate the effect of network size variations on the algorithms’
running time. The experiment involves only two snapshots of the social network,
that is, the social network undergoes one change involving multiple dynamic up-
dates. Specifically, following the settings in [15], each dynamic update represents

A Sample Reuse Strategy for Dynamic Influence Maximization Problem 11

randomly selecting an edge (u, v) and change its probability to pt×2 or pt/2. For
each social network, we varied the number of dynamic updates to evaluate the
algorithm’s performance under various dynamic scenarios in terms of running
time (as shown in Fig. 3) and the solution quality (as shown in Fig. 4).

2 4 6 8 10
Number of Updates (×103)

10−2

10−1

100

101

Ti
m
e
/ s

(a) HepTh

2 4 6 8 10
Number of Updates (×103)

10−2

10−1

100

101

Ti
m
e
/ s

IMM
D-IMM
SUBSIM
D-SUBSIM
DynIM

(b) HepPh

Fig. 3: The running time of the algorithms under different numbers of edge weight
updates.

For the datasets HepTh and HepPh, we varied the number of updated social
network edge weights within the range of [103, 104] and conducted comparative
experiments across all the five algorithms. As shown in Fig. 3a and Fig. 3b,
the average running time of the DynIM algorithm for processing 104 updated
edges is 71.5 times and 62.3 times, respectively, of the time taken for 103 up-
dated edges. In contrast, our algorithm’s running time (D-IMM and D-SUBSIM)
for 104 updated edges is both merely 1.3 times that of 103 updated edges for
two datasets. Therefore, compared to the DynIM algorithm, our method’s run-
ning time, D-IMM and D-SUBSIM, is less sensitive to the number of updates.
Moreover, for the datasets HepTh and HepPh, the time taken by the DynIM
algorithm to update its RR sets is significantly higher than that of the other
four algorithms. While the D-IMM algorithm achieves a 26.2% and 19.3% re-
duction in average running time compared to the IMM algorithm, and similarly,
the D-SUBSIM algorithm exhibits a 26.6% to 12.5% decrease in average running
time when contrasted with the SUBSIM algorithm. Therefore, for the scenarios
of network edge weight change, our method can effectively accelerate the IMM
and SUBSIM algorithms.

Figure 4 indicates that the solution quality of our algorithm is comparable to
that of the static algorithms. For the two datasets, the average influence spread
of the seed sets solved by the D-IMM algorithm shows a difference of less than
0.5% compared to the IMM algorithm. Besides, the average influence spread
of the D-SUMSIM algorithm differs by no more than 0.3% from that of the
SUMSIM algorithm, which is still within an acceptable range. Therefore, our
dynamic algorithms, D-IMM and D-SUBSIM, do not show a significant decline
in solution quality compared to the static algorithms.

12 S. ZHANG et al.

2 4 6 8 10
Number of Updates (×103)

5300

5400

5500

5600

5700

5800

5900

In
flu

en
ce

4 6

5860

5880

(a) HepTh

2 4 6 8 10
Number of Updates (×103)

6600

6700

6800

6900

7000

7100

In
flu

en
ce

4 6

7100

7120

IMM
D-IMM
SUBSIM
D-SUBSIM
DynIM

(b) HepPh

Fig. 4: The influence spread of the algorithms under different numbers of edge
weight updates.

5 Conclusion

In this paper, we propose a new update strategy for RR set-based algorithms
which can efficiently handle batch updates in dynamic network. Specifically,
when changes occur in the social network, it reuses historical RR sets, which
still have a high probability of being regenerated at the current time, to avoid
the computational cost caused by redundant sampling. Additionally, we design
an efficient resampling strategy to generate new high-probability RR sets with
previous rejected low-probability RR sets, which makes the final distribution of
RR sets remain approximate to the probability distribution derived from sam-
pling in the new social network. The experimental results demonstrate that our
algorithm exhibits better scalability compared to the previous update strategy.
Besides, our strategy can effectively reduce the running time of RR set-based
algorithms. While our algorithm is efficient, the resampling strategy does not
provide a theoretical guarantee that the final probability distribution of the RR
sets is consist with the one derived from sampling in the new social network. In
the future, we will attempt to improve the algorithm and propose a sampling
strategy with stronger theoretical assurances.

References

1. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in
nearly optimal time. In: Proceedings of the 25th Annual ACM-SIAM Symposium
on Discrete Algorithms. pp. 946–957. SODA’14 (2014)

2. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. pp.
1029–1038. KDD’10 (2010)

3. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 199–208. KDD’09 (2009)

A Sample Reuse Strategy for Dynamic Influence Maximization Problem 13

4. Chen, W., Liu, S., Ong, Y.S., Tang, K.: Neural influence estimator: Towards real-
time solutions to influence blocking maximization. arXiv e-prints arXiv:2308.14012
(2023). https://doi.org/10.48550/arXiv.2308.14012

5. Goyal, A., Lu, W., Lakshmanan, L.V.: Celf++: Optimizing the greedy algorithm
for influence maximization in social networks. In: Proceedings of the 20th Interna-
tional Conference Companion on World Wide Web. pp. 47–48. WWW’11 (2011)

6. Guo, Q., Wang, S., Wei, Z., Chen, M.: Influence maximization revisited: Efficient
reverse reachable set generation with bound tightened. In: Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. pp. 2167–2181.
SIGMOD’20 (2020)

7. Kapoor, K.K., Tamilmani, K., Rana, N.P., Patil, P., Dwivedi, Y.K., Nerur, S.:
Advances in social media research: Past, present and future. Information Systems
Frontiers 20(3), 531–558 (2018)

8. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a
social network. In: Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. pp. 137–146. KDD’03 (2003)

9. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data (2014)

10. Li, X., Liu, S., Wang, J., Chen, X., Ong, Y., Tang, K.: Data-driven chance-
constrained multiple-choice knapsack problem: Model, algorithms, and applica-
tions. CoRR abs/2306.14690 (2023)

11. Li, Y., Fan, J., Wang, Y., Tan, K.L.: Influence maximization on social graphs: A
survey. IEEE Transactions on Knowledge and Data Engineering 30(10), 1852–1872
(2018). https://doi.org/10.1109/TKDE.2018.2807843

12. Litou, I., Kalogeraki, V.: Influence maximization in evolving multi-campaign envi-
ronments. In: Proceedings of the 2018 IEEE International Conference on Big Data
(Big Data). pp. 448–457 (2018)

13. Liu, S., Tang, K., Lei, Y., Yao, X.: On performance estimation in automatic al-
gorithm configuration. In: Proceedings of the 34th AAAI Conference on Artificial
Intelligence, AAAI’2020. pp. 2384–2391 (2020)

14. Lu, W., Bonchi, F., Goyal, A., Lakshmanan, L.V.: The bang for the buck: Fair
competitive viral marketing from the host perspective. In: Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. pp. 928–936. KDD’13 (2013)

15. Ohsaka, N., Akiba, T., Yoshida, Y., Kawarabayashi, K.i.: Dynamic influence anal-
ysis in evolving networks. Proceedings of the VLDB Endowment 9(12), 1077–1088
(2016)

16. Ohsaka, N., Maehara, T., Kawarabayashi, K.i.: Efficient pagerank tracking in evolv-
ing networks. In: Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. pp. 875–884. KDD’15 (2015)

17. Peng, B.: Dynamic influence maximization. In: Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information
Processing Systems. vol. 34, pp. 10718–10731 (2021)

18. Pourchot, A., Perrin, N., Sigaud, O.: Importance mixing: Improving sample reuse
in evolutionary policy search methods. arXiv e-prints arXiv:1808.05832 (2018).
https://doi.org/10.48550/arXiv.1808.05832

19. Singh, A.K., Kailasam, L.: Link prediction-based influence maximization in online
social networks. Neurocomputing 453, 151–163 (2021)

20. Song, G., Li, Y., Chen, X., He, X., Tang, J.: Influential node tracking on dynamic
social network: An interchange greedy approach. IEEE Transactions on Knowledge
and Data Engineering 29(2), 359–372 (2017)

https://doi.org/10.48550/arXiv.2308.14012
https://doi.org/10.48550/arXiv.2308.14012
http://snap.stanford.edu/data
https://doi.org/10.1109/TKDE.2018.2807843
https://doi.org/10.1109/TKDE.2018.2807843
https://doi.org/10.48550/arXiv.1808.05832
https://doi.org/10.48550/arXiv.1808.05832

14 S. ZHANG et al.

21. Sun, Y., Wierstra, D., Schaul, T., Schmidhuber, J.: Efficient natural evolution
strategies. In: Proceedings of the 11th Annual Conference on Genetic and Evolu-
tionary Computation. pp. 539–546. GECCO’09 (2009)

22. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: A martin-
gale approach. In: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data. pp. 1539–1554. SIGMOD’15 (2015)

23. Wang, S., Cuomo, S., Mei, G., Cheng, W., Xu, N.: Efficient method for identifying
influential vertices in dynamic networks using the strategy of local detection and
updating. Future Generation Computer Systems 91, 10–24 (2019)

24. Yalavarthi, V.K., Khan, A.: Steering top-k influencers in dynamic graphs via local
updates. In: Proceedings of the 2018 IEEE International Conference on Big Data
(Big Data). pp. 576–583 (2018)

25. Yang, Y., Wang, Z., Pei, J., Chen, E.: Tracking influential individuals in dynamic
networks. IEEE Transactions on Knowledge and Data Engineering 29(11), 2615–
2628 (2017)

26. Zhang, L., Li, K.: Influence maximization based on snapshot prediction in dynamic
online social networks. Mathematics 10(8) (2022)

27. Zhou, C., Zhang, P., Guo, J., Zhu, X., Guo, L.: Ublf: An upper bound based
approach to discover influential nodes in social networks. In: Proceedings of the
2013 IEEE 13th International Conference on Data Mining. pp. 907–916 (2013)

	A Sample Reuse Strategy for Dynamic Influence Maximization Problem

