
Space-Efficient Graph Kernelizations
Frank Kammer #

THM, University of Applied Sciences Mittelhessen, Giessen, Germany

Andrej Sajenko #

THM, University of Applied Sciences Mittelhessen, Giessen, Germany

Abstract
Let n be the size of a parameterized problem and k the parameter. We present kernels for Feedback
Vertex Set, Path Contraction and Cluster Editing/Deletion whose sizes are all polynomial
in k and that are computable in polynomial time and with O(poly(k) log n) bits (of working memory).
By using kernel cascades, we obtain the best known kernels in polynomial time with O(poly(k) log n)
bits.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases path contraction, feedback vertex set, space-efficient algorithm, cluster
editing / deletion, full kernel

Related Version This is the full version of the paper [30], which includes proofs and an additional
result to cluster editing and deletion.

Funding Andrej Sajenko: DFG – 379157101.

1 Introduction

With the rise of big data the focus on algorithms that treat space as a valuable resource
becomes increasingly important. Large inputs may cause “standard” solutions to fail their
execution due to out-of-memory errors, or cause them to spend a significant amount of time
for memory swapping due to cache faults.

Within the last ten years, there is a new research direction called space-efficient algorithms
where one tries to solve a problem with as little space as possible while “almost” maintaining
the same running time of a standard solution for the problem under consideration. Space-
efficient algorithms are mostly designed for problems that already run in polynomial time,i.e.,
we have algorithms for connectivity problems [8, 18, 22], matching [14] and other graph
problems [23, 29]. Further algorithms are known for, e.g., sorting [4, 33] and geometric
problems [1, 3].

Our goal is to combine the research on space-efficient algorithms with parameterized
algorithms. In the classical literature a parameterized problem P ⊆ Σ∗ × N is a language
where Σ is a finite alphabet and the second part k ∈ N is called parameter. In addition, P is
called fixed-parameter tractable (FPT) if there exists an algorithm A (called FPT algorithm)
and a computable function f such that, given an instance (I, k) ∈ Σ∗ × N, the algorithm A
correctly decides whether (I, k) ∈ P in a time bounded by f(k) poly(|I|). A popular way to
find an FPT algorithm is to find a so-called kernelization algorithm. Given a parameterized
problem P , a kernelization algorithm (or simply called kernelization) is a polynomial-time
algorithm A : (Σ∗ × N) → (Σ∗ × N) such that, given an instance (I, k) ∈ Σ∗ × N, then
(I ′, k′) = A(I, k) is another instance (called kernel) of the problem with the property that
(I ′, k′) ∈ P if and only if (I, k) ∈ P and |I ′|, k′ ≤ g(k) (where usually k′ ≤ k) for some
function g. Then the kernel can usually be solved by a brute-force algorithm in O(f(g(k))
time, for some function f . Furthermore, we call (I, k) a yes-instance exactly if (I, k) ∈ P .
Otherwise, we call it a no-instance. A yes- or no-instance of constant size is called trivial.
The modification steps of the kernelization are called reduction rules and such a rule is safe

ar
X

iv
:2

00
7.

11
64

3v
4

 [
cs

.D
S]

 2
0

Fe
b

20
24

mailto:Frank.Kammer@mni.thm.de
https://orcid.org/0000-0002-2662-3471
mailto:Andrej.Sajenko@mni.thm.de
https://orcid.org/0000-0001-5946-8087

2 Space-Efficient Graph Kernelizations

if, given input (I, k), it produces an output (I ′, k′) such that (I ′, k′) is a yes-instance if and
only if (I, k) is a yes-instance.

In this paper, we describe space-efficient kernelizations, which we define as a kernelization
A (as above) with the additional property of using O(h(k) log |I|) bits for some computable
function h. Following this definition, a space-efficient FPT algorithm is an FPT algorithm
that runs within O(h(k) log |I|) bits of space. By using our kernel of g(k) vertices and edges
as an intermediate kernel, which needs O(g(k) log |I|) bits to be stored, we then can apply the
best known solution to further reduce the kernel size via kernel cascades (i.e., the consecutive
application of a kernelization on the kernel). Alternatively, we can use the kernel to easily build
a space-efficient FPT algorithm A that produces an optimal solution S for the instance (I, k)
in time f(k) poly(|I|) using O((g(k) + h(k)) log |I|) bits for some functions f and h. We focus
on graph problems, i.e., an instance I is a graph G = (V, E) as well as |I| = |V |+ |E|, and our
space-efficient kernelizations are space-efficient graph kernelizations. For the remainder of the
paper, let n and m be the vertices and edges, respectively, of the graph under consideration.
Note that for simple graphs, O(log n) = O(log m) holds.

We also recognize the need for full kernels [12], i.e., a kernel that contains the vertices/edges
of all minimal solutions in a yes-instance (G, k). Such a full kernel allows us to enumerate all
minimal solutions of size at most k. Those kernels are, e.g., necessary for the application of
frameworks such as shown in [24] and for parameterized enumeration [12]. Our computation
model is based on a read-only word-RAM with a word size of w = Ω(log n) bits, enabling
constant-time arithmetic operations (+, −, ·, /, modulo) and bit-shift operations on w-bit
sequences. The input is divided into three types: read-only input memory, write-only output
memory, and read-write working memory. Space-efficient algorithm space bounds are typically
in bits and refer to the working memory. When expressed in words, these space bounds
include an extra factor of Θ(log w) or Θ(log n) depending on the specific implementation,
making them less precise or more complex to describe. In contrast, we express kernel sizes in
terms of vertices/edges (i.e., in words), following the conventional approach for describing
kernel size.

Parameterized Space Complexity. In classical research, the focus is often on achieving
minimal space bounds, but this comes at the cost of significantly increased running times,
rendering them impractical. Parameterized space complexity is a research area where one
mainly classifies problems based on the amount of memory required to solve them. Two
important classes in this field are para−L (aka. logspace + advice) and XL (aka. slicewise
logspace). para−L contains problems that can be solved with f(k) + O(log n) bits, while XL
contains problems that can be solved with O(f(k) log n) bits [7].

We next give an overview over parameterized space complexity restricted to graph
problems. An early work on parameterized space complexity is due to Cai et al. [7] who
showed that vertex cover is in para−L. Flum and Grohe [21] presented that model-checking
problems of first-order formulas of bounded degree graphs are also in para−L. Elberfeld et
al. [17] showed that Feedback Vertex Set (FVS) is in XL. Bannach et al. [2] studied
packing, covering and clustering problems and show (among other results) that Triangle
Packing, (Exact Partial) Vertex Cover, and Many Cluster Editing are in para−L
(more precisely in a class called para−AC0 ⊆ para−L) and Cluster Editing is in para−L
(more precisely in para−TC0 ⊆ para−L). Fafianie and Kratsch [20] showed that several graph
deletion problems where the target classes have finite forbidden sets are also in para−L. This
result was recently generalized to infinite forbidden sets by Biswas et al. [6], who showed
that deletion problems like deletion to linear forest and deletion to pathwidth 1 are also in
para−L.

F. Kammer and A. Sajenko 3

To our knowledge neither the membership of para−L nor a lower bound for FVS was
discovered yet. While FVS can be formulated as a deletion problem, Biswas et al. [6]
mentioned that the techniques required are not “easily” applicable to FVS (and other
deletion problems). They attacked the problem by using different parameterizations and
showed that (among other problems) FVS is in para−L if parameterized by vertex cover.
Moreover, they presented a space-efficient FVS algorithm, parameterized by solution size
k, that runs in 5knO(1) time and with O(k log n) bits, an improvement over the previously
known best space-efficient FVS algorithm of Elberfeld et al. [17], which runs in O(kkn5) time
and uses O(k log n) bits.

Approach and Contribution. Our approach departs from the conventional method of
computing a kernel by applying reduction rules globally to the entire graph, a process that can
be resource-intensive in terms of space. Aiming for a memory usage of O(poly(k) log n) bits,
we show a process that involves systematically modifying and condensing disjoint subgraphs of
the input graph G = (V, E) while preserving poly(k) vertices and edges in the resulting kernel.
The main idea here is to make use of a separator set U of size poly(k), which partitions graph
G into disjoint subgraphs. Each subgraph undergoes a reduction process under consideration
of the separator U to efficiently shrink it to poly(k) vertices and edges. Subsequently
the reduced subgraph is then carefully integrated into an initial kernel G′ = G[U] under
construction. G′ is then repeatedly reduced to ensure we stay within our space bound. To
make our algorithm work we need to show that both, computing the separator and applying
the reduction rules, must be implemented with O(poly(k) log n) bits. This often means that
we are not able to run all known reduction rules or to run the rules in a restricted setting.

In Section 2, we present a simple Path-Contraction kernelization that runs in
O(n log k + poly(k)) time using O(poly(k) log n) bits. To find a kernel for Path Con-
traction, one usually searches for bridges (i.e., edges whose removal disconnect the graph)
and merges the endpoints of such a bridge to a single vertex [25, 32]. Bridges are usually
found by running a DFS—to the authors knowledge, all polynomial-time DFS need Ω(

√
n)

bits and a polynomial-time depth-first search (DFS) with O(
√

n) bits is due to Izumi and
Otachi [28]. Instead of this reduction rule, we use a separator U (which is the queue of
a breadth-first search (BFS)) and iteratively expand our kernel while shrinking induced
degree-2-chains (paths whose vertices all have degree 2) as long as they consist of more than
k + 1 edges. To achieve our space bound we show that a yes-instance of Path Contraction
cannot have a tree as an induced subgraph with more than k + 2 leaves. This bounds
the size of U by O(k) and makes it possible to construct a BFS algorithm that stores at
most O(k) vertices at a time, allowing us to construct a kernel with O(k2) vertices and
edges in O((n + k2) log k) time using O(k2 log n) bits. To get the current best kernel size
we subsequently apply Li et al.’s [32] polynomial-time kernelization and so get a kernel
of 3k + 4 vertices in O(n log k + poly(k)) time and using O(poly(k) log n) bits. Li et al.’s
kernelization for Path Contraction builds on Hegernes et al.’s kernelization [25] and uses
Θ((n + m) log n) bits due to searches for bridges and to store the modification in adherence
to their reduction rules.

Our main result is a new kernelization for Feedback Vertex Set (FVS) in Section 4,
prefaced by its own preliminaries in Section 3. Our idea is to compute an approximate
minimum feedback vertex set U as a separator whose removal partitions the graph into
several trees. We use a so-called Loop Rule and a restricted Flower Rule as well as a so-called
Leaf Rule and Chain Rule. If the kernel is still too large, we follow ideas from Thomassé [34].
For details on these rules, see Section 4. We want to remark that a solution for Path
Contraction of size k implies one for FVS of size 2k by simply taking the endpoints of

4 Space-Efficient Graph Kernelizations

Authors Time Space [bits]
(randomized) Li and Nederlof [31] O(2.7k(n + m)) Ω((n + m) log n)

Iwata and Kobayashi [27] O(3.46kn) Ω((n + m) log n)
Elberfeld et al. [17] O(kkn5) O(k log n)

Biswas et al. [6] O(n7 poly(k) + 5knΘ(1)) O(k log n)
This paper + Iwata and Kobayashi [27] O(n5 poly(k) + 3.5k) O(k4 log n)

Table 1 A time and space comparison of Feedback Vertex Set algorithms.

the contracted edges. Our kernelization for FVS runs in O(n5 poly(k)) time, uses O(k4 log n)
bits and outputs a kernel of n′ = 2k2 + k vertices. Note that Feedback Vertex Set
has no kernel of size O(k2−ϵ) for any constant ϵ > 0 unless NP ⊆ coNP/poly [15]. After
computing our kernel we can use the deterministic algorithm of Iwata and Kobayashi to
solve it in O(3.46kn′) = O(3.5k) time or the randomized algorithm of Li and Nederlof to
solve it in 2.7kpoly(n′) time. In total, we can solve FVS in O(n5 poly(k) + 3.5k) time and
with O(k4 log n) bits.

Li and Nederlof and Iwata and Kobayashi do not focus on space efficiency in their
search-tree algorithms for Feedback Vertex Set and thus do not state a space bound.
Based in their description they assume either to be able to modify the input graph or to
create at least one copy of it, which gives us a lower bound of Ω((n + m) log n) bits. By
assuming that one stores a copy of the reduced graph whenever descending in the search
tree, the two search-tree algorithms have a space upper bound of O(k(n + m) log n) bits.

Compared to Elberfeld et al.’s algorithm [17], which solves FVS in time O(kkn5), we are
faster, but we use O(k4 log n) instead of O(k log n) bits. Concurrently and independently to
our result, Biswas et al. [6] presented an iterative compression algorithm (based on the Chen
et al. [9] algorithm) that maintains the space bound of O(k log n) bits and has a runtime of
O(5knO(1)). The degree of the polynomial is not mentioned explicitly, presumably due to the
fact that some of the used log-space auxiliary results do not mention their “exact” running
time either. However, we and they use the O(log n) bit realizations of the so-called Leaf and
Chain Rules (aka. Degree-2 Rule) from Elberfeld et al. [17]. The non space-efficient version
of the rules removes vertices from the input graph that are not relevant for solving FVS,
but due to the space restriction, the information of the graph resulting from the removal
is computed on demand. By our analysis (Lemma 5) this results in a running time factor
of Θ(n5k log k) for each vertex / edge access. Moreover, Biswas et al. have a nested loop
where Θ(n2) connectivity tests have to be performed, which increases the running time to
Θ(n7 poly(k) + 5knΘ(1)). Based on that our running time is faster in k and in n, but they
use only O(k log n) bits. A summary is shown in Table 1.

In Section 5, we adapt a standard technique for Cluster Editing/Deletion to compute
a full kernel of O(k2) vertices in O(nm log k) time and within O(k2 log n) bits. Here we use
O(k2) times a rule searching for so-called conflict triples. This easily allows us to bound the
size of a separator U by O(k2).

2 Path Contraction

Let G be an n-node m-edge graph and let C be a subset of edges of G. We write G/C for the
graph obtained from G by contracting each edge in C. Contracting an edge is done by merging
its endpoints and removing any loops or parallel edges afterwards. In the parameterized Path
Contraction problem, a connected graph G = (V, E) is given together with a parameter

F. Kammer and A. Sajenko 5

k and the task is to find a set C ⊆ E with |C| ≤ k such that G/C is a path. In particular,
G/C is a connected graph with n′ ∈ N vertices and n′ − 1 edges. One reduction rule used
in Li et al.’s [32] and in Heggernes et al.’s [25] kernelization is an iterative contraction of a
bridge for which no polynomial-time O(poly(k) log n)-bits algorithm is known. (Bridges are
found by running a DFS and the best-known polynomial-time DFS with a minimum of space
uses Ω(

√
n) bits [28].) Instead of computing bridges, we introduce two new reduction rules

below. In the following, a subtree T of G is a subgraph of G that is a tree. Moreover, let a
degree-2 chain be a maximal simple path P = v1, . . . , vℓ (ℓ ∈ N) whose vertices v1, . . . , vℓ are
all of degree 2. Observe, if P is not a cycle, then v1 and vℓ must each have a neighbor that
is not of degree 2.

Rule 1 If there exists a degree-2 chain P with more than k + 1 edges, contract all except
k + 1 arbitrary edges of P .

Rule 2 After k applications of Rule 1, if G contains more than k2 +4k +1 vertices, more than
(3k2 + 13k)/2 edges, or a subtree with more than k + 2 leaves, then output “no-instance”.

The bound on the number of leaves in Rule 2 helps us to guarantee that our kernelization
works in our space bound. We want to remark that we do not apply Rule 2 exhaustively;
more precisely, we do not explicitly search for subtrees with more than k + 2 leaves, which is
NP-hard.

▶ Lemma 1. Rule 1 and 2 are safe and produce a full kernel.

Proof. Rule 1 is safe. Observe that a solution either contracts the entire degree-2 chain P

or none of it. Since contracting an entire degree-2 chain with more than k + 1 edges is not
allowed, any solution does not contract any edge of P . Thus, Rule 1 is safe and we do not
remove an edge of any minimal solution.

Rule 2 is safe. Vertex bound. Assume that (G, k) is a yes-instance. Let us define C

as the subset of edges from E(G) that are requisite for contraction to arrive at a solution
for G. Since C is a solution for G it is also a valid solution for G′. Consider the path P ∗,
defined by P ∗ = G′/C. Observe that P ∗ is an amalgamation of subpaths, each limited to
k + 1 edges. These subpaths, when traced back to G′, are individually connected by a unique
vertex with a minimum degree of 3. Contraction on this specific vertex is obligatory to obtain
the path P ∗. Since one edge contraction reduces the vertex count by one, the path P ∗ would
comprise a vertex count less than that of G′ by at most k vertices. Consequently, there is an
upper limit of k for such unique vertices in P ∗. This means that P ∗ can accommodate at
most k + 1 of these subpaths.

From the above deductions, it can be derived that the vertex count for P ∗ is capped at
(k + 1)2 + k. Extending this reasoning, G′ has a maximum vertex count of (k + 1)2 + 2k.

Edge bound. Let N(u) be the neighbors of a vertex u. Note that by definition, a
contraction of an edge {u, v} reduces the number of vertices by one, and reduces the number
of edges by |N(u) ∩ N(v)| + 1. Since G/C is a path where each vertex is of maximal degree 2,
G cannot have a vertex u with |N(u)| ≥ k + 3 since at least k + 1 contractions are needed to
remove k + 1 neighbors of u to reach degree at most 2. Hence, the common neighborhood
of two adjecent vertices is at most k + 1. Therefore, if we have k′ ≤ k contractions left, we
can remove at most k′ + 2 edges with one contraction. Thus, with k possible contraction we
can remove at most

∑k
i=1(i + 2) = 2k +

∑k
i=1 i = 1

2 (k2 + k) + 2k edges. Hence, G cannot
have more than n′ − 1 + 1

2 (k2 + 5k) edges in total. Summarized, the kernel consists of O(k2)
vertices and edges and is a full kernel since the only modification are done by Rule 1.

Bound on leaves in subtrees. Let us say that a super vertex w is a vertex obtained
from a contraction of (normal) vertices u and v of G. For an easy intuition, we then say that

6 Space-Efficient Graph Kernelizations

w contains u and v. Consider the following fact: if G′ is obtained from G by contracting an
arbitrary number of edges and (G, k) is a yes-instance, then (G′, k) is also a yes-instance. By
induction, it suffices to show the fact for graphs G′ that are obtained by one contraction
of an arbitrary edge {u, v}. Assume that G′ = G/{{u, v}}. Consider an optimal solution
C for (G, k) and the path P = G/C. We denote by S(u) and S(v) the super vertices in
G/C containing u and v, respectively. Note that, either S(u) = S(v) or S(u) and S(v) are
adjacent in P . If S(u) ̸= S(v), then G′/C = (G/{{u, v}})/C = (G/C)/{{S(u), S(v)}} =
P/{{S(u), S(v)}} is a path and thus, C is a solution for (G′, k). If S(u) = S(v), then there
is a u-v-path P ′ in G′ consisting only of edges in C. Let e be an edge of P ′ and C ′ = C \ {e}.
Then G′/C ′ = G/C is a path and C ′ is a solution L for (G′, k − 1) and thus for (G′, k). To
sum up, the fact holds.

Assume for a contradiction that G has a subtree T with ℓ > k + 2 leaves. By contracting
all edges of T in G without edges that have an endpoint in L we obtain a graph G′ and by
the fact above (G′, k) is a yes-instance. However, G′ has a subtree with ℓ > k + 2 leaves—a
contradiction being a yes-instance. Since we only reject no-instances the kernel remains a
full kernel. ◀

For the kernel construction we use a BFS. We shortly sketch a usual BFS and the
construction of a so-called BFS tree. The BFS visits the vertices of an input graph round-
wise. As a preparation of the first round it puts some vertex v into a queue Q, marks it as
visited, and starts a round. In a round it dequeues every vertex u of Q, and marks u as
visited. Moreover, it puts every unvisited neighbor w ∈ N(u) of u into a queue Q′ and marks
it as visited. We then say that w was first discovered from u and add the edge {u, w} to an
initial empty BFS tree. If Q′ is empty at the end of the round, the BFS finishes. Otherwise,
it proceeds with the next round with Q := Q′ and Q′ := ∅.

During each BFS iteration, the BFS queue Q inherently acts as a separator, dividing the
graph into two distinct categories: vertices already encountered by the BFS and those yet to
be encountered. To understand this, envision a BFS queue Q established after a given round,
prior to the initiation of the subsequent round. Let V1 denote the vertices in G already
encountered by the BFS, excluding those in Q, and V2 represent vertices yet to be visited. If
Q were not a separator, an edge (u, v) would exist such that u belongs to V1 and v to V2,
effectively suggesting that the BFS traversal overlooked an unvisited vertex v while exploring
u’s neighbors. This contradicts the BFS algorithm, as v should have been incorporated into
Q. Therefore, Q functions as the desired separator U .

As the BFS progresses, its exploration adheres to the subtree structure of G. The BFS
queue size is restricted to a maximum of k + 2 vertices; otherwise, we can determine a
no-instance by Rule 2 and halt the BFS process. With regards to marking vertices as visited,
since Q effectively delineates between previously visited and unvisited vertices after each BFS
round, only the last BFS round’s queue is necessary to verify the visited vertices. Notably,
in this context, separator U consists of vertices in Q and is thus dynamic, adapting with
each BFS iteration. So far this approach ensures that every yes-instances is traversed and
any no-instance is identified in O(n log k) time utilizing only O(k log n) bits.

To realize Rule 1 we need additional information. Instead of storing just vertices v on the
BFS queue we store quadruples that we use to identify degree-2 chains and apply Rule 1—see
also Fig. 1. Each quadruple (v, p, i, v∗) consists of a vertex v and its predecessor p if v is not
the root, the counter i ∈ {0, . . . , n} with i > 0 being v’s position on a degree-2 chain, and
the vertex v∗ with v∗ ̸= null being the (k + 1)th vertex on a degree-2 chain that contains
v. So we can easily check Rule 1 as shown in the proof of Theorem 2. By Rule 2, we can
guarantee our space bound by maintaining O(k2) vertices and edges.

F. Kammer and A. Sajenko 7

v1 . . . v∗ p. . .
v

Figure 1 Our adapted BFS starts from the leftmost vertex, removing dotted vertices on a degree-2
chain with over k + 1 predecessors and connecting the neighbors of removed vertices with bold edges.
Dashed edges are skipped by the BFS.

▶ Theorem 2. Given an n-vertex instance (G, k) of Path Contraction, there is an
O((n+k2) log k)-time O(k2 log n)-bits kernelization that outputs a full kernel of O(k2) vertices
and edges, or outputs that (G, k) is a no-instance. The result can be used to find a (possibly
not full) kernel of at most 3k + 4 vertices in O(n log k + poly(k)) time using O(poly(k) log n)
bits.

Proof. In this proof we apply a modified BFS on the given graph, which adjustments are
described below. The main structural adjustment is that the BFS maintains at most k + 2
quadruples instead of vertices in its queue and uses the queue of the previous round to
identify already visited vertices, instead of marking all vertices of either visited or unvisited.
Recall that each quadruple (v, p, i, v∗) consists of a vertex v and its predecessor p if v is not
the root, a counter i ∈ {0, . . . , n} with i > 0 being v’s position on a degree-2 chain, and the
vertex v∗ with v∗ ≠ null being the (k + 1)th vertex on a degree-2 chain that contains v.
During the run of the BFS we select vertices and edges that we can iteratively put into a
kernel under construction G′.

Before we start to describe the adjustments, we want to point out that our approach
works only if the BFS is started at a vertex of degree other than 2, which we can identify by
simply iterating over all vertices. If there is no such vertex, then the graph is a simple cycle
and we output G as the kernel if m ≤ k + 2, otherwise we output “no-instance”.

The BFS visits the vertices as usual and updates its quadruples as follows. For each
quadruple (v, p, i, v∗), it iterates over v’s neighborhood and stores the quadruple (v′, v, 1, null)
in queue Q′ for every unvisited neighbor v′ if v is of degree other than two, and otherwise
the quadruple (v′, v, i + 1, v∗∗) where v∗∗ is v if i = k + 1, otherwise v∗∗ = v∗.

By Rule 2 we can bound the size of the BFS queue by k + 2 and the size of the kernel by
n′ ≤ k2 + 4k + 1 = O(k2) vertices and m′ ≤ n′ − 1 + 1

2 (k2 + 5k) = O(k2) edges. To ensure
Rule 2, we can easily count the number of leaves in the BFS tree while executing the BFS.

We now describe how a kernel (G′, k′) can be constructed in adherence to Rule 1. Instead
of contracting arbitrary edges we contract edges at the end of a degree-2 chain. The
contraction is realized by not copying the inner vertices and edges at the end of a degree-2
chain while the BFS traverses the paths and connecting the (k + 1)st vertex with the last
vertex of the path in the kernel. To avoid adding vertices into the queue that are already
visited we maintain the vertices of the previous and the current queue inside two balanced
heaps, respectively.

For the time being ignore a problem that two vertices in the BFS queue may be adjacent
(i.e., the BFS starts to explore a degree-2 chain from both its endpoints). For each quadruple
(v, p, i, v∗), we add the vertex v into G′ if i ≤ k + 1 and if additionally p ̸= null, we also add
the edge {v, p} into G′—the condition ensures that we do not add the full degree-2 chain
into the kernel. If the degree of v in G is not two, then v terminates a degree-2 chain and we
add the edge {v∗, v} if i > k + 1 (the bold edges in Fig. 1). We additionally add for every
u ∈ N(v) with u is in G′, the edge {v, u} into G′ (in Fig. 1 they are shown dashed).

8 Space-Efficient Graph Kernelizations

We now consider the case where two vertices v with (v, p, i, v∗) and v′ with tuple
(v′, p′, i′, v′∗) on the current BFS queue are connected to each other in G and are both
of degree two. If i + i′ > k + 2 we move backwards on both paths until i + i′ = k + 2 (but
i, i′ ≥ 0) and modify the kernel by removing the vertices and edges used to move backwards.
Add the edge {w, w′} to the kernel where w and w′ are the vertices at which we stopped our
backward move.

It remains to show the space and time bounds of our kernelization. The size of the queues
used for the BFS and our computation is bounded by O(k) vertices and, thus, cannot exceed
O(k log n) bits. The kernel is bounded by O(k2) vertices and O(k2) edges and thus uses
O(k2 log n) bits. In total, we use O(k2 log n) bits. Concerning the time bound note that a
standard BFS runs in O(n + m) time. By Rule 2 m = O(n + k2) or we stop. The algorithm
has to check for each vertex if it is in a balanced heap (in the queue or in the kernel) of
size at most O(k2), which takes O(log k) time per vertex. In total we have running time of
O((n + k2) log k). (Note that running backwards on degree-2 chains takes time linear to the
length of the path and thus our asymptotic time bound remains the same.)

Our kernel is small enough to apply the polynomial-time kernelization of Li et al. and we
obtain so a kernel of 3k + 4 vertices in O(n log n + poly(k)) time using poly(k) log n bits. ◀

3 Log-Space Tree Traversal and Cycle Check

For our result on Feedback Vertex Set we require the following two auxiliary lemmas to
traverse trees and find a back edge in a graph. Cook and McKenzie [10] showed how this
can be done in O(n2) and O(n3) time, respectively, by using O(log n) bits.

▶ Lemma 3. ([10, Theorem 2]) Given an n-vertex tree T and a node r of T as root there
is a O(n2)-time O(log n)-bits algorithm that traverses all vertices of T in depth-first-search
manner.

Proof. Let r ∈ T be a root and p be the previously visited vertex. We use a known technique
to traverse the graph in a special order, which main idea is as follows: Assume we visit a
vertex v from a vertex p. The vertex v has several neighbors v1, v2, . . . , vi = p, . . . , vdeg(v),
from which one of it is p. Find the index i of p with p = A[v][i] by iterating throw v’s
adjacency array and visit (A[v][(i + 1) mod deg(v)]). If we return to v, then from the vertex
p′ = v(i+1) and proceed with the next child v(i+2) mod deg(v) of v. With the modulo operation
we so visit all children and leave the vertex via the back edge (v, p).

In detail we distinguish between the root (i.e., detectable via the check v = r) and the
remaining nodes and treat them as follows. Let visit(v, p) be the procedure to visit all nodes
in depth-first-search manner.

Treat root If v = r ∧ deg(v) = 0, we output v and know that the tree consists only of one
node, hence, we return. Otherwise and if v = r ∧ p = null we know that its the first
visit of the root, we output v and call visit(A[v][0]) to visit its first child. Otherwise,
we have returned to the root after visiting the maximal subtree below its child p. We
find the index i of p with p = A[v][i] by iterating throw v’s adjacency array. Check if p

was the last child, i.e., (i = deg(v) holds) and return, since the whole tree was traversed.
Otherwise, we call visit(A[v][i + 1], v) to visit the next child.

Treat non-root Output v. We find the index i of p with p = A[v][i] by iterating throw v’s
adjacency array and call visit(A[v][(i + 1) mod deg(v)]).

Note, that the algorithm is actually defined recursively, however, it uses a tail-recursion
which are known to be translateable to loops that do not need a stack. Hence, O(log n) bits

F. Kammer and A. Sajenko 9

suffice to store the required information. Concerning the running-time note that all operations
except the search for the next edge to follow require constant time. The search itself requires
O(deg(v)) time and has to be done for each visit of a vertex, i.e., O(deg(v)) times. Hence,
the total required time is

∑
v∈T deg(v)2 ≤ m(m + 1) = O(n2) [13, Theorem 3.7], where m is

number of edges of a graph, which in case of a tree is bound by the handshaking lemma to
O(n). ◀

▶ Lemma 4. ([10, Theorem 2]) Given an n-vertex graph G and a vertex r, there is an
O(n3)-time O(log n)-bits algorithm that either traverses the connected component with r if it
is a tree, or otherwise, it returns a back edge of the DFS tree rooted at r.

Proof. Let us consider the scenario where the DFS, as described in Lemma 3, is on a path
from r to u and is about to follow an edge {u, v}. To find out if {u, v} ”closes” a cycle
or not, the DFS must know if v has not been previously discovered by the DFS or of v is
the direct predecessor of u on the r-u path. Since the DFS has no knowledge on this, this
condition is verified by a second DFS run until reaching u where we have to check for each
discovered vertex v′ if v ≠ v′ and if not true, if v is not the direct predecessor of u in the
second DFS run. Otherwise, this would imply a cycle constructed by the paths r-u and
r-v (where the first is not a subpath of the second) and the edge {u, v}, implying that the
connected component is not a tree and {u, v} is a valid back edge.

Since the algorithm can stop whenever a first cycle is found, the algorithm considers only
O(n) edges. Thus the space and time bounds stated in the lemma hold. ◀

4 Feedback Vertex Set

Given an n-vertex m-edge graph G = (V, E) a set F ⊆ V is called feedback vertex set if the
removal of the vertices of F from G turns G into an acyclic graph (also called forest). In the
parameterized Feedback Vertex Set problem, a tuple (G, k) is given where G is a graph,
and k is a parameter. We are searching for a feedback vertex set F of size at most k in G.
In kernelization, it is common to identify vertices that must be in every minimal feedback
vertex set of size at most k, remove them from the instance, and restart the kernelization.
To avoid modifying the given instance, we simulate this by starting with an empty set F and
adding vertices to F when we determine they must be in every solution of size at most k.
Subsequently, we realize the graph G[V \ F] by considering G and disregarding vertices in F .

Iwata showed a kernelization for Feedback Vertex Set that produces a kernel consisting
of at most 2k2 + k vertices and 4k2 edges and runs in O(k4m) time [26]. He mentions that
all other kernelizations for Feedback Vertex Set exploit an exhaustive application of the
three basic rules below and the so-called v-flower rule. A v-flower of order d is a set of d

cycles pairwise intersecting exactly on vertex v.

Loop Rule. Remove a vertex v with a loop and reduce to (G − v, k − 1) and F := F ∪ {v}.
Leaf Rule. Remove a vertex v with deg(v) ≤ 1.
Chain Rule. Remove a vertex v that has only two incident edges {v, u} and {v, w} (possibly

u = w), and add the edge {u, w}.
Flower Rule. Remove a vertex v if a v-flower of order k +1 exists and reduce to (G−v, k −1)

and F := F ∪ {v}.

By allowing O(k log n) bits for the algorithm, Elberfeld et al. also showed how to find
a cycle of 2k vertices. To realize the flower rule at a vertex v we need to run along up to
k + 1 cycles and check if they intersect at vertices other than v. If the given graph is reduced

10 Space-Efficient Graph Kernelizations

with respect to the Leaf and Chain Rule and does not contain vertices with self-loops, then
it can be guaranteed that the smallest cycle is of length at most 2k (maximum girth of
a graph with the mentioned restrictions, minimum degree 3 and a feedback vertex set of
size at most k [16]). However, the length of the remaining cycles can be bound only by
a function depending on n, not on k. So it seems to be hard to find and verify a flower
with O(poly(k) log n) bits. As shown by Iwata, one does not need the Flower Rule to find
a kernel for FVS. Instead he uses a so-called s-cycle cover reduction [26, Section 3] where
he has to know which edges incident to a vertex s are bridges in the graph. (For space
bounds to find bridges, recall Section 2.) Since we have no solution to find a v-flower or an
s-cycle with O(poly(k) log n) bits, we show how to construct a kernel without using both
rules exhaustively.

Thomassé [34] introduced the rule below to compute a kernel consisting of 4k2 vertices.
As input we assume a simple graph. Since his rule introduces double edges, our kernel G′ is
a multi graph where every multi edge is a double edge.

Thomassé’s Rule [34] Let X be a set of vertices, let x ∈ V \ X and let C be a set of
connected components of G \ (X ∪ {x}) (not necessarily all the connected components)
such that

G is loopless, with degree ≥ 3 and all multi-edges are double-edges,
there is exactly one edge between x and every C ∈ C,
every C ∈ C induces a tree, and
for every subset Z ⊆ X, the number of trees of C having some neighbor in Z is at least
2|Z|.

Then reduce to (G′, k) where G′ is the graph obtained by joining x to every vertex of X

by double edges and by removing the edges between x and the components of C.

Thomassé applies the rule to the whole graph G. This means, he has to store graph
changes over the whole graph G. This is too expensive for us. As discussed in the introduction,
we utilize a separator U to break down the graph into manageable components. This allows
us to construct a kernel by processing and gradually incorporating these components. In the
next subsection, we outline the construction of an approximate minimum feedback vertex
set as separator U , so that the graph divides into trees. In the subsequent subsection, we
show how to iterate over the trees in T = G[V \ U]. In a third subsection, we iteratively add
these trees into a graph G′ (initially G′ = G[U]) while upholding our desired space bound of
G′ having O(k4) vertices and edges, i.e., O(k4 log n) bits. However, the size of the trees in
T is unbounded in k and we need to perform an on-the-fly tree size reduction of the tree.
For this, we first make sure that every tree T has not too many edges to U (or we either
find a vertex for the solution F and restart, or conclude a no-instance). Afterwards, we
have to traverse T and put exactly those vertices of T into G′ that are not removed by an
exhaustive application of the Leaf and Chain Rule. To keep the size of G′ within our space
bound we show in a fourth subsection how to shrink G′ again. To shrink the size of G′ to
O(k2) vertices, we apply Thomassé’s Rule, which has a precondition requiring that G′ has a
minimum degree of 3. However, we cannot satisfy this precondition for vertices in U within
G′. Nevertheless, we can demonstrate that violating the precondition only for the vertices
in U still allows the rule to function if we adjust the bounds accordingly (see Lemma 10).
Finally, we show that our construction of a kernel of O(k2) vertices and O(k3) edges runs in
O(n5 poly(k))-time and with O(k4 log n) bits with this approach.
Separator U of size 3k2. Becker and Geiger [5] presented a 2-approximation algorithm for
feedback vertex set in which they extend an (2 log d)-approximation algorithm (where d is

F. Kammer and A. Sajenko 11

the maximum degree of the graph) by a phase that iteratively removes a vertex v from the
computed feedback vertex set S if all cycles that intersect v in G also intersect S \ {v}. It is
unlikely that this can be done with O(poly(k) log n) bits or even with O(f(k) log n) bits for
some function f since a cycle in G can consists of Θ(n) vertices and there can be Θ(n) cycles.

We instead present only an O(k)-approximation algorithm, but it runs with O(poly(k) log n)
bits. For this we use the following well-known rule. Given a loopless graph G of minimum
degree 3 and without self-loops, every FVS in G of size at most k contains at least one
vertex of the 3k vertices of largest degree [11, Lemma 3.3]. A graph with such properties can
be computed by an exhaustive application of the Loop, Leaf and Chain Rule. Elberfeld et
al. [17, Theorem 4.13] showed how to implement the rules with O(log n) bits. The graph
obtained does not actually have to be stored. Instead we compute the required information
on demand with Lemma 5, which is similar to parts of the proof of [17, Theorem 4.13].

▶ Lemma 5. Assume that an n-vertex m-edge graph G = (V, E) and a set U ⊆ V consisting
of kO(1) vertices is given. Let G′ be the graph obtained by an exhaustive application of the
Loop, Leaf and Chain Rule on G[V \ U]. We can provide a structure that allows the iteration
over the edges of every vertex of G′ in O(n5k log k) total time by using O(log n) bits. In
particular, we do not store G′.

Proof. Take GU = G[V \ U]. First of all, note that we can access GU (e.g., run a DFS in
GU) as if GU is given explicitly by accessing G and “ignoring” all vertices (edges leading
to vertices) in U . More precisely, we define the neighbors NGU

(v) = NG(v) \ U . Note that
a Loop can be easily identified and possibly we restart. Note further that the connected
subgraphs that are removed from GU by an exhaustive application of the Leaf Rule are trees,
which we call tree appendages. We can identify each neighbor u /∈ U of a vertex v that is
part of a tree appendage by running the algorithm of Lemma 4 on GU − v with r = u as
input. If the algorithm returns that the connected component with r in GU − v is a tree and
does not visit v, u is part of a tree appendage (not visiting v is important since otherwise,
with v and the edge {v, u} we have a cycle). Let Qv be the set of neighbors of v that are
not part of a tree appendage. Let G1 be the graph obtained from GU after an exhaustive
application of the Leaf Rule. Then degG1

(v) = |Qv| is the degree of v in G1, for every v with
|Qv| > 1. If |Qv| ≤ 1, then v is itself part of a tree appendage. Otherwise, v is part of G1
and we can output all vertices of Qv as neighbors of v as required from the lemma.

Let G2 be the graph obtained from G1 after an exhaustive application of the Chain Rule.
Observe that, if degG1

(v) = 2, then v is part of a degree-2 chain in G1 that is replaced by
an edge in G2 by the exhaustive application of the Chain Rule. A possibility is that the
degree-2 chain connects two vertices u and w of G1 (possibly u = w) that are not of degree
two. Then v is not part of G2. However, we cannot simple assume that every vertex v with
degG1

(v) = 2 is not part of G2 since there is a special case (⋆): v may be part of simple
cycle consisting of only degree-2 vertices and the Chain Rule may reduce the cycle to exactly
one vertex z with a self-loop. The vertex z can be an arbitrary vertex of the cycle thus z = v

is possible. We choose z always as the vertex with the smallest id of the cycle and “ignore”
the remaining vertices. More precisely, if v is such a vertex, then v is part of G2 and has a
self-loop. If degG1

(v) > 2, then v is part of G2, but some of its edges in G1 may connect v

with a degree-2 chain in G1 that is replaced by an edge in G2.
To realize the lemma iterate over each vertex v of GU : If Qv ≤ 1, “ignore” v. If

degG1
(v) = 2, we output v only if we are in the Special Case (⋆) and v has the smallest id

on its cycle. We now may assume that degG1
(v) > 2 and thus v is part of G2. For each

neighbor u of v in G1 follow the potentially empty degree-2 chain from u until a vertex w

12 Space-Efficient Graph Kernelizations

with w = v or w ̸= v ∧ degG1
(w) > 2. If w = v, v has a self-loop thus, we output v as a

neighbor of v. If w ̸= v ∧ degG1
(w) > 2, we output w as a neighbor of v.

Checking if v is part of G1 and outputting its neighbors can be done in O(deg(v)n3 log k)
time: Lemma 4 runs in O(n3) time per edge incident to v. However, since we have to ignore
vertices and edges whose endpoints are in U an access to GU needs an access to an heap
of size |U | and thus runs in log kO(1) = O(log k) time. We must iterate over all n vertices.
Thus, the total running time is O(mn3 log k) = O(n4k log k) (since m = O(nk)).

To check for the Chain Rule we have to additionally follow degree-2 chains. Since a chain
can consists of Θ(n) vertices, this increases the running time by a factor of n, resulting in a
total running time of O(n5k log k) for the Chain Rule. ◀

Since by Lemma 5 we have access to a loopless graph of minimum degree three, we iterate
k-times over a graph G[V \ U] (where initially U = ∅) and in each iteration select the 3k

vertices of largest degree into U . We so get an O(k) approximate minimum feedback vertex
set.

▶ Theorem 6. Given an n-vertex m-edge instance (G, k) of Feedback Vertex Set, there
is an O(n5k2 log k)-time, O(k2 log n)-bits algorithm that either returns a feedback vertex set
U consisting of at most 3k2 vertices or answers that (G, k) is a no-instance.

Proof. Starting with (G, k) and initially U = ∅ as input we compute a graph G′ by ex-
haustively applying the Leaf and Chain Rule on G[V \ U]. If G′ is empty, we return U as
a feedback vertex set for G. The Chain Rule may create self-loops and multi-edges. If a
vertex with a self-loop exists, it must be part of the minimal feedback vertex set, thus, put it
into F , reduce k by one, and restart. After an exhaustive application of the Leaf and Chain
Rule the set consisting of 3k vertices of largest degree contains at least one vertex of the
minimal feedback vertex set [11, Lemma 3.3]. Thus, take 3k vertices of largest degree of G′

into U , reduce k by one, and restart. If at any point k < 0, output “no-instance”. We so can
compute a feedback vertex set U consisting of at most 3k2 vertices. Instead of storing G′ we
compute the required information with Lemma 5. We so iterate over each vertex v of G′

and its edges to determine its degree and check for self-loops and compute U in k rounds in
k · O(n5k log k) = O(n5k2 log k) time and with O(|U | log n) = O(k2 log n) bits. ◀

Iterations over Trees. We want to output every tree T of G[V \ U] once. For this, we
iterate over all u ∈ U and, intuitively speaking, output those trees T adjacent to u, i.e., every
T having a vertex v such that u and v are adjacent in G. Note that with such an iteration
we will not iterate over components of G that have no edges to any vertex of U . However,
since those components are trees in G, and thus cycle free, we can ignore them. Moreover,
note that several vertices of U can have edges to the same tree. We show in the proof of
the next lemma how to avoid outputting a tree multiple times. To distinguish the trees, we
partition the trees T as follows (also see Fig. 2). T0 is the set of trees in T that have at most
one edge to a single vertex of U . T1 is the set of trees in T where each tree has at most one
edge to at least two vertices of U . T2 is the set of the remaining trees in T with least two
edges to some vertex of U .

▶ Lemma 7. Given an n-vertex m-edge graph G = (V, E) and a set U of O(k2) vertices,
there is an algorithm that outputs a single vertex w of T as a representative for each tree T

in T1 ∪ T2 and some trees of T0 once. The algorithm runs in O(n3k3 log2 k) time and with
O(log n) bits.

F. Kammer and A. Sajenko 13

u

(a) Trees in T0

u1 u2

u3 u4

u5 u6

(b) Trees in T1

u

(c) Trees in T2

Figure 2 Our partition of trees with edges to U = {u1, u2, u3, . . .}. The colored vertices are the
vertices with the smallest id in the trees.

Proof. Let a vertex be smaller than another vertex, if its vertex label is smaller. For each
vertex u in U , iterate over its neighbors w not in U . For each such w, consider it as the root
of a tree T . Traverse through T to find the smallest u′ in U connected to T . If u′ is not u,
continue the iteration over U with the next vertex since T was previously acknowledged as
adjacent to a smallest vertex in U . If not, output w as a representative for T .

We now focus on the performance of the algorithm. The iteration over U takes O(|U |)
time. The iteration over the neighbors of U ignoring neigbors in U increases the time by
a factor of O(n log |U |) to O(|U |n log |U |). Possibly each vertex is connected to a “large”
tree, whose traversal with an adjusted Lemma 3 can be done in O((n2 · nk) log |U |) time
increasing the time to O(|U |n3k log2 |U |). (The adjustment is necessary to ignore edges to
U , which requires an O(log |U |)-time membership check in U . Furthermore, since we have
to consider edges to U the time increases in each step at most by the possible number of
edges, which is bounded by O(nk) for every yes-instance of FVS.) Note that the time to
find the smallest vertex in U is already included in the time since we already have to deal
with vertices in U by performing membership checks. Summarized, the running time is
O(|U |n3k log2 |U |) = O(n3k3 log2 k). Considering the space, we need a constant amount of
local variables and apply Lemma 3 which sums up to O(log n) bits.

◀

Observe that we do not need to add trees of T0 to G′ since they can be removed by the
Leaf Rule anyway. If we identify such a tree, we skip over it.
Tree Size Reduction. We now want to shrink each tree T of G[V \ U] so that we can
add them to G′ without exceeding our space bound of O(k4 log n) bits. Due to Cook and
McKenzie [10], O(log n) bits DFS exists which suffice to find out for each tree T to which
set T0, T1 or T2 it belongs.

By definition a tree T ∈ T1 can have at most one edge to every vertex of U . Thus T has
at most |U | = O(k2) edges into U . By the lemma below, we can add T into G′.

▶ Lemma 8. Given U and an n̄-vertex tree T = (VT , ET) in G[V \ U] such that T has ℓ

edges to U . After applying the Leaf and Chain Rule to G[VT ∪U] while forbidding the removal
of vertices of U , T has at most O(ℓ) vertices. This can be done in O(n̄3) time using O(log n)
bits.

Proof. Traverse the tree T with the algorithm of Lemma 3. Before visiting a new vertex v

from a vertex u, check with Lemma 3 if a vertex of the subtree T ′ with root v is adjacent
with some vertex of U . If not, skip over v and thereby the whole subtree T ′ (since T ′ can be
removed by the Leaf Rule). Otherwise check if a chain starts at v and ends at w. If so, add
only the edge {u, w} to G′ and continue at vertex w (v is removed by the Chain Rule). If
not, add vertex v as well as edge {u, v} and continue with the children of v. Let T ′ be the
final tree.

14 Space-Efficient Graph Kernelizations

Let n̄ be the vertices of T . Then the traversal over all n̄ subtrees T runs in n̄·O(n̄2) = O(n̄3)
time. To bound the vertices n′ of T ′, note that T ′ has n′ − 1 edges (total degree is 2n′ − 2),
but every vertex of T ′ must have degree at least three if we add the edges to U . Thus,
3n′ <= 2n′ − 2 + ℓ and n′ <= ℓ − 2. ◀

For a tree T = (VT , ET) ∈ T2, a vertex of U can be connected to multiple vertices of T .
Hence we need to run the following two steps to bound the number of edges, where Step 1 is
a precondition for Step 2. By Step 2 we get subtrees T ′ of T such that T ′ and U have at
most (k + 1)2 edges in between. Thus, we can add T ′ with O(k2) vertices to G′ by Lemma 8.

Step 1: Consider a bipartite graph Y = (U ∪ VT , E′) where {u, w} ∈ E′ exactly if there
are at least k + 2 internally vertex disjoint paths between u and w. (For the ongoing
algorithm observe: To find a solution for feedback vertex set of size k in Y , we need a
vertex cover of size at most k in Y . Furthermore, any vertex in any vertex cover of size k

in Y must also be in any feedback vertex set of size k in G.) If a vertex u ∈ U has degree
at least k + 1 in Y , take u into our solution set F and restart. If Y has more than k2 + k

vertices, output no-instance. Otherwise, define the common vertices of Y and VT as set
U ′. Note that |U ′| ≤ k2. Temporarily take U ∪ U ′ as separator. This splits T in several
small trees T ′, which we will process iteratively in Step 2.

Step 2: If a small tree T ′ has at least (k + 1)2 edges to a vertex u ∈ U ∪ U ′, take u into our
solution F and restart. Otherwise add T ′ to our graph G′.

▶ Lemma 9. Steps 1 and 2 are safe and both steps run in O(n3 log k) time and with
O(k3 log n) bits.

Proof. Consider Step 1. A vertex u of degree k + 1 in Y must be in any vertex cover of size
k and, by construction, the vertex must be also in our feedback vertex set, i.e., it is safe to
add u to F . Furthermore, if Y has more than k2 + k vertices, but degree bounded by k, then
Y has no vertex cover of size k and thus we can not find a feedback vertex set of size k. To
sum up, Step 1 is safe.

Now focus on Step 2. Let X be a set of the vertices of T that are adjacent to a fixed
vertex u ∈ U ∪ U ′. Ignoring the parts of T that are not on a path between two vertices of X,
we obtain a tree with maximum degree ∆ ≤ k + 1 by Step 1. One can easily see that, given a
tree T = (VT , ET) with maximum degree ∆ and X ⊆ VT , we can find ⌊|X|/(∆ + 1)⌋ pairs of
vertices in X such that the paths in T between each pair are vertex disjoint [19, Lemma 2.4].
Thus, if u has |X| ≥ (k + 1)2 edges to T , we have an x-flower of order |X|/(k + 1) ≥ k + 1.
Thus, also Step 2 is safe.

We now turn our attention to the algorithmic details of Step 1. To track the number of
internally vertex-disjoint paths between vertices, we employ a table C. Each vertex of U

gets its own counter in this table.
As we traverse the tree T by Lemma 4, consider every vertex w once in T . Every neighbor

of w, denoted as vi = v1, v2, . . . , deg(w), serves as the roots of a maximal subtree T − w.
Observe here that if ℓ subtrees have edges leading to a vertex u ∈ U in graph G, then ℓ

internally vertex-disjoint paths exist between w and u.
Now, for each subtree rooted at vi, traverse it. Whenever an edge leads to a vertex

u ∈ U , set the corresponding value C ′(u) to true in a temporary table C ′ (initialized with
false). After completing the subtree traversal, increase the counter in C for every vertex in
C ′ marked true.

If any vertex u in C sees its counter surpass k + 1, insert the edge {u, w} into an initially
empty graph Y . Whenever a vertex gets degree greater than k + 1 in Y put into F and

F. Kammer and A. Sajenko 15

restart. (The details are explained in Step 1). Moreover, if Y exceeds k2 + k vertices, output
no-instance. At the end, construct U ′ as directed in Step 2.

Concerning the running time, an applications of Lemma 4 in every tree runs in O(n3 log |U |)
total time. Since we then iterate over each tree for each vertex w once, i.e., at most O(n)
times, it can be done by Lemma 3 in O(n2 log |U |) total time where the extra factor of log |U |
comes from membership tests in U . In the same time, we can compute U ′. To sum up, Step
1 runs in O(n3 log k) time. Concerning our space consumption, we can easily observe that Y

has never more than O(k2) vertices and O(k3) edges, i.e., O(k3 log n) bits suffice.
We finally consider the time and space necessary for Step 2. We can easily count the

number of edges of a tree T ′ to U by Lemma 3 in neglitable time and space. By Lemma 8,
we can simply add T ′ into G′. ◀

Finally note that, by Step 2 above, we temporarily have a separator U ∪ U ′ of size 4k2.
After adding all subtrees T ′ of a tree T in T2 to G′, we can also add U ′ to G′ and we are
back to a separator of size 3k2.
Shrink the Kernel again. After adding several trees to G′ we have to ensure that the size
of G′ does not exceed our space bound. We run into two issues.
1. A naive application of a reduction rule may “unsafely” remove vertices since only subgraphs

are considered, e.g., a vertex of U could be considered as being a leaf in G′ because
several vertices that are connected to U were not added to G′ yet.

2. Thomassé’s Rule requires G′ to be a loopless graph of minimum degree 3, and we cannot
ensure that the vertices of U in G′ are of minimum degree 3.

We address issue (1) with respect to all reduction rules. The application of the Loop
and the Flower is still safe to use because whenever they apply, vertices are selected into a
solution F for feedback vertex set and we restart. To deal with the Leaf and the Chain Rule
we forbid that vertices of U are removed in G′. Thomassé’s Rule does not remove vertices.
Instead, it only removes existing edges and adds new ones within our subgraph G′. Moreover
as stated in the rule, it does not have to consider all connected components, which makes
the rule safe for usage in G′.

Concerning issue (2) we show in the next lemma that vertices of U can be exempted from
fulfilling the property of being of minimum degree 3.

▶ Lemma 10. Let G = (V, E) be is a subgraph of G′ where G′ is a loopless graph and
multi-edges are double edges, such that G has n > 16k2 vertices and only a subset U ⊆ V

with |U | ≤ 4k2 have degree 0, 1 or 2 in G. If G has a feedback vertex set of size k, then we
can apply the Flower Rule or Thomassé’s Rule in polynomial time and with O(k2 log n) bits.

Proof. Let S be a feedback vertex set of G with at most k vertices. Then G[V \ S]
is a forest and has at most |V \ S| − 1 edges. Take U ′ := V \ U . Since all vertices
in U ′ have degree at least 3, the total number of edges between S and V \ S is at least
3|U ′\S|−2|V \S|−1 = 3·((6k2−4k2)−k)−2·(6k2−k)−1 = 36k2−3k−32k2+2k−1 > 4k2−k.
Thus, a vertex of S has degree at least 4k.

Now Thomassé concludes [34, Theorem 4.1] that we find in polynomial time a flower of
order k + 1 or we can apply Thomassé’s Rule to G. ◀

Construct a kernel: By Theorem 6, we have access to a approximate minimum feedback
vertex set U of size 3k2. U divides G into several trees, enabling us to construct our initial
kernel G′ = G[U] under construction. We iterate over each tree T of T1 ∪ T2 using Lemma 7
and determine its type. If T ∈ T1, we add it to G′ using Lemma 8. Otherwise, if T ∈ T2, it

16 Space-Efficient Graph Kernelizations

must be integrated into G′ by first breaking it down into smaller trees. To achieve this, we
execute Step 1 and 2 and get another separator U ′. Combining U ′ with U devides T into
several subtrees T1, T2, We then utilize Lemma 7 with G[V \ (U ∪ U ′)], but use U ′ to
iterate over the trees Ti = T1, T2, . . . (since they are all adjacent to U ′) and add one tree at
a time with Lemma 8. While adding a tree apply the Loop, Leaf, Chain Rule and shrink G′

by the Flower and Thomassé’s Rule. If all trees of Ti were added, add also U ′ into G′. After
all trees of G have been added to G′, we apply the best kernelization [26] to get a kernel of
2k2 + k vertices.

▶ Theorem 11. Given an n-vertex instance (G, k) of Feedback Vertex Set, there is an
O(n5 poly(k))-time, O(k4 log n)-bits kernelization that either outputs a kernel consisting of
2k2 + k vertices or returns that (G, k) is a no-instance.

Proof. Since we shrink G′ (initial size |U | = O(k2)) repeatedly to O(k2) vertices after adding
trees consisting of O(k4) vertices and edges we have a space bound of O(k4 log n) bits. All
other algorithms also run within this space bound.

Concerning the running time, the construction of U runs with Theorem 6 in O(n5k2 log k).
Even if we restart at most k times we can reuse U by removing vertices from U whenever
they become part of F .

An iteration over all trees by Lemma 7 runs in O(n3k3 log2 k) time. To identify the
type of a tree, we have to traverse it with Lemma 3 which runs in O(n2 log k) time (while
performing membership checks for U (and U ′)). To perform Step 1 und 2 for each tree we
have to run Lemma 9, which can be done in O(n3 log k) time. Adding a tree to G′ runs with
Lemma 8 in O(n3) time. Applying the kernelization rules on G′ runs in O(poly(k)) time.

Since we have at most n trees, the total running time is O(n5k2 log k) + O(n3k3 log2 k) +
O(n) · (O(n2 log k) + O(n3 log k) + O(n3) + O(poly(k))), which in total is O(n5 poly(k)). ◀

5 Cluster Editing and Cluster Deletion

The Cluster Editing problem can be described as follows. Given a graph G = (V, E)
with n vertices and m edges, and an integer parameter k, can we add or delete no more
than k edges such that the modified graph comprises entirely of disjoint cliques? Recall
that due to Bannach et al. [2] Cluster Editing is in para−L (more precisely a subclass of
it). Our goal is to address the need of Heeger et al. [24] for a space-efficient full kernel for
Cluster Editing, which is used in their framework in a temporal setting of the cluster
editing problem. To solve the problem, it is important to find so-called conflict triples in G.
Each conflict tripple is a subgraph formed by vertices {u, v, w} with edges {u, v} and {v, w},
but lacking an edge {w, u}. For each existing conflict triple, one should either remove one of
the edges {u, v} or {v, w} or add a new edge {w, u}.

In the folklore technique for Cluster Editing kernelization, we iterate over all conflict
triples and, for every vertex pair u, v within a conflict triple, we maintain two global counters:
Cu,v for the occurrence of the edge {u, v} and C ′

u,v for the conflict triples where the edge
{u, v} is missing. Following this iteration, we update the graph as follows: add an edge
{u, v} to the graph if it is missing in at least k + 1 conflict triples (i.e., for each pair u, v with
C ′u, v ≥ k + 1 add the edge {u, v}), and remove all edges {u, v} that are part of at least
k + 1 conflict triples (i.e., all edges {u, v} with Cu,v ≥ k + 1). We then reset all counters and
repeat the described iteration process.

After each iteration, we count the number of non-zero counters in C and C ′. If this count
exceeds (k + 1)2, we conclude with a "no-instance" answer (since adding or deleting a single

F. Kammer and A. Sajenko 17

edge {u, v} can resolve at most k + 1 conflict triples in G). Otherwise, non-zero counters
indicate exactly those vertices that are not part of a clique. For a full kernel, we include at
most (k + 1)2 conflict triples, encompassing both vertices and edges. If, across all iterations,
an edge is introduced and then removed (or vice versa), we answer with “no-instance”.

Typically, a counter is created for every conflict tripple. However, since only non-zero
counters are of interest, we maintain only those counters and reject instances as “no-instance”
as soon as they exceed (k + 1)2 different counters.

▶ Theorem 12. Given an n-vertex m-edge instance (G, k) of Cluster Editing, there is
an O(nm log k)-time O(k2 log n)-bits kernelization that either outputs a full kernel of O(k2)
vertices/edges or returns that (G, k) is a no-instance.

Proof. We next describe and analyze an implementation of the algorithm above. First of all,
we can iterate over all vertex triples {u, v, w} by iterating over all edges and, for each edge
{u, v}, over all vertices w ∈ N(v) ∪ N(u). We cannot modify G on the read-only word-RAM,
instead we store O(k) modifications to G in a heap and whenever there is an access to G, we
access the heap to check for the existence of an edge, for which we pay for with an extra
factor in the running time logarithmic to the size of the heap. Thus, we can iterate over
the vertex triples of the virtually modified graph G in O(m log k) time. The time needed to
update all O(k2) counters in a heap is O(k2 log k)—note that we can assume without loss of
generality that k < m or we have a yes-instance. Since the iteration has to be repeated at
most (k + 1) times, the final running time is O(mk log k). The time (k2 log k) to create the
full kernel by adding (k + 1)2 vertex pairs and edges to an initially empty graph is included
in the final running time.

We have to store the counters, but only the non-zero counters, the modifications to G

in a heap and the kernel. Because the amount of non-zero counters is bounded by O(k2),
the number of modifications is bounded by O(k), and the kernel contains k(k + 2) = O(k2)
vertices and k(2k + 1) = O(k2) edges and therefore, our algorithms uses O(k2 log n) bits.
The full-kernel consists of k(k + 3) vertices and k(2k + 3) edges. ◀

Note that to solve Cluster Deletion the only change is that we return a no-instance
for (G, k) whenever a counter C ′

u,v ≥ k + 1 for an edge {u, v}.

References
1 Tetsuo Asano, Kevin Buchin, Maike Buchin, Matias Korman, Wolfgang Mulzer, Günter Rote,

and André Schulz. Reprint of: Memory-constrained algorithms for simple polygons. Comput.
Geom. Theory Appl., 47(3, Part B):469–479, 2014. doi:10.1016/j.comgeo.2013.11.004.

2 Max Bannach, Christoph Stockhusen, and Till Tantau. Fast parallel fixed-parameter algorithms
via color coding. In Proc. of the 10th International Symposium on Parameterized and Exact
Computation (IPEC 2015), volume 43 of LIPIcs, pages 224–235. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.IPEC.2015.224.

3 Luis Barba, Matias Korman, Stefan Langerman, Rodrigo I. Silveira, and Kunihiko Sadakane.
Space-time trade-offs for stack-based algorithms. In Proc. of the 30th International Symposium
on Theoretical Aspects of Computer Science (STACS 2013), volume 20 of LIPIcs, pages 281–
292. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013. doi:10.4230/LIPIcs.STACS.
2013.281.

4 Paul Beame. A general sequential time-space tradeoff for finding unique elements. SIAM J.
Comput., 20(2):270–277, 1991.

5 Ann Becker and Dan Geiger. Approximation algorithms for the loop cutset problem. In Proc.
of the 10th Annual Conference on Uncertainty in Artificial Intelligence (UAI 1994), pages
60–68. Morgan Kaufmann, 1994.

https://doi.org/10.1016/j.comgeo.2013.11.004
https://doi.org/10.4230/LIPIcs.IPEC.2015.224
https://doi.org/10.4230/LIPIcs.STACS.2013.281
https://doi.org/10.4230/LIPIcs.STACS.2013.281

18 Space-Efficient Graph Kernelizations

6 Arindam Biswas, Venkatesh Raman, Srinivasa Rao Satti, and Saket Saurabh. Space-efficient
FPT algorithms. CoRR, abs/2112.15233, 2021. arXiv:2112.15233.

7 Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes
of parameterized tractability. Ann. Pure Appl. Log., 84(1):119–138, 1997. doi:10.1016/
S0168-0072(95)00020-8.

8 Sankardeep Chakraborty, Kunihiko Sadakane, and Srinivasa Rao Satti. Optimal in-place
algorithms for basic graph problems. In Proc. of the 31st International Workshop on Combi-
natorial Algorithms (IWOCA 2020), volume 12126 of LNCS, pages 126–139. Springer, 2020.
doi:10.1007/978-3-030-48966-3_10.

9 Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for feedback vertex set problems. J. Comput. Syst. Sci., 74(7):1188–1198, 2008.
doi:10.1016/j.jcss.2008.05.002.

10 Stephen A. Cook and Pierre McKenzie. Problems complete for deterministic logarithmic space.
J. Algorithms, 8(3):385–394, 1987. doi:10.1016/0196-6774(87)90018-6.

11 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

12 Peter Damaschke. Parameterized enumeration, transversals, and imperfect phylogeny recon-
struction. Theor. Comput. Sci., 351(3):337–350, 2006. doi:10.1016/j.tcs.2005.10.004.

13 Kinkar Ch. Das. Sharp bounds for the sum of the squares of the degrees of a graph. Kragujevac
Journal of Mathematics, 25(25):19–41, 2003.

14 Samir Datta, Raghav Kulkarni, and Anish Mukherjee. Space-efficient approximation scheme
for maximum matching in sparse graphs. In Proc. of the 41st International Symposium on
Mathematical Foundations of Computer Science (MFCS 2016), volume 58 of LIPIcs, pages
28:1–28:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
MFCS.2016.28.

15 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:10.1145/2629620.

16 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

17 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity
of parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.
doi:10.1007/s00453-014-9944-y.

18 Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-efficient basic graph algorithms.
In 32nd International Symposium on Theoretical Aspects of Computer Science, (STACS 2015),
volume 30 of LIPIcs, pages 288–301. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.
doi:10.4230/LIPIcs.STACS.2015.288.

19 Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and Jakob T. Spooner. Two
moves per time step make a difference. In Proc. of the 46th International Colloquium on
Automata, Languages, and Programming, (ICALP 2019), volume 132 of LIPIcs, pages 141:1–
141:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.
2019.141.

20 Stefan Fafianie and Stefan Kratsch. A shortcut to (sun)flowers: Kernels in logarithmic space
or linear time. In Proc. of the 40th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2015), volume 9235 of Lecture Notes in Computer Science, pages
299–310. Springer, 2015. doi:10.1007/978-3-662-48054-0_25.

21 Jörg Flum and Martin Grohe. Describing parameterized complexity classes. In Proc. of
the 19th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2002),
volume 2285 of Lecture Notes in Computer Science, pages 359–371. Springer, 2002. doi:
10.1007/3-540-45841-7_29.

22 Torben Hagerup. Space-efficient DFS and applications to connectivity problems: Simpler,
leaner, faster. Algorithmica, 82(4):1033–1056, 2020. doi:10.1007/s00453-019-00629-x.

https://arxiv.org/abs/2112.15233
https://doi.org/10.1016/S0168-0072(95)00020-8
https://doi.org/10.1016/S0168-0072(95)00020-8
https://doi.org/10.1007/978-3-030-48966-3_10
https://doi.org/10.1016/j.jcss.2008.05.002
https://doi.org/10.1016/0196-6774(87)90018-6
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.tcs.2005.10.004
https://doi.org/10.4230/LIPIcs.MFCS.2016.28
https://doi.org/10.4230/LIPIcs.MFCS.2016.28
https://doi.org/10.1145/2629620
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.4230/LIPIcs.ICALP.2019.141
https://doi.org/10.4230/LIPIcs.ICALP.2019.141
https://doi.org/10.1007/978-3-662-48054-0_25
https://doi.org/10.1007/3-540-45841-7_29
https://doi.org/10.1007/3-540-45841-7_29
https://doi.org/10.1007/s00453-019-00629-x

F. Kammer and A. Sajenko 19

23 Torben Hagerup, Frank Kammer, and Moritz Laudahn. Space-efficient Euler partition and
bipartite edge coloring. Theor. Comput. Sci., 2018. doi:10.1016/j.tcs.2018.01.008.

24 Klaus Heeger, Anne-Sophie Himmel, Frank Kammer, Rolf Niedermeier, Malte Renken, and
Andrej Sajenko. Multistage graph problems on a global budget. Theor. Comput. Sci., 868:46–64,
2021. doi:10.1016/j.tcs.2021.04.002.

25 Pinar Heggernes, Pim van ’t Hof, Benjamin Lévêque, Daniel Lokshtanov, and Christophe
Paul. Contracting graphs to paths and trees. Algorithmica, 68(1):109–132, 2014. doi:
10.1007/s00453-012-9670-2.

26 Yoichi Iwata. Linear-time kernelization for feedback vertex set. In Proc. of the 44th International
Colloquium on Automata, Languages, and Programming, (ICALP 2017), volume 80 of LIPIcs,
pages 68:1–68:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/
LIPIcs.ICALP.2017.68.

27 Yoichi Iwata and Yusuke Kobayashi. Improved analysis of highest-degree branching for
feedback vertex set. In Proc. of the 14th International Symposium on Parameterized and
Exact Computation (IPEC 2019), volume 148 of LIPIcs, pages 22:1–22:11. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.IPEC.2019.22.

28 Taisuke Izumi and Yota Otachi. Sublinear-space lexicographic depth-first search for bounded
treewidth graphs and planar graphs. In Proc. of the 47th International Colloquium on Automata,
Languages, and Programming, (ICALP 2020), volume 168 of LIPIcs, pages 67:1–67:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.ICALP.2020.67.

29 Frank Kammer, Dieter Kratsch, and Moritz Laudahn. Space-Efficient Biconnected Components
and Recognition of Outerplanar Graphs. In Proc. of the 41st International Symposium on
Mathematical Foundations of Computer Science (MFCS 2016), volume 58 of LIPIcs, pages
56:1–56:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
MFCS.2016.56.

30 Frank Kammer and Andrej Sajenko. Space-efficient graph kernelizations. In Proc. of the 18th
Annual Conference on Theory and Applications of Models of Computation (TAMC 2024),
Lecture Notes in Computer Science. Springer, 2024. To appear.

31 Jason Li and Jesper Nederlof. Detecting feedback vertex sets of size k in O*(2.7k) time.
In Proc. of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), pages
971–989. SIAM, 2020. doi:10.1137/1.9781611975994.58.

32 Wenjun Li, Qilong Feng, Jianer Chen, and Shuai Hu. Improved kernel results for some
FPT problems based on simple observations. Theor. Comput. Sci., 657:20–27, 2017. doi:
10.1016/j.tcs.2016.06.012.

33 Jakob Pagter and Theis Rauhe. Optimal time-space trade-offs for sorting. In Proc. of the 39th
Annual Symposium on Foundations of Computer Science (FOCS 1998), pages 264–268. IEEE
Computer Society, 1998. doi:10.1109/SFCS.1998.743455.

34 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1–
32:8, 2010. doi:10.1145/1721837.1721848.

https://doi.org/10.1016/j.tcs.2018.01.008
https://doi.org/10.1016/j.tcs.2021.04.002
https://doi.org/10.1007/s00453-012-9670-2
https://doi.org/10.1007/s00453-012-9670-2
https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://doi.org/10.4230/LIPIcs.IPEC.2019.22
https://doi.org/10.4230/LIPICS.ICALP.2020.67
https://doi.org/10.4230/LIPIcs.MFCS.2016.56
https://doi.org/10.4230/LIPIcs.MFCS.2016.56
https://doi.org/10.1137/1.9781611975994.58
https://doi.org/10.1016/j.tcs.2016.06.012
https://doi.org/10.1016/j.tcs.2016.06.012
https://doi.org/10.1109/SFCS.1998.743455
https://doi.org/10.1145/1721837.1721848

	1 Introduction
	2 Path Contraction
	3 Log-Space Tree Traversal and Cycle Check
	4 Feedback Vertex Set
	5 Cluster Editing and Cluster Deletion

