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Abstract Training an ensemble of diverse sub-models has been empiri-
cally demonstrated as an effective strategy for improving the adversarial
robustness of deep neural networks. However, current ensemble train-
ing methods for image recognition typically encode image labels using
one-hot vectors, which overlook dependency relationships between the
labels. In this paper, we propose a novel adversarial en-semble training
approach that jointly learns the label dependencies and member models.
Our approach adaptively exploits the learned label dependencies to pro-
mote diversity among the member models. We evaluate our approach
on widely used datasets including MNIST, FashionMNIST, and CIFAR-
10, and show that it achieves superior robustness against black-box at-
tacks compared to state-of-the-art methods. Our code is available at
https://github.com/ZJLAB-AMMI/LSD.

Keywords: deep learning · model ensemble · adversarial attack · label
dependency

1 Introduction

Deep neural networks (DNNs), also known as deep learning, have achieved
remarka-ble success across many tasks in computer vision [1,2,3,4], speech recog-
nition [5,6], and natural language processing [7,8]. However, numerous works
have shown that modern DNNs are vulnerable to adver-sarial attacks [9,10,11,12,13,14].
Even slight perturbations to input images, which are imperceptible to humans,
can fool a high-performing DNN into making incorrect predictions. Addition-
ally, adver-sarial attacks designed for one model may deceive other models, re-
sulting in wrong predictions - this issue is known as adversarial transferability
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[15,16,17,18]. These adversarial vulnerability issues pose significant challenges
for real-life applica-tions of DNNs, particularly for safety-critical problems such
as self-driving cars [19,20]. As a result, there has been increasing attention on
promoting robustness against ad-versarial attacks for DNNs.

Ensembling models has been shown to be a highly effective approach for
improving the adversarial robustness of deep learning systems. The basic idea
behind model ensembling is illustrated through a Venn diagram in Fig.1 [21].
The rectangle represents the space spanned by all possible orthogonal perturba-
tions to an input instance, while the circle represents the subspace spanned by
perturbations that are adversarial to the associated model. The shaded region
represents the perturbation subspace that is adversarial to the model ensemble.
In the case of a single model as shown in Fig.1(a), any perturbation within the
circle results in misclassification of the input image. However, for cases that em-
ploy an ensemble of two or more models (Fig.1(b) and (c)), successful adversarial
attacks require perturbations only within the shaded region, meaning that the
attack must fool all individual models in the ensemble. Therefore, promoting
diversity among individual models is an intuitive strategy to improve the adver-
sarial robustness of a model ensemble as the less overlap there is among their
corresponding adversarial subspaces, the greater the diversity of the individual
models. The amount of overlap determines the dimensionality of the adversar-
ial sub-space [21]. Throughout this paper, we use the terms individual model,
sub-model, and member model interchangeably.

Model 1

(a) Single Model

Set of Orthogonal perturbations 

spanning the space of the Input

Model 2Model 1

(b) Ensemble of 2 Models

Set of orthogonal adversarial 

perturbations for a model

Model 2Model 1

(c) Diverse Ensemble

Adversarial Subspace of the 

model/ensemble

Figure 1. A conceptual illustration of the idea of using model ensembling to promote
adversarial robustness: (a) single model; (b) an ensemble of two models; (c) an ensemble
of two more diversified models. The shaded region denotes a subspace, adversarial
attacks within which can fool the (ensemble) model to make a wrong prediction. This
figure is drawn referring to Fig.1 of [21].

One challenge in applying model ensembling is how to promote diversity
among member models while maintaining their prediction accuracy, particularly
for non-adversarial inputs. The question becomes: how can we balance the trade-
off between diversity and prediction quality during ensemble training? To ad-
dress this issue, several advanced methods have been proposed in the literature
[22,21,23,24,25]. For example, Pang et al. propose a diversity regularized cost
function that encourages diversity in the non-maximal class predictions given by
the last soft-max layers of the member models [22]. Kariyappa & Qureshi select



Adversarial Ensemble Training 3

an ensemble of gradient misaligned models by minimizing their pairwise gradi-ent
similarities [21]. Yang et al. find that merely encouraging misalignment between
pairwise gradients is insufficient to reduce adversarial transferability [25], and
thus propose promoting both gradient misalignment and model smoothness. Sen
et al. propose training an ensemble of models with different numerical precisions,
where models with higher numerical precisions aim for prediction accuracy, while
those with lower numerical precisions target adversarial robustness [23].

As previously mentioned, to apply state-of-the-art (SOTA) ensemble training
meth-ods, one must select a diversity metric to measure the diversity of member
models. This metric may be the difference in non-maximal predictions given by
the last soft-max layers of the member models [22], or the difference in gradient
vectors associated with the member models [21]. It is worth noting that all these
training methods use one-hot vectors to encode image classes, meaning each
image in the training set is assigned a hard label. However, such hard labels
cannot reflect any possible dependency relationships among image classes. Given
an image, it is likely that dependency relationships exist between its associated
classes. For example, in a handwritten digit image dataset, the number “0” may
look more similar to “9” than to “4”; “3” may look more similar to “8” than
to “7”, and so on. Conditional on a noisy input image, e.g., one whose ground
truth label is “0”, there should exist a dependency relationship between labels
“0” and “9”. Using hard labels omits such conditional dependency relationships.

Motivated by the above observation, we propose a novel ensemble training
approach called Conditional Label Dependency Learning (CLDL) assisted en-
semble training. Our approach jointly learns the conditional dependencies among
image classes and member models. Compared to existing methods, our approach
selects a different diversity metric that considers the difference in pairwise gradi-
ent vectors and predicted soft labels given by member models. The learned soft
labels encode dependency relationships among the original hard labels. We find
that our approach is more robust against black-box attacks compared to several
state-of-the-art methods. In summary, the main contributions of this work are:

– We propose a novel diversity metric for adversarial ensemble training that in-
corporates information from both the gradient vectors associated with mem-
ber models and predicted soft labels given by member models.

– We adapt a label confusion learning (LCL) model developed in [26] to gen-
erate soft labels of images in the context of adversarial ensemble training,
originally used for enhancing text classification..

– We propose a CLDL-assisted ensemble training algorithm and demonstrate
that it complements existing ensemble training methods. In particular, we
show that our algorithm is more robust against black-box attacks compared
to several state-of-the-art methods.

The remainder of this paper is organized as follows. In Section 2, we present
some preliminary information. In Section 3, we describe our CLDL-based ensem-
ble training method in detail. In Section 4, we present the experimental results.
We conclude the paper in Section 5.
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2 Preliminary

In this section, we present the preliminary knowledge that is related to our work.

2.1 Notations

Here we consider a DNN based image recognition task, which involves C classes.
Following [25], let X denote the input space of the DNN model, Y = {1, 2, ..., C}
the class space. A DNN model is trained to yield a mapping function F : X → Y.
Let x denote a clean image and x′ an adversarial counterpart of x. Let ǫ be
a pre-set attack radius that defines the maximal magnitude of an adversarial
perturbation. That says, for any adversarial perturbation, its Lp norm is required
to be less than ǫ. Let ℓF(x, y) denote the cost function used for training the model
F(x, θ), where θ denotes the parameter of the model.

2.2 Definitions

Definition 1 Adversarial attack[25]. Given an input x ∈ X with true label
y ∈ Y, F (x) = y. (1) An untargeted attack crafts AU (x) = x + δ to maximize
ℓF(x+ δ, y) where ‖δ‖p ≤ ǫ. (2) A targeted attack with target label yt ∈ Y crafts
AT (x) = x + δ to minimize ℓF(x + δ, yt) where ‖δ‖p ≤ ǫ and ǫ is a pre-defined
attack radius that limits the power of the attacker.

Definition 2 Alignment of loss gradients[25,21]. The alignment of loss gra-
dients between two differentiable loss functions ℓF and ℓG is defined as:

CS(∇xℓF ,∇xℓG) =
∇xℓF (x, y) · ∇xℓG(x, y)

‖∇xℓF(x, y)‖2 · ‖∇xℓF (x, y)‖2
(1)

which is the cosine similarity between the gradients of the two loss functions for
an input x drawn from X with any label y ∈ Y. If the cosine similarity of two
gradients is -1, we say that they are completely misaligned.

2.3 Adversarial Attacks

Adversarial attacks aim to create human-imperceptible adversarial inputs that
can fool a high-performing DNN into making incorrect predictions. These attacks
are typically divided into two basic classes: white-box attacks, which assume
the adversary has full knowledge of the model’s structures and parameters, and
black-box attacks, which assume the adversary has no access or knowledge of any
information regarding the model. Here we briefly introduce four typical white-
box attacks in-volved in our experiments while referring readers to review papers
[27,28,29] and references therein for more information on adversarial attacks.

Fast Gradient Sign Method (FGSM) FGSM is a typical white-box at-
tacking method to find adversarial examples. It performs a one-step update along
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the direction of the gradient of the adversarial loss. Specifically, it generates an
adversarial example x′ by solving a maximization problem as follows [9]:

x′ = x+ ε · sign (∇xℓ(x, y)) , (2)

where ε denotes the magnitude of the perturbation, x the original benign image
sample, y the target label of x, and ∇xℓ(x, y) the gradient of the loss ℓ(x, y) with
respect to x.

Basic Iterative Method (BIM) BIM is an extension of FGSM, which
performs FGSM iteratively to generate an adversarial example as follows [30]:

x
′
i = clipx,ǫ

(

x
′
i−1 +

ǫ

r
· sign (gi−1)

)

(3)

where x′
0 , x, r is the number of iterations, clipx,ǫ (A) is a clipping function

that projects A in a ǫ-neighbourhood of x, and gi , ∇xℓ (x
′
i, y).

Projected Gradient Descent (PGD) PGD [12] is almost the same as
BIM, the only difference being that PGD initialize x′

0 as a random point in the
ǫ-neighbourhood of x.

Momentum Iterative Method (MIM) MIM is an extension of BIM. It
updates the gradient gi with the momentum µ as follows [31]:

x
′
i = clipx,ǫ

(

x
′
i−1 +

ǫ

r
· sign (gi)

)

(4)

where gi = µgi−1 +
∇xℓ(x′

i−1,y)
‖∇xℓ(x′

i−1,y)‖1

, and ‖.‖1 denotes the L1 norm.

2.4 On techniques to generate soft labels

Label smoothing is perhaps the most popularly used technique to generate soft
labels [32,4,33,34]. Although it is simple, it has been demonstrated as an effective
approach to improve the accuracy of deep learning predictions. For example,
Szegedy et al. propose gener-ating soft labels by averaging the one-hot vector
and a uniform distribution over labels [4]. Fu et al. study the effect of label
smoothing on adversarial training and find that adversarial training with the
aid of label smoothing can enhance model robustness against gradient-based
attacks [35]. Wang et al. propose an adaptive label smoothing approach capable
of adaptively estimating a target label distribution [36]. Guo et al. propose a label
confusion model (LCM) to improve text classification performance [26], which
we adapt here for CLDL and generating soft labels for adversarial ensemble
prediction.

3 CLDL Assisted Ensemble Training

Here we describe our CLDL based ensemble training approach in detail. We
present a pseudo-code implementation of our approach in Algorithm 1 and a
conceptual illustration in Fig.2. For ease of presentation, we will use an example
of an ensemble consisting of N = 2 member models.
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Algorithm 1 CLDL assisted ensemble training for an ensemble ofN sub-models

1: Initialization: Initialize N individual models {Fi(x, θi)}i∈[N], where [N ] =
{1, 2, . . . , N}, and the label confusion model LCM(v, y, θ), where θ denotes the
model parameter. Input the training dataset Dtrain = {(xj , yj)}j∈[M] to the algo-
rithm. Set the number of training epochs T , the learning rates ǫi and ǫ, ∀i ∈ [N ],
the iteration number IN , and the model indicator set I = [N ].

2: for current epoch t = 1 to T do

3: for iter = 1 to IN do

4: Sample a mini-batch Diter from Dtrain

5: for i in I do

6: Obtain the instance representation {vj(xj , θi)}xj∈Diter
from the outputs of

the last Linear layer of Fi(xj , θi).
7: Obtain the predicted label distribution {pj(xj , θi)}xj∈Diter

from the out-
puts of soft-max layer of Fi(xj , θi).

8: Obtain the simulated label distribution {sj(xj , θi)}xj∈Diter
from

LCM(vj , yj , θ) by Eqn. (6).
9: Calculate loss ℓi(xj , θi)xj∈Diter

by Eqn. (7).
10: Calculate the gradients of the loss (∇xj

ℓi)xj∈Diter
.

11: end for

12: Calculate the label distribution similarity loss ℓld(xj)xj∈Diter
by Eqn. (9)

13: Calculate the model loss gradient consistency loss ℓgd(xj)xj∈Diter
by Eqn.

(10)
14: Calculate the combined diversity promoting loss ℓF,G(xj)xj∈Diter

by Eqn. (11)

15: Obtain the final loss on Diter , denoted by Liter
CLDL, using Eqn.(12).

16: for i in I do

17: Update θi ← θi − ǫi ▽θi L
iter
CLDL|{θi}i∈[N ]

18: end for

19: Update θ ← θ − ǫ▽θ L
iter
CLDL|{θ} for LCM(v, y, θ).

20: end for

21: end for

22: return The parameters θi and θ, where i ∈ [N ].

Our model is mainly composed of two parts: an ensemble of N sub-models
({Fi(x, θi)}i∈[N ], where [N ] = {1, 2, . . . , N}) and a label confusion model (LCM)
adapted from [26]. Each sub-model in the ensemble consists of an input convo-
lutional neural network (CNN) encoder followed by a fully connected classifier,
which can be any main stream DNN based image classifier. As shown in Fig.2,
an image instance (x) is fed into the input-encoder, which generates an image
representation vi, where i is the sub-model index. Then vi is fed into the fully
connected classifier to predict the label distribution of this image. The above
operations can be formulated as follows:

vi = F
encoder
i (x)

pi = softmax (Wvi + b)
(5)
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where Fencoder
i (.) is the output of input-encoder of Fi which transforms x to vi,

W and b are weights and the bias of the fully connect layer that transforms vi
to the predicted label distribution (PLD) pi.
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Figure 2. The proposed CLDL assisted ensemble training method. Here we take an
ensemble model that consists of two member models as an example for ease of illustra-
tion. Given an image instance x, the label confusion model (LCM) in the middle, which
is adapted from [26], is used to generate a soft label si for the ith sub-model. Two types
of diversity regularizers that are based on the label distribution given the soft labels
and the gradient are combined to generate the finally used ensemble diversity regular-
izer. See the text in Section 3 for more details. The LCM module is drawn referring to
Fig.1 of [26]. Note that the model of [26] is used for text classification, while here it is
adapted to an ensemble model for image classification under adversarial attacks.
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The LCM consists of two parts: a label encoder and a simulated label dis-
tribution (SLD) computation block. The label encoder is a deep neural network
used to gener-ate the label representation matrix [26]. The SLD computation
block comprises a similarity layer and an SLD computation layer. The similarity
layer takes the label representation matrix and the current instance’s representa-
tion as inputs, computes the dot product similarities between the image instance
and each image class label, then feeds the similarity values into a soft-max acti-
vation layer that outputs the label confusion vector (LCV). The LCV captures
the conditional dependencies among the image classes through the computed
similarities between the instance representation and the label representations.
The LCV is instance-dependent, meaning it considers the dependency relation-
ships among all image class labels conditional on a specific image instance. In
the following SLD computation layer, the one-hot vector formed hard label yi
is added to the LCV with a controlling parameter γ, which is then normalized
by a soft-max function that generates the SLD. The controlling parameter γ

decides how much of the one-hot vector will be changed by the LCV. The above
operations can be formulated as follows:

V ec
(l) = f

L(l) = f
L ([l1, l2, . . . , lC ]) =

[

V ec
(l)
1 , V ec

(l)
2 , . . . , V ec

(l)
C

]

ci = softmax
(

v
⊤
i V ec

(l)
W + b

)

si = softmax (γyi + ci)

(6)

where fL is the label encoder function to transfer labels l = [l1, l2, . . . , lC ] to
the label representation matrix V ec(l), C the number of image classes, fL is
implemented by an embedding lookup layer followed by a DNN, ci the LCV and
si the SLD. The SLD is then viewed as a soft label that replaces the original
hard label for model training.

Note that the SLD si and the predicted label vector pi are both probability
measures. We use the Kullback-Leibler (KL) divergence [37] to measure their
difference:

ℓi(x) = KL (si, pi) =
C
∑

c=1

si
c log

(

si
c

pic

)

(7)

The LCM is trained by minimizing the above KL divergence, whose value de-
pends on the semantic representation of the image instance vi and the soft label
si given by the LCM.

3.1 Diversity Promoting Loss Design

Here we present our design of the diversity promoting loss used in our approach.

Soft label diversity For an input (x, y) in the training dataset, we define the
soft label diversity based on the non-maximal value of the SLD of each sub-

model. Specifically, let s
\y
i be a (C − 1) × 1 vector constructed by excluding

the maximal value from the SLD corresponding to model Fi(x, θ). Then we use
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the Jensen-Shannon divergence (JSD) [38] to measure the difference between a
pair of, say the ith and the jth member models, in terms of their predicted soft
labels, as follows

JSD
(

s
\y
i ‖s

\y
j

)

=
1

2

(

KL

(

s
\y
i ,

s
\y
i + s

\y
j

2

)

+KL

(

s
\y
j ,

s
\y
i + s

\y
j

2

))

(8)

From Eqns. (6) and (8), we see that JSD
(

s
\y
i ‖s

\y
j

)

monotonically increases with

JSD
(

c
\y
i ‖c

\y
j

)

. A large JSD indicates a misalignment between the SLDs of the

two involved sub-models given the image instance x. Given x and an ensemble
of N models, we define a loss item as follows

ℓld(x) = log

(

2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

exp
(

JSD
(

s
\y
i ‖s

\y
j

))

)

(9)

which will be included in the final loss function Eqn.(12) used for training the
model ensemble. It plays a vital role in promoting the member models’ diversity
concerning their pre-dicted soft labels given any input instance.

It is worth noting that we only consider the non-maximal values of the SLDs
in Eqn.(8) following [22]. By doing so, promoting the diversity among the sub-
models does not affect the en-semble’s prediction accuracy for benign inputs.
However, it can lower the transferabil-ity of attacks among the sub-models.

Gradient diversity Following [25,21], we consider the sub-models’ diversity
in terms of gradients associated with them. Given an image instance x and an
ensemble of N models, we define the gradient diversity loss item as follows

ℓgd(x) =
2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

CS(∇xℓi,∇xℓj) =
2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

∣

∣

∣

∣

(∇xℓi)
T (∇xℓj)

‖∇xℓi‖2 ‖∇xℓj‖2

∣

∣

∣

∣

(10)

which will also be included in the final loss function Eqn.(12).

The Combined Diversity Promoting Loss Combining the above soft label
and gradient diversity loss items, we propose our CLDL based ensemble diversity
loss function. For a pair of member models (F and G), given an input instance
x, this diversity promoting loss function is

ℓF,G,x = −αℓld(x) + βℓgd(x), (11)

where α, β ≥ 0 are hyper-parameters that balance the effects of the soft label
based and the gradient based diversity loss items.



10 L. Wang et al.

3.2 CLDL based Ensemble Model Training

We train our ensemble model by minimizing the training loss function defined
as follows

Loss(x) = ℓE(x) + ℓF,G,x = (
1

N

N
∑

i=1

ℓi)− αℓld(x) + βℓgd(x) (12)

where ℓE(x) =
1
N

∑N

i=1 ℓi refers to the average of the KL-divergence losses of the
member models. See Fig.2 for the definition of the KL loss of the member models.
By minimizing the above loss function, we simultaneously learn the soft labels
given by each sub-model, promote the diversity among the sub-models in terms
their predicted soft labels and their gradients, and minimize the KL-divergence
loss of each sub-model.

4 Experiments

4.1 Datasets and Competitor Methods

We conducted our experiments on the widely-used image datasets MNIST [39],
Fasion-MNIST (F-MNIST) [40], and CIFAR-10 [41]. For each dataset, we used its
training set for ensemble training. We set the hyper-parameters of our algorithm
based on 1,000 test images randomly sampled from the testing set and used the
remaining data in the testing set for performance evaluation.

We compared the performance of our algorithm with competitor methods,
including a baseline method that trains the model ensemble without the use
of any defense mechanism and four popularly used ensemble training methods:
the adaptive diversity promoting (ADP) algorithm, the gradient alignment loss
(GAL) method, the diversi-fying vulnerabilities for enhanced robust generation
of ensembles (DVERGE) meth-od, and the transferability reduced smooth (TRS)
method. We used ResNet-20 as the basic model structure of the sub-models and
averaged the output probabilities given by the softmax layer of the member
models to yield the final prediction.

4.2 Optimizer for Training

We use Adam [42] as the optimizer for ensemble training with an initial learning
rate of 10−3, and a weight decaying parameter of 10−4. For our CLDL-based
approach, we trained the ensemble for 200 epochs, multiplied the learning rate
by 0.1 twice at the 100th and 150th epochs, respectively. We set the batch size to
128 and used normalization, random cropping, and flipping-based data augmen-
tations for dataset CIFAR-10. We considered two ensemble sizes, 3 and 5, in our
experiments. To make a fair comparison, we trained ADP, GAL, DVERGE, and
TRS under a similar training setup described above. We used the AdverTorch
[43] library for simulating adversarial attacks.
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4.3 White-box Attacks

We considered four basic white-box adversarial attacks, namely FGSM, BIM,
MIM, and PGD for simulating black-box attacks used in our experiments. For
each attack type, we considered four different perturbation scales (ǫ) ranging
from 0.01 to 0.04. We set the number of attack iterations at 10 and set the step
size to be ǫ/5 for BIM, MIM and PGD. Each experiment was run five times
independently, and the results were averaged for performance comparison. We
simulated the white-box attacks by treating the whole ensemble, other than one
of the individual sub-models, as the target model to be attacked.

4.4 Black-box Attacks

We considered black-box attacks, in which the attacker has no knowledge about
the target model, including its architecture and parameters. The attacker designs
adversarial examples based on several surrogate models. We simulated black-box
attacks with our ensemble model as the target by creating white-box adversarial
attacks based on a surrogate ensemble model that has the same architecture
as the true target ensemble and is trained on the same dataset using the same
training routine.

We trained the surrogate ensemble model consisting of 3- or 5-member sub-
models by minimizing a standard ensemble cross-entropy loss function. For each
type of attack mentioned above, we evaluated the robustness of the involved
training meth-ods under black-box attacks with four different perturbation scales
(ǫ) 0.01,0.02,0.03 and 0.04. We set the number of attack iterations at 10, and
the step size at ǫ/5 for BIM, MIM and PGD based attacks. Following [44], we
generate adversarial examples using the cross-entropy loss and the CW loss [11].

4.5 Experimental Results for Black-box Adversarial Attacks

In our experiments, we used classification accuracy as the performance metric,
which is the ratio of the number of correctly predicted adversarial instances to
the total number of adversarial instances. We conducted random re-trainings of
the model in our experiments, and the reported values are averages of multiple
(> 3) independent tests. Our code is open-sourced to support reproducibility of
these results.

CIFAR-10 Here we present our experimental results on CIFAR-10 in Tables 1
and 2. Note that, in all tables shown below, CLDLa,b,c denotes our CLDL based
algorithm with hyper-parameters, namely γ in Eqn.(6), α and β in Eqn.(12), set
to be a, b, and c, respectively. ǫ refers to the perturbation scale of the attack.
As is shown, our CLDL based algorithm performs best for almost all attacks
considered, compared to the other methods, especially when the perturbation
scale is large.

We also investigate the effects of the soft label diversity based loss and the
gradient diversity based one on the performance of our algorithm. See the result
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Table 1. Classification accuracy (%) on the CIFAR-10 dataset for four types of black-
box attacks. The ensemble consists of 3 ReNets-20 member models. ǫ refers to the
perturbation scale for the attack.

CIFAR-10 ǫ ADP GAL DVERGE TRS CLDL4,2,4 CLDL4,0.5,4

BIM

0.01 45.43 92.61 89.66 87.86 92.77 92.77

0.02 9.74 83.59 75.41 71.17 85.21 83.66
0.03 2.01 73.02 59.24 53.74 75.76 72.97
0.04 0.47 62.32 42.27 37.87 66.47 62.38

FGSM

0.01 67.03 93.47 91.20 90.37 93.49 93.47
0.02 40.58 84.62 78.68 77.59 86.21 85.48
0.03 26.41 75.93 65.37 64.12 77.94 76.04
0.04 18.25 66.15 51.40 51.04 69.93 66.95

MIM

0.01 41.65 91.11 87.52 85.39 91.29 91.08
0.02 7.37 76.92 65.85 61.80 78.98 77.01
0.03 1.13 59.75 40.35 38.01 63.84 59.89
0.04 0.30 43.48 19.77 20.24 48.27 43.06

PGD

0.01 46.20 92.41 89.36 88.06 92.18 92.25
0.02 9.23 83.46 76.08 72.07 84.81 83.68
0.03 1.55 74.67 61.28 55.12 77.34 75.04
0.04 0.35 65.46 44.72 39.23 70.64 67.09

Table 2. Classification accuracy (%) on the CIFAR-10 dataset for four types of black-
box attacks. The ensemble consists of 5 ReNets-20 member models.

CIFAR-10 ǫ ADP GAL DVERGE TRS CLDL4,2,4 CLDL4,0.5,4

BIM

0.01 45.28 92.22 93.32 91.17 93.73 92.89
0.02 9.50 81.69 85.27 80.15 85.71 84.58
0.03 1.79 69.68 75.72 67.93 75.93 75.56
0.04 0.44 57.21 64.59 55.95 65.39 65.8

FGSM

0.01 68.49 93.33 94.22 92.65 94.47 93.54
0.02 43.02 84.13 86.79 83.30 87.06 85.92
0.03 27.76 74.15 77.56 72.24 78.79 78.3
0.04 19.36 64.32 67.10 61.08 69.93 69.68

MIM

0.01 41.77 90.50 91.92 89.53 92.17 91.4
0.02 7.42 73.95 79.69 73.33 79.33 78.67
0.03 1.16 55.09 62.87 54.63 63.24 62.93
0.04 0.25 37.87 44.19 38.76 47.16 46.62

PGD

0.01 46.50 92.22 93.34 91.29 92.92 92.02
0.02 9.43 81.85 85.60 80.24 85.92 84.45
0.03 1.54 71.89 77.59 68.25 78.07 76.87
0.04 0.29 61.60 68.53 55.45 70.05 69.78

in Table 3. As is shown, CLDL4,2,4 gives the best results. By comparing the
result of CLDL4,2,4 to that of CLDL4,0.5,4, we find a performance gain given by
the soft label diversity based loss. By comparing the result of CLDL4,2,4 to that
of CLDL4,2,0, we verify the contribution of the gradient diversity based loss.
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Table 3. Classification accuracy (%) given by an ensemble model consisting of 3
ReNets-20 member models trained with our CLDL based algorithm with different
hyper-parameter settings against black-box attacks on the CIFAR-10 dataset.

CIFAR-10 ǫ CLDL4,0,0 CLDL4,1,0 CLDL4,2,0 CLDL4,4,0 CLDL4,1,2 CLDL4,2,2 CLDL4,0.5,4 CLDL4,2,4

BIM

0.01 89.97 89.66 89.82 89.78 92.76 92.62 92.77 92.77

0.02 74.01 74.18 74.2 74.42 83.43 82.97 83.66 85.21

0.03 57.1 56.62 56.78 56.92 73.02 72.64 72.97 75.76

0.04 40.11 39.63 40.63 40.53 61.8 61.69 62.38 66.47

FGSM

0.01 91.53 91.07 91.01 91.12 93.5 93.2 93.47 93.49
0.02 78.64 78.63 78.78 78.51 84.79 84.62 85.48 86.21

0.03 64.83 64.37 65.22 64.37 76.05 76.24 76.04 77.94

0.04 52.36 51.87 53.11 52.16 66.55 67.42 66.95 69.93

MIM

0.01 87.64 87.18 87.39 87.26 91.22 90.73 91.08 91.29

0.02 63.63 63.24 63.79 63.86 76.16 76.3 77.01 78.98

0.03 39.03 38.62 39.29 38.82 58.9 59.25 59.89 63.84

0.04 20.84 20.29 21.5 21.42 41.79 43.07 43.06 48.27

PGD

0.01 90.24 89.74 89.76 89.75 92.26 92.09 92.25 92.18
0.02 75.54 75.66 75.48 75.69 83.25 82.81 83.68 84.81

0.03 60.63 60.03 60.55 60.13 74.53 74.45 75.04 77.34

0.04 46.97 46.2 46.68 46.41 66.03 65.95 67.09 70.64

Table 4. Classification accuracy (%) given by an ensemble model consisting of 3 LeNet-
5 member models trained with our CLDL based algorithm against black-box attacks
on the MNIST dataset.

MNIST ǫ ADP GAL DVERGE TRS CLDL3,4,4 CLDL3,2,1

BIM

0.1 90.18 87.34 90.24 92.5 94.48 94.22
0.15 60.38 55.61 61.21 76.63 85.64 81.42
0.2 23.23 28.5 21.17 46.16 65.11 51.59
0.25 5.32 11.06 2.53 17.42 32.81 22.95

FGSM

0.1 93.29 90.77 93.51 94.55 95.43 95.5

0.15 79.58 69.94 80.75 86.21 89.82 88.56
0.2 52.99 47.35 55.98 70.64 78.39 72.73
0.25 27.38 30.13 27.78 48.1 57.51 46.77

MIM

0.1 90.21 85.82 90.52 92.31 94.25 94.07
0.15 63.05 53.72 63.67 76.81 85.31 81.56
0.2 24.69 27.49 23.88 46.83 65.1 51.33
0.25 5.58 10.64 3.16 16.58 30.44 21.34

PGD

0.1 89.66 84.87 89.82 91.91 93.75 93.84

0.15 56.83 47.69 57.86 73.01 83.5 78.92
0.2 19.42 21.69 17.32 39.19 58.94 46.91
0.25 3.06 6.44 1.05 11.71 24.81 16.65

Table 5. Robust accuracy (%) of an ensemble of 5 LeNet-5 models against black-box
attacks on the MNIST dataset

MNIST ǫ ADP GAL DVERGE TRS CLDL3,4,4 CLDL3,2,1

BIM

0.1 88.43 90.26 89.49 94.01 95.01 93.98
0.15 53.68 66.19 60.83 82.77 87.18 78.76
0.2 18.98 34.1 23.04 55.12 68.76 51.46
0.25 2.21 12.02 4.01 22.2 40.58 25.3

FGSM

0.1 92.23 93.03 92.88 95.41 95.9 95.62
0.15 75.07 79.74 80.23 88.85 89.86 88.43
0.2 46.26 58.21 54.71 76.11 76.95 71.07
0.25 22.41 35.67 29.5 54.6 52.6 44.93

MIM

0.1 89.06 89.62 89.84 93.96 94.68 93.96
0.15 56.8 66.79 63.58 82.61 85.96 78.68
0.2 21.1 35.18 26.19 56.63 65.32 50.11
0.25 3.02 12.37 5.33 22.55 34.31 22.36

PGD

0.1 87.83 88.69 89.11 93.53 94.4 93.49
0.15 50.51 60.26 57.6 81.19 85.08 74.77
0.2 15.33 27.47 19.45 50.15 63.35 45.58
0.25 0.97 6.64 2.19 17.06 31.88 18.38

MNIST In Tables 4 and 5, we show the classification accuracy (%) results for
an ensemble of 3 and 5 LeNet-5 member models [45] on the MNIST dataset. We
find that again our algorithm outperforms its competitors significantly.
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Table 6. Classification accuracy (%) of an ensemble of 3 LeNet-5 models against
black-box attacks on the F-MNIST dataset.

F-MNIST ǫ ADP GAL DVERGE TRS CLDL3,2,4

BIM

0.08 38.38 54.43 39.42 54.71 54.19
0.1 28.39 44.37 28.16 44.61 44.99

0.15 10.55 22.63 10.58 25.06 27.84

0.2 1.78 7.10 2.69 10.95 13.98

FGSM

0.08 48.25 62.77 52.39 62.83 61.99
0.1 40.09 54.22 42.80 53.64 53.87
0.15 23.24 36.09 25.41 37.63 38.49

0.2 9.82 15.85 13.33 23.45 25.67

MIM

0.08 38.24 52.83 39.58 53.46 52.88
0.1 28.41 42.44 28.19 43.10 43.41

0.15 9.17 19.61 9.98 23.01 25.20

0.2 1.01 3.44 2.33 7.84 9.75

PGD

0.08 37.74 52.34 39.17 52.86 51.65
0.1 27.75 41.71 28.15 42.38 42.23
0.15 8.69 18.78 9.67 22.44 24.75

0.2 1.08 3.52 2.24 8.25 10.91

Table 7. Classification accuracy (%) of an ensemble of 5 LeNet-5 models on the F-
MNIST dataset

F-MNIST ǫ ADP GAL DVERGE TRS CLDL3,2,4

BIM

0.08 38.01 52.62 41.36 60.30 61.37

0.1 28.57 42.47 29.67 51.10 51.72

0.15 10.83 23.04 11.15 33.67 35.46

0.2 2.01 8.86 2.63 20.48 24.58

FGSM

0.08 48.36 62.53 54.13 65.65 67.90

0.1 39.94 54.14 44.80 58.09 59.78

0.15 23.00 36.65 27.28 43.66 45.69

0.2 9.98 19.49 14.44 31.91 32.71

MIM

0.08 38.22 52.16 41.69 58.93 59.18

0.1 28.65 42.23 30.20 49.41 49.48

0.15 9.75 20.97 11.27 31.79 33.15

0.2 1.26 4.94 2.12 17.11 18.71

PGD

0.08 37.76 51.56 41.11 59.06 58.28
0.1 27.86 41.03 29.50 49.18 47.99
0.15 9.39 20.45 10.14 31.27 32.97

0.2 1.39 5.99 1.97 18.00 20.38

F-MNIST In Tables 6 and 7, we present results associated with the F-MNIST
dataset. As is shown, among all methods involved, our CLDL algorithm ranks
number 1 for 10 times. TRS and GAL have 5 times and one time to rank number
1, respectively.
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5 Conclusion

In this paper, we proposed a novel adversarial ensemble training approach that
leverages conditional label dependency learning. In contrast to existing methods
that encode image classes with one-hot vectors, our algorithm can learn and
exploit the conditional relationships between labels during member model train-
ing. Experimental results demonstrate that our approach is more robust against
black-box adversarial attacks than state-of-the-art methods.
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