
A Tight Threshold Bound for Search Trees with 2-way Comparisons*

Sunny Atalig† and Marek Chrobak†

†University of California at Riverside, USA

December 8, 2023

Abstract

We study search trees with 2-way comparisons (2WCST’s), which involve separate less-than and
equal-to tests in their nodes, each test having two possible outcomes, yes and no. These trees have a
much subtler structure than standard search trees with 3-way comparisons (3WCST’s) and are still not
well understood, hampering progress towards designing an efficient algorithm for computing minimum-
cost trees. One question that attracted attention in the past is whether there is an easy way to determine
which type of comparison should be applied at any step of the search. Anderson, Kannan, Karloff and
Ladner studied this in terms of the ratio between the maximum and total key weight, and defined two
threshold values: λ− is the largest ratio that forces the less-than test, and λ+ is the smallest ratio that
forces the equal-to test. They determined that λ− = 1

4 , but for the higher threshold they only showed that
λ+ ∈ [37 ,

4
9]. We give the tight bound for the higher threshold, by proving that in fact λ+ = 3

7 .

1 Introduction

Search trees are decision-tree based data structures used for identifying a query value within some specified
set K of keys, by applying some simple tests on the query. When K is a linearly ordered set, these tests
can be comparisons between the query and a key from K. In the classical model of 3-way comparison trees
(3WCST’s), each comparison has three outcomes: the query can be smaller, equal, or greater than the key
associated with this node. In the less studied model of search trees with 2-way comparisons (2WCST’s),
proposed by Knuth [7, §6.2.2, Example 33], we have separate less-than and equal-to tests, with each test
having two outcomes, yes or no. In both models, the search starts at the root node of the tree and proceeds
down the tree, following the branches corresponding to these outcomes, until the query ends up in the leaf
representing the key equal to the query value 1.

The focus of this paper is on the static scenario, when the key set K does not change over time2. Each key
k is assigned a non-negative weight wk, representing the frequency of k, or the probability of it appearing
on input. Given these weights, the objective is to compute a tree T that minimizes its cost, defined by
cost(T) =

∑
k∈K wk · depth(k), where depth(k) is the depth of the leaf representing key k in T . This

concept naturally captures the expected cost of a random query.

*Research supported by NSF grant CCF-2153723.
1Here we assume the scenario when the query is in K, often called the successful-query model. If arbitrary queries are allowed,

the tree also needs to have leaves representing inter-key intervals. Algorithms for the successful-query model typically extend
naturally to this general mode without increasing their running time.

2There is of course vast amount of research on the dynamic case, when the goal is to have the tree to adapt to the input sequence,
but it is not relevant to this paper.

1

ar
X

iv
:2

31
2.

03
89

6v
1

 [
cs

.D
S]

 6
 D

ec
 2

02
3

< 6

= 1

1 < 4

= 3

3 2

= 4

4 5

= 6

6 = 7

7 8

y

y n

y

y n

n

y n

n

y n

y n8

4 3 3 2

9

8 7

Figure 1: An example of a 2WCST. This tree handles keys 1, 2, 3, 4, 5, 6, 7, 8 with respective weights 8, 3, 4, 3, 2, 9,
8, 7. Computing the cost in terms of leaves, we get 8 · 2 + 3 · 4 + 4 · 4 + 3 · 4 + 2 · 4 + 9 · 2 + 8 · 3 + 7 · 3 = 127.

Optimal 3WCST’s can be computed in time O(n3) using the now standard dynamic programming algo-
rithm. As shown already by Knuth [6] in 1971 and later by Yao [10] in 1980, using a more general approach,
the running time can be improved to O(n2). This improvement leverages the property of 3WCST’s called the
quadrangle inequality (which is essentially equivalent to the so-called Monge property or total monotonicity
— see [3]). In contrast, the first (correct3) polynomial-time algorithm for finding optimal 2WCST’s was de-
veloped only in 2002 by Anderson, Kannan, Karloff and Ladner [1]. Its running time is O(n4). A simpler
and slightly more general O(n4)-time algorithm was recently given in [4].

The reason for this disparity in the running times lies in the internal structure of 2WCST’s, which is much
more intricate than that of 3WCST’s. Roughly, while the optimal cost function of 3WCST’s has a dynamic-
programming formulation where all sub-problems are represented by key intervals, this is not the case for
2WCST’s. For 2WCST’s, a similar approach produces intervals with holes (corresponding to earlier failed
equal-to tests), leading to exponentially many sub-problems. As shown in [1] (and conjectured earlier by
Spuler [8, 9]), this can be reduced to O(n3) sub-problems using the so-called heaviest-first key property.

One other challenge in designing a faster algorithm is that, for any sub-problem, it is not known a priori
whether the root should use the less-than test or the equal-to test. The intuition is that when some key is
sufficiently heavy then the optimum tree must start with the equal-to test (to this key) at the root. On the
other hand, if all weights are roughly equal (and there are sufficiently many keys), then the tree should start
with a less-than test, to break the instance into two parts with roughly the same total weight. Addressing
this, Anderson et al. [1] introduced two threshold values for the maximum key weight. Denoting by W the
total weight of the keys in the instance, these values are defined as follows:

• λ− is the largest λ such that if all key weights are smaller than λW then there is no optimal tree with
an equal-to test at the root.

• λ+ is the smallest λ such that if any key has weight at least λW then there is an optimal tree with an
equal-to test at the root.

In their paper4, they proved that λ− = 1
4 and λ+ ∈ [37 ,

4
9]. These thresholds played a role in their O(n4)-time

algorithm for computing optimal 2WCST’s. The more recent O(n4)-time algorithm in [4] uses a somewhat
different approach and does not rely on any threshold bounds on key weights.

3Anderson et al. [1] reference an earlier O(n5)-time algorithm by Spuler [8, 9]. However, as shown in [5], Spuler’s proof is not
correct.

4In [1] the notation for the threshold values λ− and λ+ was, respectively, λ and µ. We changed the notation to make it more
intuitive and consistent with [2].

2

Nevertheless, breaking the O(n4) barrier will require deeper understanding of the structure of optimal
2WCST’s; in particular, more accurate criteria for determining which of the two tests should be applied first
are likely to be useful. Even if not improving the asymptotic complexity, such criteria reduce computational
overhead by limiting the number of keys to be considered for less-than tests.

With these motivations in mind, in this work we give a tight bound on the higher weight threshold, by
proving that the lower bound of 3

7 for λ+ in [1] is in fact tight.

Theorem 1.1. For all n ≥ 2, if an instance of n keys has total weight W and a maximum key weight at least
3
7W then there exists an optimal 2WCST rooted at an equal-to test. In other words, λ+ ≤ 3

7 .

The proof is given in Section 3, after we introduce the necessary definitions and notation, and review
fundamental properties of 2WCST’s, in Section 2.

Note: For interested readers, other structural properties of 2WCST’s were recently studied in the compan-
ion paper [2]. In particular, that paper provides other types of threshold bounds, including one that involves
two heaviest keys, as well as examples showing that the speed-up techniques for dynamic programming,
including the quadrangle inequality, do not work for 2WCST’s.

2 Preliminaries

Notation. Without any loss of generality we can assume that set of keys is K = {1, 2, ..., n}, and their
corresponding weights are denoted w1, w2, . . . , wn. Throughout the paper, we will typically use letters
i, j, k, ... to represent keys. The total weight of the instance is denoted by W =

∑
k∈K wk. For a tree T by

w(T) we denote the total weight of keys in its leaves, calling it the weight of T . For a node v in T , w(v)
denotes the weight of the sub-tree of T rooted at v.

Each internal node is either an equal-to test to a key k, denoted by ⟨= k⟩, or a less-than test to k, denoted
by ⟨< k⟩. Conventionally, the left and right branches of the tree at a node are labelled by “yes” and “no”
outcomes, but in our proof we will often depart from this notation and use relation symbols “=”, “̸=”, “<”,
etc, instead. For some nodes only the comparison key k will be specified, but not the test type. Such nodes
will be denoted ⟨∗ k⟩, and their outcome branches will be labeled “=/≥” and “̸=/<”. The interpretation of
these is natural: If ⟨∗ k⟩ is ⟨= k⟩ then the first branch is taken on they “yes” answer, otherwise the second
branch is taken. If ⟨∗ k⟩ is ⟨< k⟩ then the second branch is taken on the “yes” answer and otherwise the first
branch is taken. This convention will be very useful in reducing the case complexity.

A branch of a node is called redundant if there is no query value q ∈ K that traverses this branch during
search. A 2WCST T is called irreducible if it does not contain any redundant branches. Each tree can be
converted into an irreducible tree by “splicing out” redundant branches (linking the sibling branch drectly to
the grandparent). This does not increase cost. So throughout the paper we tacitly assume that any given tree
is irreducible. In particular, note that any key k appearing in a node ⟨∗ k⟩ of an irreducible tree must satisfy
all outcomes of the tests on the path from the root to ⟨∗ k⟩. (The only non-trivial case is when ⟨∗ k⟩ is ⟨< k⟩
and there is a node ⟨= k⟩ along this path. In this case, ⟨< k⟩ can be replaced by ⟨< k + 1⟩, as in this case k
cannot be n if T is irreducible.)

Side weights. We use some concepts and auxiliary lemmas developed by Anderson et al. [1]. In particular,
the concept of side-weights is useful. The side-weight of a node v in a 2WCST T is defined by

sw(v) =


0 if v is a leaf
wk if v is an equal-to test ⟨= k⟩
min {w(L), w(R)} if v is a less-than test with sub-trees L,R

3

∈ A

∈ B

X Y

Z

∈

∈ /∈

/∈
=⇒

∈ B

X ∈ A

Y Z

∈ /∈

∈ /∈

Figure 2: A tree rotation using general queries.

< a

X ∗ b

Y Z

< ≥

=/≥ 6=/<
=⇒

∗ b

Y < a

X Z

=/≥ 6=/<

< ≥

(a) Valid if tree is irreducible.

= a

X ∗ b

Y Z

= 6=

=/≥ 6=/<
=⇒

∗ b

Y = a

X Z

=/≥ 6=/<

= 6=

(b) Valid if a < b or ⟨∗ b⟩ = ⟨= b⟩.

Figure 3: Rotating a node with double outcomes.

Lemma 2.1. [1] Let T be an optimal 2WCST. Then sw(u) ≥ sw(v) if u is a parent of v.

The lemma, while far from obvious, can be proved by applying so-called “rotations” to the tree, which
are local rearrangements that swap some adjacent nodes. As a simple example, if u = ⟨= k⟩ is a child
of v = ⟨= l⟩ and sw(u) > sw(v) then exchanging these two comparisons would reduce the tree cost,
contradicting optimality. For the complete proof, see [1].

Lemma 2.1 implies immediately the following:

Lemma 2.2. [1] For n > 2, if an optimal 2WCST for an instance of n keys is rooted at an equal-to test on i,
then i is a key of maximum-weight.

We remark that in case of ties between maximum-weight keys a subtlety arises that led to some compli-
cations in the algorithm in [1]. It was shown later in [4] that this issue can be circumvented. This issue does
not arise in our paper, and the above statement of Lemma 2.2 is sufficient for our argument.

More about rotations. We will extend the concept of rotations to involve nodes of the form ⟨∗ k⟩, with
unspecified tests. This makes the rotations somewhat non-trivial, since such nodes represent two different
possible subtrees, and we need to justify that the tree obtained from the rotation is correct in both cases.

To give a simple condition for ensuring valid rotations, we generalize 2WCSTs by considering arbitrary
types of tests, not merely equal-to or less-than tests. Any binary test can be identified by the set of keys that
satisfy the “yes” outcome. We can thus represent such a test using the set element relation, denoted ⟨∈ A⟩,
with branches labelled “∈” and “/∈”. An equal-to test ⟨= k⟩ can be identified by the singleton set {k} or its
complement K − {k}, and a less-than test ⟨< k⟩ can be identified by (−∞, k) or [k,∞).

Consider the rotation in Figure 2, where we denote the sub-trees and the keys they contain by X , Y , and
Z. Comparing the trees on the left and the right, we must have X = A ∩B = B, which implies that for the
rotation to be correct we need B ⊆ A. (If the tree on the left is irreducible, the containment must in fact be
strict.) On the other hand, if B ⊆ A then in both trees we have Y = A \ B and Z = K − A. This gives us
the following property:

4

Containment Property: The rotation shown in Figure 2 is valid if and only if B ⊆ A.

We remark that other rotations, such as when ⟨∈ B⟩ is in the /∈-branch of ⟨∈ A⟩, can be accounted for
by the above containment property, by replacing ⟨∈ A⟩ with ⟨∈ Ā⟩, where Ā is the complement of A.

Consider Figure 3a, with tests ⟨< a⟩ and ⟨∗ b⟩. Assuming the original tree is irreducible, we have b ≥ a,
with strict inequality if ⟨∗ b⟩ is a less-than test. We identify ⟨< a⟩ with set A = [a,∞) and ⟨∗ b⟩ with
B = {b} or [b,∞) (second option corresponds to ⟨< b⟩). Then by our inequalities, it is clear that B ⊂ A
and the rotation is valid. By a similar reasoning, the rotation shown in Figure 3b is also valid, assuming
either a < b or ⟨∗ b⟩ is an equal-to test. For proving Theorem 1.1, we need only consider these two rotations
(or the corresponding reverse rotations).

Not all tree modifications in our proof are rotations. Some modifications also insert a new comparison
test into the tree. This modification has the effect of making a tree reducible, though it can be converted into
a irreducible tree, as explained earlier in this section. Insertions are used by Anderson et al. [1] in proving
the tight bound for λ− and will also be used in proving Theorem 1.1

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1, namely that the lower bound of 3
7 on λ+ in [1] is tight.

Before proceeding with the proof, we remind the reader that ⟨∗ k⟩ denotes an unspecified comparison
test on key k, and that its outcomes are specified with labels“=/≥” and “ ̸=/<”.

The proof is by induction on the number of nodes n. The cases n = 2, 3 are trivial so we’ll move on
to the inductive step. Assume that n ≥ 4 and that Theorem 1.1 holds for all instances where the number of
keys is in the range {2, . . . , n− 1}.

To show that the theorem holds for any n-key instance, consider a tree T for an instance with n keys and
whose maximum-weight key m satisfies wm ≥ 3

7w(T), and suppose that the root of T is a less-than test
⟨< r⟩. We show that we can then find another tree T ′ that is rooted at an equal-to test node and has cost not
larger than T .

If r ∈ {2, n}, then one of the children of ⟨< r⟩ is a leaf, and we can simply replace ⟨< r⟩ by an
appropriate equal-to test. So we can assume that 2 < r ≤ n− 1, in which case each sub-tree of ⟨< r⟩ must
have between 2 and n − 1 nodes. By symmetry, we also can assume that a heaviest-weight key m is in the
left sub-tree L of ⟨< r⟩. Since wm ≥ 3

7w(T) ≥ 3
7w(L), we can replace L with a tree rooted at ⟨= m⟩

without increasing cost, by our inductive assumption. (A careful reader might notice that, if a tie arises, the
inductive assumption only guarantees that the root of this left subtree will be an equal-to test to a key of the
same weight as m. For simplicity, we assume that this key is m, for otherwise we can just use the other key
in the rest of the proof.) Let T1 be the ̸=-branch of ⟨= m⟩ and T2 be the ≥-branch of ⟨< r⟩.

By applying Lemma 2.1 to node ⟨= m⟩ and its parent ⟨< r⟩, we have that w(T2) ≥ wm ≥ 3
7w(T),

which in turn implies that w(T1) ≤ 1
7w(T). Since T2 is not a leaf, let its root be ⟨∗ i⟩ with sub-trees T3 and

T4, where T3 is the =/≥-branch. The structure of T is illustrated in Figure 4a.

To modify the tree, we break into two cases based on T3’s weight:

Case 1: w(T3) ≥ 1
3w(T2). To obtain T ′, rotate ⟨= m⟩ to the root of the tree, then rotate ⟨∗ i⟩ so that it is

the ̸=-branch of ⟨= m⟩. (The irreducibility of T implies that the Containment Property in Section 2 holds
for both rotations.) Node m goes up by 1 in depth and subtrees T1 and T4 both go down by 1 (see Figure 4b).
So the total change in cost is

5

< r

= m

m T1

∗ i

T3 T4

<

= 6=

≥

=/≥ 6=/<

(a) Original tree T

= m

m ∗ i

T3 < r

T1 T4

= 6=

=/≥ 6=/<

< ≥

(b) Modified tree T ′

Figure 4: On the left, tree T in the proof of Theorem 1.1. On the right, the modification for Case 1. Notice that T3 is
either the leaf i or contains all keys greater than or equal to i, depending on the comparison test ⟨∗ i⟩.

cost(T ′)− cost(T) = w(T1) + w(T4)− wm

= w(T)− 2wm − w(T3) wm + w(T1) + w(T3) + w(T4) = w(T)

≤ w(T)− 2wm − 1
3wm w(T3) ≥ 1

3w(T2), w(T2) ≥ wm

= w(T)− 7
3wm

≤ 0 wm ≥ 3
7w(T)

Case 2: w(T3) <
1
3w(T2). Note that in this case, w(T4) >

2
3w(T2). We’ll first handle some trivial cases.

If T4 is a leaf j, we can replace ⟨∗ i⟩ with ⟨= j⟩ and do the same rotations as in Case 1 (swapping the roles of
T4 and T3). If T4 contains only two leaves, say k and j, applying Lemma 2.1 we obtain that wk, wj ≤ w(T3),
which in turn implies that w(T2) ≤ 3w(T3) < w(T2) — a contradiction.

Therefore, we can assume that T4 contains at least 3 leaves and at least 2 comparison nodes. Let ⟨∗ j⟩ be
the test in the root of T4. If ⟨∗ j⟩ is a less-than test and any of its branches is a leaf, we can replace ⟨∗ j⟩ with
an equal-to test. If ⟨∗ j⟩ is an equal-to test than its ̸=-branch is not a leaf (because T4 has at least 3 leaves).
Thus we can assume that the ̸=/<-branch of ⟨∗ j⟩ is not a leaf, and let ⟨∗ k⟩ be the root of this branch. This
means that both ⟨∗ j⟩ and ⟨∗ k⟩ follow from an ̸=/<-outcome. Let T5 be the =/≥-branch of ⟨∗ j⟩ and T6

and T7 be the branches of ⟨∗ k⟩. The structure of T is shown in Figure 6a.
This idea behind the remainng argument is this: We now have that T5, T6 and T7 together are relatively

heavy (because T4 is), while T1 and T3, which are at lower depth, are light. If this weight difference is
sufficiently large, it should be thus possible to rebalance the tree and reduce the cost. We will accomplish
this rebalancing by using keys i, j and k, although it may require introducing a new less-than test to one of
these keys.

For convenience, re-label the keys {i, j, k} = {b1, b2, b3} such that b1 ≤ b2 ≤ b3. The goal is to use
⟨< b2⟩ as a “central” cut-point to divide the tree, with ⟨< r⟩ and ⟨∗ b1⟩ in its <-branch. The ≥-branch will
contain ⟨∗ b3⟩ and, if ⟨∗ b2⟩ is an equal-to test, also ⟨∗ b2⟩.

The idea is illustrated by the example in Figure 5. In tree T ′ we have two copies of T7, denoted T ′
7

and T ′′
7 . (Because of this T ′ is not irreducible. As explained in Section 2, T ′ can be then converted into

an irreducible tree by splicing out redundant branches.) These copies are needed because the range of T7 is
partitioned by the ⟨< j⟩ test into two subsets, with query keys smaller than j following the <-branch and
the other following the ≥-branch. We refer to this in text later as “fracturing” of T7. However, since these
subsets form a disjoint partition of the range of T7, the total contribution of T ′

7 and T ′′
7 to the cost of T ′ is the

same as the contribution of T7 to the cost of T . More generally, such fracturing does not affect the cost as
long as the fractured copies of a subtree are at the same depth as the original subtree.

Ultimately, using the case assumption that w(T3) <
1
3w(T2), we want to show the following:

6

< r

= m

m T1

= i

i = j

j < k

T6 T7

<

= ≥

6=

= 6=

= 6=

< ≥

=⇒

= m

m < j

< r

T1 < k

T6 T ′
7

= i

i = j

j T ′′
7

= 6=

<

< ≥

< ≥

≥

= 6=

= 6=

Figure 5: An example conversion of T (on the left) into T ′ (on the right) in Case 2, where k < j < i. T ′
7 and T ′′

7 are
copies of T7.

Claim 3.1. There exists a tree T ′ such that

cost(T ′)− cost(T) ≤ w(T1)− wm + 2w(T3).

In other words, we want to show that in the worst case scenario, we have a modified tree whose cost is
at worst equivalent to moving key m up by one, T1 down by one, and T3 down by 2. This suffices to prove
Case 2 as then

cost(T ′)− cost(T) ≤ w(T1)− wm + 2w(T3)

= w(T)− 2wm + w(T3)− w(T4) wm + w(T1) + w(T3) + w(T4) = w(T)

≤ w(T)− 2wm + 1
3w(T2)− 2

3w(T2) w(T3) <
1
3w(T2), w(T4) >

2
3w(T2)

= w(T)− 2wm − 1
3w(T2)

≤ w(T)− 2wm − 1
3wm w(T2) ≥ wm

≤ 0

Before describing the construction of T ′, we’ll first establish Claim 3.2 below.

Claim 3.2. r < b2 (so that ⟨< r⟩ and ⟨< b2⟩ are distinct tests).

Because keys i, j, and k are in the ≥-branch of ⟨< r⟩, we have that r ≤ b1, b2, b3. As any irreducible
tree can perform at most two tests on the same key, if bi = r then bi is distinct from the other two keys. Then
bi = b1 must hold to preserve order, and thus b2 > b1 = r. This proves Claim 3.2.

The modified tree T ′ then has the following form: ⟨= m⟩ is at the root, ⟨< b2⟩ is at the ̸=-branch of
⟨= m⟩, and ⟨< r⟩ is at the <-branch of ⟨< b2⟩. Notably, T1 will still be in the <-branch of ⟨< r⟩ in T ′,
which implies that m moves up by 1 and T1 moves down by 1, thus matching the w(T1) − wm terms in
Claim 3.1. The right branch of ⟨< r⟩ leads to ⟨∗ b1⟩. The rest of T ′ will be designed so that all subtrees T3,
T5, T6 and T7 will have roots at depth at most 4, so in particular T6 and T7 will never move down.

Then it suffices to show that the new depths of T3 and T5 imply a cost increase no greater than 2w(T3).
More precisely, we will show that T ′ has one of the following properties: Compared to T , in T ′

(j1) T3 moves down by at most 2 and T5’s depth doesn’t change, or
(j2) If ⟨∗ j⟩ is an equal-to test then T5 and T3 move down at most by 1 each. (This suffices because

w(T5) = wj ≤ w(T3) if ⟨∗ j⟩ is an equal-to test, by applying Lemma 2.1 to T .)

To describe the rest of our modification, we break into two sub-cases, depending on whether ⟨∗ b2⟩ is
and equal-to test or less-than test.

7

< r

= m

m T1

∗ i

T3 ∗ j

T5 ∗ k

T6 T7

<

= 6=

≥

=/≥ 6=/<

=/≥ 6=/<

=/≥ 6=/<

(a) Original tree T

= m

m < b2

< r

T1 ∗ b1

S1 S2

∗ b3

S3 S4

= 6=

<

< ≥

=/≥ 6=/<

≥

=/≥ 6=/<

(b) Modified tree T ′

Figure 6: Original and modified tree for Case 2.1. S1, S2, S3, S4 is simply some permutation of T3, T5, T6, T7.

< r

= m

m T1

∗ i

T3 ∗ j

T5 ∗ k

T6 T7

<

= 6=

≥

=/≥ 6=/<

=/≥ 6=/<

=/≥ 6=/<

(a) Original tree T

= m

m < b2

< r

T1 ∗ b1

S1 S2

= b2

b2 ∗ b3

S3 S4

= 6=

<

< ≥

=/≥ 6=/<

≥

= 6=

=/≥ 6=/<

(b) Modified tree T ′, ⟨= b2⟩ goes first

= m

m < b2

< r

T1 ∗ b1

S1 S2

∗ b3

S3 = b2

b2 S4

= 6=

<

< ≥

=/≥ 6=/<

≥

=/≥ 6=/<

= 6=

(c) Modified tree T ′, ⟨∗ b3⟩ goes first

Figure 7: Original and modified tree for Case 2.2. In this case, T5 = b2, and S1, S2, S3, S4 is some permutation of
T3, T6, T7, T

′′, where T ′′ is a copy of T6 or T7.

Case 2.1: ⟨∗ b2⟩ = ⟨< b2⟩. In this case, ⟨∗ b3⟩ is at the ≥-branch of ⟨< b2⟩ in T ′. We do not introduce any
new comparison tests, obtaining T ′ shown in Figure 6b. We now break into further cases based on which
key b2 is.

First, we observe that b2 ̸= i, as for b2 = i the structure of T would imply that j, k < i, meaning that i
would be the largest key, instead of the middle one. Thus, b2 ∈ {j, k}. This gives us two sub-cases.

Case 2.1.1: b2 = j. Then we have k < j by the structure of T , implying k = b1, and i ≥ j since i must
now be b3. Then, in T ′, ⟨∗ b1⟩ has branches T6 and T7, while ⟨∗ b3⟩ has branches T3 (=/≥-branch)
and T5 (̸=/<-branch). In which case, only T3 moves down by 1, satisfying (j1).

Case 2.1.2: b2 = k. Then the structure of T implies that k ̸= {i, j}, so b1 < k, which in turn implies that
⟨∗ b1⟩ is an equal-to test. We now have two further sub-cases. If (i, j) = (b1, b3) then, in T ′, T5 is in
the =/≥-branch of ⟨∗ b3⟩ and leaf T3 = i is in the =/≥-branch of ⟨∗ b1⟩, implying T5’s depth doesn’t
change and T3 moves down by 2, satisfying (j1). If j = b1, then leaf T5 = j is below ⟨∗ b1⟩ and T3 is
below ⟨∗ b3⟩, both moving down by 1, satisfying (j2).

Case 2.2: ⟨∗ b2⟩ = ⟨= b2⟩ and both tests ⟨∗ b1⟩, ⟨∗ b3⟩ are different from ⟨< b2⟩. In this case, ⟨< b2⟩ (the
̸=-child of ⟨= m⟩ in T ′) is a newly introduced test. In T ′, we will have ⟨= b2⟩ and ⟨∗ b3⟩ in the ≥-branch of
⟨< b2⟩. The order in which we perform ⟨= b2⟩ and ⟨∗ b3⟩ will be determined later.

8

We will say ⟨= b2⟩ is “performed first” if it is the root of the ≥-branch of ⟨< b2⟩, in which case ⟨∗ b3⟩ is
rooted at the ̸=-branch of ⟨= b2⟩, or “performed second”. Likewise if ⟨∗ b3⟩ is performed first, then ⟨= b2⟩ is
performed second, rooted at the ̸=/<-branch of ⟨∗ b3⟩. Figure 7 illustrates these two possible configurations.
In most cases, ⟨= b2⟩ and ⟨∗ b3⟩ are performed in the same order as in the original tree T (i.e. ⟨∗ i⟩ comes
before ⟨∗ j⟩, which comes before ⟨∗ k⟩), though one case (Case 2.2.2) requires going out-of-order, implying
a rotation.

Because ⟨< b2⟩ is a new comparison, one of the sub-trees T3, T5, T6, T7 in T may fracture, meaning that
some of its keys may satisfy this comparison and other may not. We will in fact show that only T6 or T7

can fracture, but their depths do not increase. So, as explained earlier, this fracturing will not increase cost.
(As also explained before, the redundancies created by this fracturing, and other that can occur as a result of
the conversion, can be eliminated by post-processing T ′ that iteratively splices out redundant branches.) We
again break into further cases based on which key b2 is.

Case 2.2.1: b2 = i and ⟨∗ j⟩ is an equal-to test. Then T3 = i and T5 = j are both leaves and can’t fracture.
Perform ⟨= b2⟩ first and ⟨∗ b3⟩ second (since i = b2, this follows order of comparisons in the original
tree). Then T3 and T5 both move down by 1, satisfying (j2), with T3 = i = b2 in the =-branch of
⟨= b2⟩ and T5 = j in the =-branch of either ⟨∗ b1⟩ or ⟨∗ b3⟩ (depending on whether j is b1 or b3).

Case 2.2.2: b2 = i and ⟨∗ j⟩ is a less-than test. Then k < j, so j = b3 and k = b1. By the case assumption,
we have that j > i. Then in the ≥-branch of ⟨< b2⟩, we perform ⟨< j⟩ before ⟨= i⟩ (going out-of-
order compared to the original tree), which will be in the <-branch of ⟨< j⟩. Then T3 = i will be
below ⟨= i⟩ moving down twice and T5 will be in the ≥-branch of ⟨< j⟩ staying at the same depth,
satisfying (j1).

Case 2.2.3: b2 = j. Then we may simply perform ⟨= b2⟩ and ⟨∗ b3⟩ in the same order as in the original
tree. If ⟨∗ i⟩ is an equal-to test, then T3 and T5 are both leaves, and either both will go down by 1 (if
i = b3 and k = b1), satisfying (j2), or only T3 goes down by 2 (if i = b1 and k = b3), satisfying (j1).
If ⟨∗ i⟩ is a less-than test, then j, k < i, so k = b1 and i = b3. ⟨< i⟩ will be performed first in the
≥-branch of ⟨< b2⟩ and T3 will be in the ≥-branch of ⟨< i⟩, implying T3 and T5 both go down by 1,
satisfying (j2).

Case 2.2.4: b2 = k. The analysis is similar to Case 2.1.2. By the structure of T , k ̸= {i, j}, so b1 < k,
implying ⟨∗ b1⟩ is an equal-to test. Then perform ⟨= b2⟩ and ⟨∗ b3⟩ in the same order as the original
tree (that is, ⟨= k⟩ is always performed second). Thus ⟨∗ b1⟩ is in the ≥-branch of ⟨< r⟩ and ⟨∗ b3⟩
is in the ≥-branch of ⟨< b2⟩. If (i, j) = (b1, b3), then T3 (which is a leaf i) is at the =/≥-branch
of ⟨∗ b1⟩ and T5 is at the =/≥-branch of ⟨∗ b3⟩, implying T5’s depth stays the same and T3 moves
down by 2, satisfying (j1). If (i, j) = (b3, b1), then leaf T5 = j is below ⟨∗ b1⟩ and T3 is below ⟨∗ b3⟩,
implying both trees move down by 1, satisfying (j2).

References

[1] R. Anderson, S. Kannan, H. Karloff, and R. E. Ladner. Thresholds and optimal binary comparison
search trees. Journal of Algorithms, 44:338–358, 2002.

[2] Sunny Atalig, Marek Chrobak, Erfan Mousavian, Jiri Sgall, and Pavel Veselý. Structural properties of
search trees with 2-way comparisons. CoRR, abs/2311.02224, 2023.

[3] Wolfgang W. Bein, Mordecai J. Golin, Lawrence L. Larmore, and Yan Zhang. The Knuth-Yao
quadrangle-inequality speedup is a consequence of total monotonicity. ACM Trans. Algorithms,
6(1):17:1–17:22, 2009.

9

[4] Marek Chrobak, Mordecai Golin, J. Ian Munro, and Neal E. Young. A simple algorithm for optimal
search trees with two-way comparisons. ACM Trans. Algorithms, 18(1):2:1–2:11, December 2021.

[5] Marek Chrobak, Mordecai Golin, J. Ian Munro, and Neal E. Young. On Huang and Wong’s algorithm
for generalized binary split trees. Acta Informatica, 59(6):687–708, December 2022.

[6] D. E. Knuth. Optimum binary search trees. Acta Informatica, 1:14–25, 1971.

[7] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-Wesley
Publishing Company, Redwood City, CA, USA, 2nd edition, 1998.

[8] D. Spuler. Optimal search trees using two-way key comparisons. Acta Informatica, 31(8):729–740,
1994.

[9] D. A. Spuler. Optimal search trees using two-way key comparisons. PhD thesis, James Cook University,
1994.

[10] F. Frances Yao. Efficient dynamic programming using quadrangle inequalities. In Raymond E. Miller,
Seymour Ginsburg, Walter A. Burkhard, and Richard J. Lipton, editors, Proceedings of the 12th Annual
ACM Symposium on Theory of Computing, April 28-30, 1980, Los Angeles, California, USA, pages
429–435. ACM, 1980.

10

	Introduction
	Preliminaries
	Proof of Theorem 1.1

