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Abstract. We introduce a new method for internal replay that mod-
ulates the frequency of rehearsal based on the depth of the network.
While replay strategies mitigate the effects of catastrophic forgetting in
neural networks, recent works on generative replay show that performing
the rehearsal only on the deeper layers of the network improves the per-
formance in continual learning. However, the generative approach intro-
duces additional computational overhead, limiting its applications. Moti-
vated by the observation that earlier layers of neural networks forget less
abruptly, we propose to update network layers with varying frequency
using intermediate-level features during replay. This reduces the compu-
tational burden by omitting computations for both deeper layers of the
generator and earlier layers of the main model. We name our method
Progressive Latent Replay and show that it outperforms Internal Replay
while using significantly fewer resources.

Keywords: Continual Learning · Generative Replay · Internal Replay

1 Introduction

Fig. 1: Overview of the Progressive La-
tent Replay. We generate features F̂ for
each layer of the classifier and replay sub-
sets of data at intermediate levels of the
network with varying frequencies, which
reduces the computational cost of replay.

In Continual Learning (CL), we
consider a model learning from
a stream of tasks. One of the
main problems in such a sce-
nario is catastrophic forgetting, de-
fined as the decreased performance
of the model on the data from
the previous tasks when learn-
ing something new. Forgetting may
be alleviated in various ways, in-
cluding architecture-based [18,12],
regularization-based [6,19], and replay-
based methods [1].

Although replay-based methods
are effective and partially mitigate
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the forgetting [2], it comes at the cost of storing past samples in a memory buffer.
Assuming limited buffer memory, for high-dimensional data (like images), we can
store only a subset of examples for replay.

Recent works introduce Internal Replay (IR) to increase the efficiency of the
replay [8,15]. The main idea of IR is to rehearse representations from internal
layers of the network instead of full-size images. IR improves rehearsal efficiency
and performance on more complex datasets [15], especially in a generative ap-
proach (i.e. using an additional generative model to produce replay data online
during training instead of storing it in a buffer [13]). Following IR, we investi-
gate this approach’s limitations as well as performance and resource utilization
trade-offs. We show that pretraining of the early network layers is essential for
IR and demonstrate that naive IR fails without pretraining. Motivated by the
use of pretraining in CL [7,15], showing that initial network layers should not
change significantly during continual learning training, and inspired by recent
works on forgetting in neural networks, which state that forgetting occurs mainly
in the final layers of the network[11] we propose to further improve the training
by changing the frequency of updates for layers of the main model during the
replay phase.

The main contribution of this work is the proposed Progressive Latent Replay
method, a generalized version of Internal Replay, which reduces the computa-
tional cost of rehearsal and improves the overall model performance by replaying
internal representations on different levels of the base network. The representa-
tions from the deeper layers are repeated more frequently, while the represen-
tations from the earlier ones less frequently. Replay with our method is more
efficient, as we can sample intermediate-level features, omitting computations
for both deeper layers of the generator and earlier layers of the main model.

2 Related Work

Continual Learning methods can be divided into three main categories [9].
Architecture-based methods [18,12] work by assuming that the neural network
structure is dynamic and can be modified during training to mitigate catas-
trophic forgetting. Regularization-based methods [6,19] approach this problem
by regularizing the network during training. Replay methods [1,13] aim to pre-
vent catastrophic forgetting by rehearsing some examples from previous tasks
along with the examples belonging to the current task.

Replay in Continual Learning The simple replay approach stores examples in a
memory buffer and update the buffer with every new task [9]. However, extending
the buffer with new data becomes inefficient with an increasing number of tasks.
A possible solution is using example selection methods [9]. Yet, it is not trivial,
because we do not know beforehand what examples would be most valuable for
replay in the following tasks.

To address the above-mentioned issues, in [13] authors proposed generative
replay where the generative model is trained to model the distribution of data
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from previous tasks. Rehearsal samples produced by the generator are interleaved
with new data during training of the base model. Generative replay framework
is often based on different types generative models, like Variational Autoen-
coders [3] or GANs [20].

Internal Replay In [11] authors show that the forgetting is not equal for all
network layers and depends highly on the depth of the layer. The first layers of
the network act as feature extractors and forget slowly, while the deeper layers
are most prone to forgetting as they need to adapt the most to accommodate new
tasks. Thus, the idea of rehearsing network internal representations during replay
called Internal Replay1 (IR) gained much interest in recent works connected
with generative [15,14,4,17] and buffer replay [10]. While in the standard replay,
data is propagated through all network layers during rehearsal, Internal Replay
rehearses the data only for deeper layers.

Authors of Brain-Inspired Replay (BI-R) [15] propose to use pretrained first
network layers as a fixed feature extractor and perform replay only on hidden
fully-connected layers. Moreover, they show in the ablation study that Inter-
nal Replay modification yields the greatest performance improvement. We build
upon and extend this work by introducing internal replay with varying frequen-
cies with respect to network layer depth.

In [10] authors investigate another approach related to internal representa-
tions of the model. In contrast to BI-R, their work is based on a storage buffer. In
the proposed method, named Latent Replay, the authors explore the impact of
replaying latent patterns obtained from the particular hidden layer. Specifically,
instead of storing the data in the buffer, they store intermediate representations
obtained from incoming data and later use them for replay. While they store
representations of only one internal layer, we propose using a generative model
to produce generations on multiple internal layers.

Works connected with GANs [14,17] use internal representations to improve
or condition the training of a generative model. Additionally, in [14] authors
stress the necessity for a custom pretraining as a major flaw of other approaches
leveraging Internal Replay. Motivated by this, we investigate the impact of pre-
training in BI-R, showing that it is essential for Internal Replay to work properly.

3 Method

In this section, we present our Progressive Latent Replay (PLR) method for
rehearsal in a continual learning classification problem. PLR performs replay on
different layers of the main model (i.e. the classifier) with varying frequencies.
We also describe update strategies and the relative update cost metric used to
measure the efficiency of our method.

1 Internal Replay approach is also called latent [10] or feature [14] replay
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Fig. 2: Generative model training in Progressive Latent Replay. We define the
architecture of the generative model so that input and output dimensions of
corresponding encoder layers are identical to fully-connected counterparts of the
classifier. The decoder layers are defined so that their shapes match the reversed
shapes of the encoder. Then we optimize the generative model to reconstruct
features encoded by the classifier at every intermediate layer.

3.1 Progressive Latent Replay

We propose to update deeper layers more frequently than the earlier ones to
reduce the computational cost of replay. Thus, we generalize the Internal Replay
proposed in BI-R [15] to Progressive Latent Replay, where the updates can be
done on multiple levels of the network with varying frequencies. Replaying low-
level features less frequently results in fewer weight updates at earlier layers, sav-
ing computational resources. During the replay phase, we sample different-level
features at intermediate layers of the generator and replay them at corresponding
levels of the classifier, as shown in Figure 1. The modifications required to train
the generator to produce intermediate-level features are presented in Figure 2.

We use a model based on variational autoencoder [5] as a generator, but
introduce slight modifications to be able to replay intermediate-level features.
Typically, variational autoencoders are trained by minimizing the following loss
function:

Lvae = Lrecon + Llatent = Eqθ(z|x) [log pϕ(x | z)]−KL (qθ(z | x)‖p(z)) (1)

where qθ, pϕ are the encoder and the decoder networks, x is the input data, z is
the sampled latent vector and KL denotes the Kullback–Leibler divergence.

In our method we use the sampling strategy and latent regularization loss
Llatent from [15]. Moreover, for an effective rehearsal of intermediate features,
we introduce an alternative reconstruction loss Lrecon as the generative model
must generate features of sufficient quality not only in the end-to-end fashion
but also in every corresponding decoder layer. We obtain this by defining the
reconstruction loss of the variational autoencoder Lrecon as a sum of losses for
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Fig. 3: Comparison of Internal Replay and Progressive Latent Replay with strat-
egy S = [f0, f1, f2]. Replaying low-level features less frequently results in fewer
weight updates at earlier layers, saving computational resources.

features generated for each network layer:

Lrecon =

N−1∑
n=0

L(Fn, F̂n), (2)

where Fn and F̂n stand for latent features obtained by propagating real data
through the classifier up to the layer n and reconstructions generated by au-
toencoder for this layer. L denotes the reconstruction loss for individual layers,
which in our method is mean squared error.

The generator trained with modified reconstruction loss allows us to sample
and replay intermediate-level features with any frequency, omitting computa-
tions for both deeper layers of the generator and earlier layers of the main model.
We define layer update frequency fn for nth layer of the classifier as the fraction
of the replay data generated at this level for a single training step, so:

N−1∑
k=0

fk = 1. (3)

Then we can denote Progressive Latent Replay update strategy for the net-
work with N layers as S = [f0, f1, ..., fN−1]. We compare our method with
Internal Replay in Figure 3.

In comparison with traditional replay methods, our method updates only
a small fraction of the weights, while achieving similar or better results. The
only increase in the computational cost of training the generator for Progressive
Latent Replay comes from modifications to the reconstruction loss function and
is negligible. We describe the computational cost of our method in detail in the
following section.
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3.2 Computational efficiency of the method

We measure the efficiency of Progressive Latent Replay strategies by comparison
with Internal Replay. We estimate U(S) - the number of parameters updated for
strategy S = [f0, ..., fN−1] - as follows:

U(S) = U([f0, ..., fN−1]) =

N−1∑
n=0

n∑
k=0

fkPn, (4)

where Pn stands for the total number of weights in nth layer. We estimate
the number of weights updated in Internal Replay using the same formula as
U([1, 0, ..., 0]), because Internal Replay can be be described as a special case of
Progressive Latent Replay where we always update all the layers. We define the
relative cost of our method R as:

R(S) =
U(S)

U([1, 0, ..., 0])
. (5)

U([1, 0, ..., 0]) is the highest possible number of updates and equals the number
of updates performed during Internal Replay. For for any Progressive Latent
Replay strategy S:

0 < R(S) <= 1. (6)

This metric allows us to measure how many weights are updated during the
replay, which directly corresponds with the resource consumption as sampling
and replaying the features at deeper layers of the network requires fewer com-
putations. Lower values of R(S) mean that fewer updates are performed at the
earlier layers of the network, which does not require propagating information
through all the layers in the generator and main model. With a correct replay
strategy, our method can significantly reduce the number of computations during
the replay, while achieving similar or even better results.

4 Experiments

Our experiments focus on comparing our Progressive Latent Replay with Internal
Replay using performance and efficiency measures. To strengthen the motivation
for our method we first evaluate the impact of pretraining and freezing of initial
network layers on model performance in a continual learning setup. Then, we
show on a simple two-tasks setup with rehearsal of internal representations from
a buffer, that more frequent replay on deeper layers of the base model lowers
the number of updates needed during CL training with almost no performance
decrease. Finally, we perform a full comparison between our PLR and IR on a
much more challenging setup with ten tasks on split-CIFAR100 using generative
replay approach.
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4.1 Experimental Setup

We define generator – the autoencoder – so that the encoder architecture is
identical to the stack of fully-connected layers as in the classifier. The decoder
then mirrors encoder architecture, so input dimensionality of encoder layers and
fully-connected layers in the main model matches output dimensionality of cor-
responding layers in decoder. In all cases, replay is done with features from fully-
connected layers, and we do not perform any replay for the feature extractor.
We illustrate the training of the generator in Figure 2.

We conduct our experiments on three datasets: CIFAR10, CIFAR100 and
FashionMNIST, and perform training in a class incremental (CI) scenario [16].
Thus, datasets are split sequentially into tasks. We obtain two tasks with five
classes for CIFAR10, ten tasks with ten classes in the case of CIFAR100 and
five tasks with two classes for FashionMNIST. The batch size is set to 256 in all
experiments.

4.2 Model architecture

We follow BI-R [15] in architecture design for Progressive Latent Replay eval-
uation. The main model is constructed from a feature extractor and a stack
of fully-connected layers. We use the modified autoencoder described in Sec-
tion 3.1 as the generator and define the encoder architecture so that it is iden-
tical to the stack of fully-connected layers in the main model. The decoder then
mirrors encoder architecture, so the input dimensionality of encoder layers and
fully-connected layers in the main model matches the output dimensionality of
corresponding layers in the decoder. In all cases, replay is done with features
from fully-connected layers, and we do not perform any replay for the feature
extractor. We illustrate the training of the generator in Figure 2.

For experiments on CIFAR10/100, the model consists of five convolutional
layers as a feature extractor followed by fully-connected layers. We use ReLU as
an activation function, and the model output consists of a Softmax layer. We
use two different configurations of the fully-connected layers: ARCH1 with two
fully-connected layers with 2000 units followed by a final layer with 100 neurons,
and ARCH2 with three fully-connected layers with 1000 units followed by a final
layer with 100 neurons. The first configuration mirrors BI-R, while the second
consists of more layers so that we can examine the impact of update strategies
in more detail.

For additional experiments on FashionMNIST, the model has three convolu-
tional layers followed by three fully-connected layers with 50 units each and a
final Softmax output layer.

To evaluate Progressive Latent Replay strategies on CIFAR100, encoder
weights were pretrained on CIFAR10, following the base setup introduced in
BI-R. Further ablation study on pretraining is presented in Figure 4.
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4.3 Metrics

We use Frechet Inception Distance (FID) metric to evaluate the quality of gen-
erations produced by the generative model. This metric originally accepts only
full-size images as input and compares distributions of internal representations
from the inception model pretrained on the external dataset. Thus, we use the
modified version introduced in [15] to evaluate internal representations of a differ-
ent size than in the inception network. For modified FID calculation, we change
the reference model from inception to a model pretrained on the joined training
dataset, which has the same base architecture as the one evaluated.

4.4 Pretraining impact on Internal Replay

In Figure 5 we show that the combination of pretraining and freezing the encoder
layers is required for Internal Replay to work correctly. In other words, the naive
approach using Internal Replay with no pretraining and no freezing layers fails
even on a FashionMNIST, which is much simpler than CIFAR100. An alterna-
tive approach to pretraining on an external dataset is freezing the weights in the
encoder part of the network after the first task. We show that such an approach
combined with IR obtains results comparable to standard generative replay but
uses fewer resources for replay updates. Moreover, we evaluate how the perfor-
mance of IR depends on the dataset used for pretraining (see Figure 4). More
specifically, we train a classifier with convolutional layers on a different number
of classes from CIFAR10. Then we use the convolutional part of the network as
a feature extractor. We evaluate two scenarios: with and without data augmen-
tation. Results presented in Figure 4 clearly show the importance of pretraining
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Table 1: Updating deeper layers with higher frequency during replay results in
similar performance to IR with significantly less replay updates. We report test
accuracy ± SEM after second task for split-CIFAR10 class-incremental scenario
with buffer replay containing 512 internal representations of samples. Results
are averaged between three runs with different seeds.

Architecture Strategy R ↓ Accuracy ↑
ARCH1 Internal Replay 100% 71.2% ± 0.7%

S=[0.7, 0.3] 71.4% 71.1% ± 0.7%
S=[0.5, 0.5] 52.4% 71.0% ± 0.8%
S=[0.3, 0.7] 33.3% 70.6% ± 1.0%

ARCH2 Internal Replay 100% 70.2% ± 0.7%
S=[0.5,0.3,0.2] 66.7% 69.9% ± 0.6%

S=[0.34,0.33,0.33] 52.9% 69.3% ± 0.7%
S=[0.2,0.3,0.5] 38.1% 69.2% ± 0.8%

with data augmentation for Internal Replay, as the achieved accuracy drops sig-
nificantly for a lower number of classes in the dataset and when pretraining is not
used. These insights (i.e. that the pretraining is essential for IR and additional
updates on early layers reduce performance and efficiency of IR) motivated us
to propose a depth-dependent frequency of updates during replay to increase
efficiency even further by omitting some of the earlier layers updates.

4.5 Progressive Latent Replay with different strategies

In Table 1 we show that for a simple continual learning setup (only two tasks,
each containing five classes) omitting some replay updates on earlier layers re-
sults in a similar performance to IR. At the same time, each strategy performs
much fewer replay updates compared to IR (see R metric). For simplicity, in this
experiment we use a replay buffer with internal representations for each hidden
layer instead of an additional generative model (for both IR and PLR-based
strategies).

A full comparison of Progressive Latent Replay and Internal Replay we per-
form using a more challenging setup with ten tasks on split-CIFAR100. We show
results obtained with IR and different Progressive Latent Replay update strate-
gies for architectures ARCH1 and ARCH2 in Table 2. We compare regular IR
with three Progressive Latent Replay strategies in terms of Relative Cost (R – see
Equation 5), modified FID (mFID), and test accuracy averaged over all tasks.
We choose strategies that vary considerably in terms of update frequencies per
layer to explore the Progressive Latent Replay properties more closely.

We find that Progressive Latent Replay achieves significantly better perfor-
mance in terms of accuracy for all strategies while using less computational
resources than Internal Replay. The results are consistent across the two archi-
tectures, with the best strategies updating the first layer only half of the time.
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Table 2: Results in class-incremental scenario on split-CIFAR100 dataset aver-
aged from three runs with different seeds. We compare Internal Replay with
different Progressive Latent Replay update strategies for ARCH1 and ARCH2.
We report test accuracy ± SEM after the final task.

Architecture Strategy R ↓ mFID ↓ Accuracy ↑
ARCH1 Internal Replay 100% 169 15.9% ± 0.7%

S=[0.7, 0.3] 71.4% 142 19.9% ± 0.9%
S=[0.5, 0.5] 52.4% 144 20.3% ± 0.9%
S=[0.3, 0.7] 33.3% 140 20.1% ± 1%

ARCH2 Internal Replay 100% 514 11.3% ± 0.8%
S=[0.5,0.3,0.2] 66.7% 869 14.5% ± 0.9%

S=[0.34,0.33,0.33] 52.9% 318 13.5% ± 0.7%
S=[0.2,0.3,0.5] 38.1% 329 13.4% ± 0.5%

The increased final performance in terms of accuracy for PLR strategies in
the generative approach shows that training the generator with additional con-
straints on intermediate features results in better features produced for replay.
It is a promising premise for future work on scaling generative replay with pro-
gressive latent replay updates to longer sequences of tasks in continual learning.

5 Conclusion

In this paper, motivated by the observation that forgetting occurs mainly in
the final layers of neural networks, we introduce Progressive Latent Replay, a
generalization of Internal Replay. We train the generator to produce features
for intermediate layers of the main model and replay the different level features
with varying frequencies. We show that Progressive Latent Replay improves on
standard Internal Replay while using significantly fewer resources for replay.

Our work is a step toward efficient continual learning in scenarios where com-
putational resources are constrained, or access to pretraining data is restricted.
We show that performing weight updates with varying frequency for each layer
improves the efficiency of replay while preserving similar or even increasing the
overall model performance, which confirms that layers in neural networks forget
differently. In future works, we would like to study this phenomenon in more
detail and determine the best update strategies for Progressive Latent Replay.
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