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Abstract. The problem of matching two sets of multiple elements, namely
set-to-set matching, has received a great deal of attention in recent years.
In particular, it has been reported that good experimental results can
be obtained by preparing a neural network as a matching function, es-
pecially in complex cases where, for example, each element of the set is
an image. However, theoretical analysis of set-to-set matching with such
black-box functions is lacking. This paper aims to perform a generaliza-
tion error analysis in set-to-set matching to reveal the behavior of the
model in that task.
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1 Introduction

The problem of matching two sets of multiple elements, namely set-to-set match-
ing, has received a great deal of attention in recent years [BIG7/16]. The problem
is formalized as a task that, given two distinct sets, finds the goodness of match
between them. In particular, when the elements of the set are high-dimensional,
neural networks are used as the matching function [I1]. Although these strate-
gies have been reported to work well experimentally, there is a lack of research
on their theoretical behavior. A mathematical understanding of the behavior of
the algorithm is an important issue since a lack of theoretical research hinders
the improvement of existing algorithms for set-to-set matching.

We aim to perform a generalization error analysis of set-to-set matching algo-
rithms in the context of statistical learning theory [I5J14]. In particular, existing
deep learning-based set-to-set matching algorithms rely on negative sampling,
a procedure in which negative examples are randomly generated while learn-
ing process [I1]. Therefore, we clarify the theoretical behavior of the set-to-set
matching algorithm with negative sampling.

2 Preliminaries

Let @, ym € X = R? be d-dimensional feature vectors representing the features
of each individual item. Let X = {x1,...,xn} and Y = {y1,...,yn} be sets of
these feature vectors, where X, Y € 2% and N, M € N are sizes of the sets. The
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function f : 2¥ x2¥ — R calculates a matching score between the two sets X’ and
Y. Guaranteeing the exchangeability of the set-to-set matching requires that the
matching function f(X,)) is symmetric and invariant under any permutation
of items within each set as follows.

Definition 1 (Permutation Invariance). A set-input function f is said to be
permutation invariant if

f(Xay):f('/TmXaﬂ—yy) (1)
for permutations m, on {1,...,N} and my on {1,...,M}.

Definition 2 (Permutation Equivariance). 4 map f : XV x XM — XN is
said to be permutation equivariant if

f(WCCXaﬂ—yy):’/Tmf(Xay) (2)

for permutations w, and m,, where 7, and m, are on {1,..., N} and {1,..., M},
respectively. Note that f is permutation invariant for permutations within ).

Definition 3 (Symmetric Function). A map f : 2% x 2* — R is said to be
symmetric if

[(X,Y) = [V, X). (3)

Definition 4 (Two-Set-Permutation Equivariance). Given X() € XN and
Z@) e xM g map f: X x X* = X* x X* is said to be two-set-permutation
equivariant if

pf(Z(l),Z(2)) = f(g(p(l)),g(p@))) (4)

for any permutation operator p exchanging the two sets, where X* = UL X"
indicates a sequence of arbitrary length such as X™ or XM.

We consider tasks where the matching function f is used per pair of sets [1§]
to select a correct matching. Given candidate pairs of sets (X ,y<k>), where
X, YH*) e 2% and k € {1,..., K}, we choose V&) as a correct one so that
f(&x,Y*)) achieves the maximum score from amongst the K candidates.

2.1 Set-to-set matching with negative sampling

In real-world set-to-set matching problems, it is often the case that only positive
example set pairs can be obtained. Then, we consider training a model for set-
to-set matching with negative sampling. The learner is given positive examples
St = {(X,Y)}™. Then, negative examples S~ = {(X,V)}™, are generated
by randomly combining set pairs from the given sets. We assume that positive
and negative examples are drawn according to the underlying distribution p™
and p~, respectively. Given training sample set S = (ST, S7), the goal of set-
to-set matching with negative sampling is to learn a real-valued score function
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f 2% x 2% — R that ranks future positive pair (X,))* higher than negative
pair (X,Y)~. Let £ be the loss function, which is defined as

UfZ5,27) = o(f(Z27) - f(Z27)), ()

where ZT = (X, V)", Z= = (X,Y)” and ¢ : R — R* is a convex function.
Typical choices of ¢ include the logistic loss

o(f(Z7) = f(Z7)) =log {1 +exp(~(f(Z") = f(Z7))}. (6)

Definition 5 (Expected set-to-set matching loss). Ezpected set-to-set match-
ing loss R(f) is defined as

R(f) = EZ*Ner,Z*Np* V(fv Z+a Zﬁ)] . (7)

Definition 6 (Empirical set-to-set matching loss). Empirical set-to-set
matching loss R(f;S) is defined as

m++m7

. 1
R(f;8) = m+m_§; > Uzh7). (8)
i=1 j=m++1

Here, we assume that ¢ has the Lipschitz property with respect to R, i.e.,

p(a) =) < L-Ja—10], (9)

where a,b € R and L > 0 is a Lipschitz constant.

3 Margin bound for set-to-set matching

Our first result is based on the Rademacher complexity.

Definition 7 (Empirical Rademacher complexity). Let F be a family of
matching score functions. Then, the empirical Rademacher complexity of F with
respect to the sample S is defined as

m

sup i Z(Tz'f(Zi)

fer M

Rs(F) =E, (10)

Definition 8 (Rademacher complexity). Let p denote the distribution ac-
cording to which samples are drawn. For any integer m > 1, the Rademacher
complexity of F is the expectation of the empirical Rademacher complexity over
all samples of size m drawn according to p:

Ron(F) i= Egpm [ﬁ(f)} . (11)



4 M. Kimura

Let p; the marginal distribution of the first element of the pairs, and by
p2 the marginal distribution with respect to the second element of the pairs.
Similarly, S* ~ p; and S? ~ p,. We denote by Rl the Rademacher complexity
of F with respect to the marginal distribution p;, that is R. (F) = E[Rg1 (F)],
and similarly R2, (F) = E[Rg2(F)].

Here, we assume that the loss function is the following margin loss.

Definition 9. For any p > 0, the p-margin loss is the function £, defined for
all z,2" € R by L,(z,2") = P(22") with,

0 (p<2)
Pp(z) =q1—2/p (0<2<p) (12)
1 (2 <0).

Lemma 1. Let Z € R be any input space, and G be a family of functions map-
ping from Z to [0,1]. Then, for any § > 0, with probability at least 1 — 6, each
of the following holds for all g € G:

Blg(2)] < =3 g0 + 2Rn(G) 4\t (13)
Elg(:)] < — 3" g(z) + 2Rs(G) + 3| et (1)

i=1

Proof. Let ¢(S5) = sup g E[g] — % >t g(2i). Then, for two samples S and S,
we have

(') = (S) < sup LEm) —9(m)

1
9€G m m’

IA

where z,, € S and 2/, € S’. Then, by McDiarmid’s inequality, for any § > 0,
with probability at least 1 — §/2, the following holds.
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We next bound the expectation of the right-hand side as follows.

sup Elg] - :ﬂzgw]

geg i—1

Es[(S)] = Es

<Egs s [SHP k= Z(Q(zé) - Q(Zi))]

m
9€9 " i

= E07575/ |ﬁup l Z Uz(g(zg) - g(Zz))]

9€6 M i
<E,s supliag(z{) +E; s supli—a g(z;)
- leeemim Z - leegm o
1 m
=2E, s |sup — 0:9(zi)| = 2R.n(G).

Here, using again McDiarmid’s inequality, with probability at least 1 — 4/2, the
following holds.

Finally, we use the union bound which yields with probability at least 1 — §:

log %

#(S) < 2Rs(G) + 3 (15)

2m
Theorem 1 (Margin bound for set-to-set matching). Let F be a set of
matching score functions. Fixz p > 0. Then, for any 6 > 0, with probability at

least 1 — § over the choice of a sample S of size m, each of the following holds
forall f e F:

RU) < Byl) + 2 (RU(F) + RE(P)) + e (16)
RU) < Byl)+ 2 (R (F) + Rea(F)) 43| oo : ()

Proof. Let F be the family of functions mapping (% x %) x {—1, 41} to R defined
by F={2=(2',2),a) — alf(Z") - f(Z)] | f € F}, where a € {0,1}. Consider
the family of functions F = {¢, 0g | f € F} derived from F which are taking
values in [0, 1]. By Lemma (1} for any 6 > 0 with probability at least 1 — ¢, for
all feF,

log

|

E [¢,(alf(Z7) = f(Z7)])] < Ro(f) + 2Rm(9p 0 F) + (18)
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Since 1,<o < ¢p(u) for all u € R, the generalization error R(f) is a lower bound
on left-hand side, R(f) = E[lair(z/)—r(z)<0] < Elp,(alf(Z') — f(Z)])], and we

can write
A -~ log%
R(f) < Bo(f) +2Rm(dp 0 F) + [ 5 = (19)

Here, we can show that R, (¢, 0 F) < %Rm (F) using the (1/p)-Lipschitzness of

¢p. Then, R,,(F) can be upper bounded as follows:

Rn(F) = - Es,, 3 a7 (2) - 1(2)

- %]Es,a sup Zai(f(Zé) — f(Z:))

IN

Eg, |sup S 0 f(Z) + sup o f (20
feria

1
m LfeF iz

= Es[Rs2(F) + R (F)] = RE(F) + R (F)-

4 RKHS bound for set-to-set matching

In this section, we consider more precise bounds that depend on the size of the
negative sample produced by negative sampling. Let S = (X1, 1), ..., (Xm,Vm)) €

(X x X)™ be a finite sample sequence, and m™ be the positive sample size. If

the positive proportion 7’% = @, then sample sequence S also can be denoted

by Se.
Let R be the reproducing kernel Hilbert space (RKHS) associated with the
kernel K, and F, is defined as

Fr={feRx | Iflx <r} (20)
for r > 0.

Theorem 2 (RKHS bound for set-to-set matching). Suppose S, to be
any sample sequence of size m. Then, for any € >0 and f € F,,

N 201 — ~)2 2
Bs. |[R(f3Sa) ~ R(f)| 2 ¢ < 2exp {W} L@
where k = sup,, /K (z,x).
Proof. Denote S = (S*,57)={Z1,...,Zp,} and
o N +1 (Zi € S+),
zi = 2(Z;) == {_1 (Zies). (22)
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Fig. 1. RKHS bound w.r.t. sample size m and positive ratio a.

First, for each 1 < k < m™ such that z; = +1, let (Z;,+1) be replaced by
(Z,,+1) € (X x X) x {—1,+1}, and we denote by S* as this sample. Then,

m++m_
RUSS) = RUGSM S —— 3 162 — f(Z) — of(Z0) = ()]
j=mt+1
1 m++m7
< Je— Z L'|f<Zlc)_f(Zj>_f(ZI/c)+f(Zj)‘
j=mt+1
= L) - ) < e e

Next, for each m*™ +1 < k < m such that z; = —1, let (Z;, —1) be replaced by
(Z},—1) € (X x X) x {—1,+1} and we denote by S* as this sample. Similarly,
we have

. L 2L
|R(f:5) = R(f; S")| < Il

Finally, for each 1 < k < m™* such that z; = +1, let (Zg, +1) be replaced by
(Z},—1) € (X x X) x {—1,+1}, and we denote by S* = S* U {(Z;n11,—1)} as
this sample. Then, we have

|R(f;S) — R(f; S*)| < I + I,

where Iy = |R(f;S) = R(f; SU{Zps1, —1})| and Iy = |R(f; SU{Zpp1, —1}) —
R(f; S%)]. Since I < mg,i’i_lﬂfﬂoo and Iy < 2| f|| oo, we have

7m+

R . - 1 1
R(:8) = () <28 (oo 4 =g ) W (23)

Combining them and applying McDiarmid’s inequality, we have the proof.
g ying
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Remark 1. Given m, ¢, L, we can find that the tight bound can be achieved when

%. This means that it is desirable the number of positive samples be equal

to the number of negative samples (See Figure [1)).

o =
Remark 2. For any § > 0, with probability at least 1 — §, we have

og 2
750 - B[ < 7y 2R (29

Remark 3. For Remark [2| Let m = m* + m™ and fix m* € N. Then, we have
the optimal negative sample size as (1 — a) = 2/3.

5 Conclusion and Discussion

In this paper, we performed a generalization error analysis in set-to-set matching
to reveal the behavior of the model in that task. Our analysis reveals what the
convergence rate of algorithms in set matching depend on the size of negative
sample. Future studies may include the following:

— Derivation of tighter bounds. There are many types of mathematical tools
for generalization error analysis of machine learning algorithms, and it is
known that the tightness of the bounds depends on which one is used. For
tighter bounds, it is useful to use mathematical tools not addressed in this
paper [TI9IRITOI2].

— Induction of novel set matching algorithms. It is expected to derive a novel
algorithm based on the discussion of generalized error analysis.

— The effect of data augmentation for generalization error of set-to-set match-
ing. Many data augmentation methods have been proposed to stabilize neu-
ral network learning, and theoretical analysis when these are used would be
useful [BIATIITTIT2].
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