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Abstract. Availability of large amount of annotated data is one of the
pillars of deep learning success. Although numerous big datasets have
been made available for research, this is often not the case in real life
applications (e.g. companies are not able to share data due to GDPR
or concerns related to intellectual property rights protection). Federated
learning (FL) is a potential solution to this problem, as it enables training
a global model on data scattered across multiple nodes, without sharing
local data itself. However, even FL methods pose a threat to data privacy,
if not handled properly. Therefore, we propose StatMix, an augmentation
approach that uses image statistics, to improve results of FL scenario(s).
StatMix is empirically tested on CIFAR-10 and CIFAR-100, using two
neural network architectures. In all FL experiments, application of Stat-
Mix improves the average accuracy, compared to the baseline training
(with no use of StatMix ). Some improvement can also be observed in
non-FL setups.

Keywords: Federated Learning · Data Augmentation · Mixing Aug-
mentation.

1 Introductions

One of key factors, behind the success of deep learning in Computer Vision, is the
availability of large annotated datasets like ImageNet [2] or COCO [17]. However,
even if large datasets theoretically exist, there can be restrictions related to
bringing them to one place, to enable model training. Federated learning (FL)
addresses this challenge by enabling data to be kept where it is, and share only
limited information, based on which the original content cannot be recreated. At
the same time FL allows training a model that achieves better results than ones
trained in isolation on separated nodes. This, for instance, is a typical scenario for
hospitals that gather (possibly annotated) medical images. However, they cannot
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share it with other hospitals, due to various reasons (e.g. GDPR regulations or
intellectual property rights protection).

According to the FL classification, proposed in [15], the method presented
in this paper addresses a horizontal data partitioning scenario (each of individ-
ual nodes collects similar data). The specific focus is on Convolutional Neural
Network (CNN) architectures, since the problem considered is an image classi-
fication. However, the approach is in no way limited to the CNN-oriented use
case. The proposed method is based on sharing limited amount of data between
nodes, thus avoiding violation of privacy. In the paper we consider a centralized
FL setup. Nevertheless, the proposed algorithm (StatMix ) is communication ar-
chitecture agnostic and can be easily applied in decentralized settings with each
node sharing information with all the other (or selected group of) nodes, instead
of a server. Again, with assumed minimization of amount of shared information,
the efficiency of communication is not the focus of this study.

1.1 Motivation

Historically, in majority of FL research, during model training, either gradients
of the training process (e.g. FedSGD [19]) or weights of the model (e.g. Fe-
dAvg [19]), have been shared. Only recently a paper on sharing averaged images
(FedMix [23]) was published. However, all these approaches pose a potential
threat to data privacy if data sharing is not properly managed (e.g. by using
differential privacy, or by ensuring the number of images in the averaged images
is large enough). The method, proposed in what follows, limits the information
shared to bare minimum (just 6 values, 2 per each color channel), and is still
able to provide boost in accuracy.

1.2 Contribution

The main contribution of this work is threefold:

– A simplistic data augmentation (DA) mechanism (StatMix ), dedicated to
FL learning setup that limits the amount of communication between partic-
ipating nodes, is proposed.

– StatMix is evaluated on two different CNNs, with numbers of FL participants
ranging from 5 to 50.

– It is shown that the standard set of simple DAs, typically used for CIFAR
datasets, is not well suited for FL scenario, as it deteriorates the performance
along with a decrease of the number of samples per each FL node.

2 Related work

Federated learning Since FL system is, usually, a combination of algorithms
each research contribution can be regarded and analysed from different angles.
Typical FL aspects include: (1) if the data is partitioned horizontally or verti-
cally [30], (2) which models are used (some require dedicated algorithms, e.g.
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trees [27], other can be addressed with more general methods, like SGD [21]),
(3) whether the global model is updated during the training process [19], or only
once when all local models have been already trained [25], (4) what (if any) is
the mechanism that guarantees privacy of the data [3], and/or (5) how effective
is the process of sharing information between parties of the system [10].

The idea of FL was introduced in [9], where the usage of asynchronous SGD
to update a global model in a distributed fashion was proposed. Currently, the
most common approach is FedAvg [19], which at each communication round,
performs training on a fraction of nodes, using the local data and, at the end
of each round, averages the model weights on the server. Subsequent works, in
this area, focused on either making the process more effective [10,6], or being
able to address particular data-related scenarios (e.g. non-IID setup [16,28,1]).
Since the StatMix method shares only highly limited information between nodes,
due to space limits, privacy guarantees and communication efficiency will not be
discussed in the literature review.

Data Augmentation Another research area relevant to the scope of this paper
is DA [14], especially the methods dedicated to the FL setup. An interesting
research approach is adjustment of Mixup [26] to the FL regime ([23,20,22]).
However, it requires sending mixed data to the server rendering these methods
expensive in terms of communication. Moreover, in some cases, this could lead
to privacy violation, if small number of samples is selected for mixing.

An alternative approach to DA, is the use of GANs for local node DA [7,8].
These approaches require samples from private node data, to be shared with the
server for the purpose of GAN training that will be subsequently downloaded to
each node to generate additional synthetic samples.

Another approach to synthetic data generation is the usage of models trained
using, for instance, FedAvg, to generate samples based on the statistics from the
batch normalization layer, using a Zero Shot Learning [4].

Yet another stream of research, worth mentioning that according to our best
knowledge was not yet applied to FL problems, and is an inspiration for this
work, is MixStyle [29], which is dedicated to the problem of Domain Generaliza-
tion (DG), i.e. construction of classifiers robust to domain shift, able to generalize
to unseen domains. To this end MixStyle, similarly to Mixup based methods, per-
forms sample mixing, However, it does not mix pixels but instance-level feature
statistics of the two images generated from the neural network.

3 Proposed approach

In a typical FL scenario, there are two main components: nodes which contain
local data that cannot be shared (e.g., due to privacy reasons), and a server that
coordinates the process of information exchange. In certain FL implementations
the central server is not used, and participating nodes communicate directly.

The goal of this work is to increase the accuracy of classifiers, trained in
individual nodes, by using limited statistical information (delivered by all nodes
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Algorithm 1 StatMix

Local part 1:

1: K ← number of images in the node; N ← number of nodes
2: for i = 1, 2, . . . , N do
3: for k = 1, 2, . . . ,K do
4: Calculate all the image statistics according to equations (1)-(2)
5: Sik = {µ(xik)1, µ(xik)2, µ(xik)3, σ(xik)1, σ(xik)2, σ(xik)3}
6: end for
7: end for
8: Share statistics with the sever

Sever part:

9: Distribute statistics to all nodes

Local part 2:

10: for i = 1, 2, . . . , N do
11: for epoch = 1, 2, . . . ,max epoch do
12: for batch = 1, 2, . . . ,max batch do
13: if random(0, 1) < PStatMix then
14: Randomly select set of statistics Sjm, j ∈ {1, . . . , N},m ∈ {1, . . . ,K}
15: Normalize images from a batch using equation (3)
16: Apply augmentation using equation (4)
17: end if
18: end for
19: end for
20: end for

and aggregated on the server). This is to be achieved without sending/storing
any actual data. Overall, the proposed approach can be characterized as follows
(see Figure 1 and Algorithm 1):

(a) Calculation of image statistics (mean and standard deviation per color chan-
nel) in individual nodes – Local part 1 in Algorithm 1

(b) Distribution of the calculated statistics to all nodes via central server – Server
part in Algorithm 1

(c) Using these statistics in individual nodes to perform style transfer like aug-
mentation of images in this node – Local part 2 in Algorithm 1.

Local part 1. This is the first step of the algorithm. In each node i = 1, . . . , N ,
for each locally stored image xik, k = 1, . . . ,K, where xik ∈ RW×H×C (W,H
and C denote width, height and color channel, resp.), the mean and the standard
deviation of image pixels are calculated separately for each colour channel C =
1, 2, 3, using the following equations:

µ(xik)c =
1

HW

H∑
h=1

W∑
w=1

xik[w, h, c] (1)
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Fig. 1. The figure is composed of two components: a central server (storing only image
statistics) and nodes (storing subsets of images and image statistics obtained from the
server). The flow shows application of statistics calculated in one node to augment
images in another node. For instance, node 1 shares statistics of a plane image with
node N, based on which an augmented image of a dog is created.

Fig. 2. The first column shows original images and the remaining part of the figure
depicts these images augmented with statistics of various images (each column utilizes
a different set of image statistics).



6 D. Lewy, et al.

σ(xik)c =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(
xik[w, h, c]− µ(xik)c

)2
(2)

where xik[w, h, c] is a value of [w, h] pixel of image xik, in color channel c. These
6 statistics form the set Sik, that is used in Local part 2 for image augmentation.

Server part. In the second step, all sets Sik, i = 1, . . . , N , k = 1, . . . ,K, are
distributed to all N nodes, i.e. in each node, in addition to K local (private)
images, N ·K statistics are now stored.

Local part 2. Next the augmentation part takes place. In each node i =
1, . . . , N , all images xik located in that node (k = 1, . . . ,K) are randomly di-
vided into max batch batches. Then, for each batch, an image xjm is uniformly
selected (from all N · K images, i.e. including those located in a given node
) and the corresponding set of statistics Sjm is applied to augment all images
from the batch using equations (3)-(4). This augmentation procedure is applied
independently to each batch with probability PStatMix.

xnormik,c =
xik,c − µ(xik)c

σ(xik)c
(3)

xaugment
ik,c = xnormik,c · σ(xjm)c + µ(xjm)c (4)

Note that augmentation procedure (3)-(4) is applied independently to all 3
color channels. Example results of StatMix augmentation are depicted in Fig-
ure 2.

4 Experimental setup

The experiments were conducted with two popular datasets. CIFAR-10 [11]
consists of 50 000 training and 10 000 test color images, of size 32× 32, grouped
into 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship and
truck). There are 5 000 and 1 000 samples of each class in the training and test
datasets, respectively.

CIFAR-100 [12] is a more granular version of CIFAR-10, with 100 classes.
Each class has 500 representatives in the training and 100 in the test datasets,
respectively.

In order to simulate the FL scenario, let us denote by P the set of all train-
ing images in a given dataset (CIFAR-10, or CIFAR-100, respectively). P was
randomly divided, in a stratified manner, into N disjoint subsets (P1, . . . , PN )
of equal size, using labels to reflect the same distribution in each Pi, as in the
whole set P . Subsequently, each part was transferred (assigned) to a separate
FL node that was connected only to the server (i.e. there were no connections
between FL nodes). At this point each of N nodes calculated statistics of images
located in this node and transferred them on the server. Next, for each node
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i = 1, . . . , N , the server shared individual statistics of all images not located in
node i, i.e. all images from P \ Pi. Based on this, the images located in node i,
i.e. those belonging to Pi, could be augmented (with certain probability) using
image statistics from the entire data set P , according to the approach described
in section 3. The augmented sets PAi, i = 1, . . . , N were used to train the model
(one of the 2 deep architectures described in the following paragraph). After-
wards, the trained model was tested on the entire test part of the respective
CIFAR dataset.

Two popular architectures were tested during experiments: PreActRes-
Net18 [5] and DLA [24]. The models belong to different families and offer decent
accuracy in non-FL scenarios.

SGD optimizer with initial learning rate equal to 0.01 and momentum equal
to 0.9 was used. The learning rate was adapted, using cosine annealing [18],
from the initial learning rate to 0, over the course of the training process. In
all experiments that mention standard DA, random image crop and random
horizontal flip were applied [13]. For consistency, all models were trained for 200
epochs, on a batch of 128 images at a time.

The experiments were ran 3 times for each N = 1, 5, 10, 50 with the proba-
bility of applying statistics-based augmentation set to 0.5.

5 Experimental results and analysis

First, CIFAR-10 results are presented in Table 1. In all experiments, in the FL
setup (N > 1) the application of StatMix boosts the final accuracy, compared
to the baseline case, with no use of StatMix. The impact of the method grows
with the number of nodes in the system (at least, to 50 nodes, as tested here).

It is worth noting that the augmentation method, proposed for the FL setup,
works also in a non-FL scenario (N = 1). The improvement can be observed in all
4 cases (cf. column diff [%] in Table 1). Lastly, it can be observed that standard
DAs (random crop and horizontal flip), often utilized with CIFAR data in non-
FL scenarios, deteriorate the accuracy of training in the FL scenario (cf. row
True vs. row False for a given architecture and given N > 1).

For the CIFAR-100, results are summarized in Table 2. On this, more gran-
ular, dataset similar observations are also valid. In the majority of cases, appli-
cation of StatMix improves the results, compared to the baseline (i.e. the case
with no StatMix utilization). However, for this more fine-grained dataset this
conclusion does not reach 50 nodes, as for this setup, adding StatMix deterio-
rates the performance. This is, most probably, caused by too high noise-to-image
ratio after augmentation, due to 10 times smaller number of representatives in
individual classes, as compared to CIFAR-10.

The conclusion that StatMix is generally beneficial in non-FL scenarios (N =
1) is also valid for CIFAR-100 (cf. the rightmost column in the table). In 3
out of 4 cases (including both with standard DA application), adding StatMix
augmentation improves obtained results.
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Table 1. Mean and standard deviation results for CIFAR-10 dataset averaged over last
10 epochs and 3 experiment repetitions. Columns denote: number of nodes (N), model
architecture, whether or not standard DA was applied, whether StatMix augmentation
was used (0.0 – not used, 0.5 – used with probability 0.5), the relative improvement of
applying StatMix compared to not applying it, i.e. [mean(0.5) / mean(0.0) – 1].

StatMix
0.0 0.5

Nodes (N) Architecture Standard mean std mean std diff [%]

1 DLA False 86.02 0.80 86.58 0.47 0.65
True 93.26 0.28 93.83 0.19 0.61

PreActResNet18 False 86.15 0.79 86.60 0.14 0.52
True 93.54 0.05 93.79 0.13 0.27

5 DLA False 67.32 1.15 69.47 0.70 3.19
True 63.39 1.03 66.24 0.89 4.50

PreActResNet18 False 70.83 0.44 72.01 0.55 1.67
True 68.22 0.64 69.12 0.33 1.32

10 DLA False 56.06 1.27 58.97 1.09 5.19
True 50.72 1.45 54.54 1.59 7.53

PreActResNet18 False 60.72 0.64 62.03 0.76 2.16
True 56.63 0.77 58.69 0.74 3.64

50 DLA False 37.47 1.20 38.06 1.42 1.57
True 34.06 1.11 34.65 1.39 1.73

PreActResNet18 False 38.62 0.96 40.28 1.08 4.30
True 35.01 1.07 36.93 1.21 5.48

Observation, that standard augmentation methods, used commonly in the
literature, do not help in the FL scenario(s), holds also for CIFAR-100. The
reason behind that might be that augmentation introduces some noise and the
network cannot distill true patterns based on limited amount of clean data.

5.1 Ablation study

In order to check how the probability of applying StatMix impacts final classifi-
cation accuracy, additional experiments were performed using PreActResNet18
architecture (which is less computationally intensive than DLA) and a setup
with 5 nodes (N = 5). All remaining training parameters were adopted from
the base experiments. Probabilities ranging from 0 to 1, with a step of 0.1, were
tested.

The results for CIFAR10 and CIFAR100 are presented in Figure 3. It can
be concluded from the chart that both not applying StatMix at all, as well as
applying it to the majority of the batches (more than 80% for CIFAR10 and
more than 60% for CIFAR100) renders the worst results.

Quite interestingly, applying StatMix to all batches (PStatMix = 1) results
in a huge accuracy deterioration (for CIFAR10 the accuracy dropped to 63%,
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Table 2. Mean and standard deviation results for CIFAR-100 dataset, average from
10 epochs and 3 experiment repetitions. Columns, denote: number of nodes (N), model
architecture, whether or not standard DA was applied, whether StatMix augmentation
was used (0.0 – not used, 0.5 – used with probability 0.5), relative improvement of
applying StatMix compared to not applying it, i.e. [mean(0.5) / mean(0.0) – 1].

StatMix
0.0 0.5

Nodes (N) Architecture Standard mean std mean std diff [%]

1 DLA False 59.29 2.08 58.11 0.87 -1.99
True 73.40 0.26 75.25 0.46 2.52

PreActResNet18 False 54.99 2.73 55.84 2.21 1.55
True 71.83 0.49 73.63 0.22 2.51

5 DLA False 26.46 0.49 28.04 0.53 5.97
True 22.84 0.71 24.84 0.60 8.76

PreActResNet18 False 31.02 0.58 31.39 0.58 1.19
True 27.70 0.60 28.63 0.59 3.36

10 DLA False 19.86 0.59 20.49 0.66 3.17
True 16.48 0.57 17.80 0.92 8.01

PreActResNet18 False 22.32 0.41 22.86 0.50 2.42
True 19.37 0.50 20.33 0.57 4.96

50 DLA False 9.65 0.64 9.56 0.72 -0.93
True 7.83 0.69 7.77 0.74 -0.77

PreActResNet18 False 10.74 0.46 10.48 0.56 -2.42
True 9.15 0.45 9.20 0.48 0.55

while for CIFAR100 to 19% in comparison to no augmentation). These results
have been excluded from the charts, to avoid obfuscating other findings.

For CIFAR10, all probabilities between 0.1 and 0.8 bring positive impact,
however with no clearly best values. Hence, as long as StatMix is applied to a
certain fraction of the batches, it leads to accuracy boost. For CIFAR100 experi-
ments with lower PStatMix probability (between 0.1 and 0.4) achieve better final
accuracy. A possible explanation is that CIFAR100 is a more complex dataset
and introducing too much noise through the StatMix augmentation is no longer
beneficial. This leads to a conclusion that the results on CIFAR100 could poten-
tially be further optimized by decreasing the probability of StatMix application.

6 Concluding remarks

In this work, StatMix, a novel DA method designed for FL, has been introduced.
StatMix exchanges high level image statistics (two values per color channel). As a
result, data privacy remains protected. At the same time, it has been empirically
validated that using this method improves model accuracy, over baseline training
(with no use of StatMix ), for two standard benchmark datasets, and two popular
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Fig. 3. CIFAR10 and CIFAR100 test accuracy as a function of probability of applying
StatMix in FL setup with 5 nodes (N = 5) on PreActResNet18 architecture. The values
are averaged over last 10 epochs and 3 independent experiment repetitions. For each
dataset the left figure refers to experiments that utilize standard input DA, the right
one presents results without its application.

CNN architectures. Furthermore, StatMix improves performance in classical,
non-FL setup where the method helped in majority of cases.

While application of StatMix demonstrates very promising results, future
work, aimed at verifying if sharing additional statistics (e.g. those related to
hidden layers of the trained networks) could be beneficial. However, such an
approach would be more expensive, when it comes to computation, since it
would require local networks (in each node) to be trained at least twice. The
first training would be needed to calculate statistics of the image in the inference
phase in selected hidden layers of the network. These hidden-layer statistics could
be then distributed to all nodes, and used in the process of final models training,
similarly to the current StatMix specification. Verification of this approach is
planned as the next step in StatMix development.
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ogy within the Excellence Initiative: Research University (IDUB) programme.
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D.: Federated learning: Strategies for improving communication efficiency. CoRR
abs/1610.05492 (2016)

11. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 (Canadian Institute for Advanced
Research) (2009), http://www.cs.toronto.edu/~kriz/cifar.html

12. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-100 (Canadian Institute for Advanced
Research) (2009), http://www.cs.toronto.edu/~kriz/cifar.html

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C.,
Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States. pp. 1106–1114 (2012), https://proceedings.neurips.cc/paper/
2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
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