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Abstract. Real-time data architectures are core tools for implementing
the edge-to-cloud computing continuum since streams are a natural ab-
straction for representing and predicting the needs of such applications.
Over the past decade, Big Data architectures evolved into specialized
layers for handling real-time storage and stream processing. Open-source
streaming architectures efficiently decouple fast storage and processing
engines by implementing stream reads through a pull-based interface
exposed by storage. However, how much data the stream source op-
erators have to pull from storage continuously and how often to issue
pull-based requests are configurations left to the application and can
result in increased system resources and overall reduced application per-
formance. To tackle these issues, this paper proposes a unified stream-
ing architecture that integrates co-located fast storage and streaming
engines through push-based source integrations, making the data avail-
able for processing as soon as storage has them. We empirically evaluate
pull-based versus push-based design alternatives of the streaming source
reader and discuss the advantages of both approaches.

Keywords: Streaming - Real-time storage - Push-based - Pull-based -
Locality.

1 Introduction

The edge-to-cloud computing continuum [10] implements fast data storage and
streaming layered architectures that are deployed intensively in both Cloud [9]
and Fog architectures [22]. Fast data processing enables high-throughput data
access to streams of logs, e.g., daily processing terabytes of logs from tens of
billions of events at CERN accelerator logging service [1]. Moreover, implement-
ing sensitive information detection with the NVIDIA Morpheus Al framework
enables cybersecurity developers to create optimized Al pipelines for filtering
and processing large volumes of real-time data [2].

Over the past decade, Big Data architectures evolved into specialized layers
for handling real-time storage and stream processing. To efficiently decouple fast
storage and streaming engines, architects design a streaming source interface that
implements data stream reads through pull-based remote procedure calls (RPC)
APIs exposed by storage. The streaming source operator continuously pulls data
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from storage while its configuration (i.e., how much data to pull and how often
to issue pull requests) is left to the application, being a source of bottlenecks and
overall reduced application performance. In turn, decoupled streaming sources
help manage backpressure [17] and simplifies fault-tolerance implementation for
system crash management.

The pull-based integration approach is opposed to monolithic architectures
[28] that have the opportunity to more efficiently and safely optimize data-
related tasks. Another architectural choice is to closely integrate fast storage
and streaming engines through push-based data sources, making the data avail-
able to the processing engine as soon as it is available. The push-based source
integration approach should keep control of the data flow to ensure backpres-
sure and should promote an easy integration through storage and processing
non-intrusive extensions to further promote open-source real-time storage and
streaming development.

Our challenge is then how to design and implement a push-based
streaming source strategy to efficiently and functionally integrate real-
time storage and streaming engines while keeping the advantages of a pull-
based approach. Towards this goal, this paper introduces a push-based stream-
ing design to integrate co-located real-time storage and processing engines. We
implement pull-based and push-based stream sources as integration between
open-source KerA !, a real-time storage system, and Apache Flink [3], a stream
processing engine. We empirically evaluate the KerA-Flink push-based and pull-
based approaches and we show that the push-based approach can be competitive
with a pull-based design while requiring reduced system resources. Furthermore,
when storage resources are constrained, the push-based approach can be up to
2x more performant compared to a pull-based design.

2 Background and Related Work

Decoupling producers and consumers through message brokers (e.g., Apache
Kafka [16]) can help applications through simplified real-time architectures. This
locality-poor design is preferred over monolithic architectures by state-of-the-
art open-source streaming architectures. Big Data frameworks that implement
MapReduce [13] are known to implement data locality (pull-based) optimiza-
tions. General Big Data architectures can thus efficiently co-locate map and re-
duce tasks with input data, effectively reducing the network overhead and thus
increasing application throughput. However, they are not optimized for low-
latency streaming scenarios. User-level thread implementations such as Arachne
[24] and core-aware scheduling techniques like Shenango, Caladan [23,14] can
further optimize co-located latency-sensitive stream storage and analytics sys-
tems, but are difficult to implement in practice.

Finally, it is well known that message brokers, e.g., Apache Kafka [16,4],
Apache Pulsar [5], Distributedlog [25], Pravega [8], or KerA [19], can contribute

! KerA-Flink integration source code: https://gitlab.uni.lu/omarcu/zettastreams.
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to higher latencies in streaming pipelines [15]. Indeed, none of these open-source
storage systems implement locality and thus force streaming engines to rely on
a pull-based implementation approach for consuming data streams. Consistent
state management in stream processing engines is difficult [12] and depends on
real-time storage brokers to provide indexed, durable dataflow sources. There-
fore, stream source design is critical to the fault-tolerant streaming pipeline and
potentially a performance issue.

A pull-based source reader works as follows: it waits no more than a spe-
cific timeout before issuing RPCs to pull (up to a particular batch size) more
messages from stream storage. One crucial question is how much data these
sources have to pull from storage brokers and how often these pull-based RPCs
should be issued to respond to various application requirements. Consequently,
a push-based approach can better solve these issues by pushing the following
available messages to the streaming source as soon as more stream messages are
available. However, a push-based source reader is more difficult to design since
coupling storage brokers and processing engines can bring back issues solved
by the pull-based approach (e.g., backpressure, scalability). Thus, we want to
explore a non-monolithic design that integrates real-time storage and streaming
engines through a push-based stream source approach and understand the per-
formance advantages (e.g., throughput) of both approaches. Towards this goal
let us introduce next a push-based streaming design that unifies real-time storage
and processing engines and describe our implementation.

3 Unified Real-time Storage and Processing Architecture:
Our Push-based Design and Implementation

Background. Fast storage (e.g., [19,20]) implements a layer of brokers to serve
producers and consumers of data streams. As illustrated in Figure 1, a multi-
threaded broker is configured with one dispatcher thread polling the network and
responsible for serving read/write RPC requests and multiple working threads
that do the actual writes and reads. Streaming engines [27,21, 3] implement a
layer of workers. E.g., in Apache Flink, each worker implements a JVM process
that can host multiple slots (a slot can have one core). Sources and other oper-
ators are deployed on worker slots ([3,6]) and are configured to use in-memory
buffers. Backpressure is ensured as follows: sources continuously issue pull-based
read requests as long as buffers are not filled.

Design principles. To ensure backpressure, our push-based design takes source
buffers outside the processing engine and shares buffer control with storage and
processing through pointers and notifications. To avoid network overhead, we
propose to co-locate real-time storage and streaming engines. To remove stor-
age interference of read and write RPC requests, we separate reads and writes
through dedicated push worker threads. The push-based mechanism completely
removes the RPC and networking overheads of the pull-based approach.
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Fig. 1. Unified real-time storage and stream processing architecture. Storage broker
and processing worker are co-located on a multi-core node while stream source op-
erators implement push-based consumers through shared memory partitioned object
store. At runtime, source tasks consume data from shared reusable memory objects
filled by storage as data arrives.

Push-based architectural design. As illustrated in Figure 1, we co-locate a storage
broker and one or multiple processing workers on a multi-core node. We propose
to leverage a shared partitioned in-memory buffer between (push-based) stream-
ing sources and storage brokers to provide backpressure support to streaming
engines and to allow for transparent integration with various streaming storage
and processing engines. Multiple sources coordinate to launch only one push-
based RPC request (step 1). Storage creates (once) a dedicated worker thread
(in black) that is responsible to continuously fill shared reusable objects with
next stream data (step 2). Source tasks are notified when objects have new up-
dates (step 3) and then process these data. The worker thread is notified (step
4) when an object was consumed, so it can reuse it an refill with new data. This
flow (steps 2-4) executes continuously. Objects have a fixed-size and are shared
through pointers by worker thread and source tasks. The source creates tuples
and pushes them further to the stream processing operator tasks. Backpressure
is ensured through shared store notifications.

Implementation . On the same node live three processes: the streaming broker,
the processing worker and the shared partitioned object store. As illustrated in
Figure 1, two push-based streaming source tasks are scheduled on one process-
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ing worker. At execution time, only one of the two sources will issue (once!)
the push-based RPC (e.g., based on the smallest of the source tasks’ identifiers).
This special RPC request (implemented by storage) contains initial partition off-
sets (partitioned streams) used by sources to consume the next stream records.
The storage handles the push-based RPC request by assigning a worker thread
responsible for creating and pushing the next chunks of data associated with con-
sumers’ partition offsets. We implement the shared-memory object store based
on Apache Arrow Plasma, a framework that allows the creation of in-memory
buffers (named objects) and their manipulation through shared pointers. Our
push-based RPC is implemented on the KerA storage engine while we transpar-
ently integrate our KerA connector with Apache Flink for stream processing.

4 Evaluation

Our goal is to understand the performance advantages of push-based and pull-
based streaming source integrations between real-time storage and streaming
engines. While the pull-based approach simplifies implementation, the push-
based approach requires a more tight integration. What performance benefits
characterize each approach?

Ezperimental Setup and Parameter Configuration. We run our experiments on
the Aion cluster 2 by deploying Singularity containers (for reproducibility) over
Ajon regular nodes through Slurm jobs. One Aion node has two AMD Epyc
ROME 7H12 CPUs (128 cores), each with 256 GB of RAM, interconnected
through Infiniband 100Gb/s network. Producers are deployed separately from
the streaming architecture. The KerA broker is configured with up to 16 worker
cores (for pull-based, while the push-based approach uses only one dedicated
worker core) while the partition’s segment size is fixed to 8 MiB. We use Apache
Flink version 1.13.2. We configure several producers Np (respectively consumers
Ne, values=1,2,4,8), similarly to [20], that send data chunks to a partitioned
stream having Ns partitions. Each partition is consumed exclusively by its as-
sociated consumer. Producers concurrently push synchronous RPCs having one
chunk of CS size (values=1,2,4,8,16,32,64,128 KiB) for each partition of a bro-
ker, having in total ReqS size. Each chunk can contain multiple records of con-
figurable RecS size for the synthetic workloads. We configure producers to read
and ingest Wikipedia files in chunks having records of 2 KiB. Flink workers cor-
respond to the number of Flink slots NF's (values=8,16) and are installed on the
same Singularity instance where the broker lives.

To understand previous parameters’ impact on performance, we run each ex-
periment for 60 to 180 seconds while we collect producer and consumer through-
put metrics (records every second). We plot 50-percentile cluster throughput per
second for each experiment (i.e., by aggregating the write/read throughput of
each producer/consumer every second), and we compare various configurations.

2 more details at https://hpc.uni.lu/infrastructure/supercomputers the Aion section
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Fig. 2. Impact of replication and chunk size on ingestion cluster throughput (only
producers). Parameters: Np = 2,4,8, RecS = 100 Bytes, one stream with Ns = 8
partitions. R1_Prods2 represents replication factor one and two concurrent producers
writing to one stream. R2_Prods8 represents replication factor two and eight producers.
Results are similar for a stream with Ns = 16.

Our second goal is to understand who of the push-based and respectively pull-
based streaming strategies is more performant, in what conditions, and what the
trade-offs are in terms of configurations.

Benchmarks. The first benchmark (relevant to use cases that transfer or dupli-
cate partitioned datasets) implements a simple pass-over data, iterating over each
record of partitions’ chunks while counting the number of records. The second
benchmark implements a filter function over each record, being a representative
workload used in several real-life applications (e.g. indexing the monitoring data
at the LHC [7]). The next benchmarks (CPU intensive) implement word count
over Wikipedia datasets. For reproducibility, our benchmark code is open-source
and a technical report [18] further describes these applications.

4.1 Results and Discussion

Synthetic benchmarks: the count operator. In our first evaluation, we want to
understand how our chosen parameters can impact the aggregated throughput
while ingesting through several concurrent producers. As illustrated in Figure
2, we experiment with two, four, and eight concurrent producers. Increasing
the chunk size CS, the request size ReqS increases proportionally, for a fixed
record size RecS of fixed value of 100 Bytes. While increasing the chunk size,
we observe (as expected) that the cluster throughput increases; having more
producers helps, although they compete at append time. We also observe that
replication considerably impacts cluster throughput (as expected) since each
producer has to wait for an additional replication RPC done at the broker side.
Producers wait up to one millisecond before sealing chunks ready to be pushed to
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Fig. 3. Only producers (top). Pull-based (left) versus push-based (right) consumers for
iterate and count benchmark for a stream with Ns = 8. Parameters: Np = Nc¢ = 2,4,8,
replication R = 1,2, consumer CS = 128 KiB, we plot producer CS = 8,16,32,64.
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Fig. 4. Pull-based (left) versus push-based (right) consumers for iterate, count and
filter benchmark. Parameters: Np = Nc = 2,4,8, replication R = 1,2, consumer CS =
128 KiB, we plot producer CS = 8,16,32,64, stream Ns = 8.

the broker (or the chunk gets filled and sealed) - this configuration can help trade-
off throughput with latency. With only two producers, we can obtain a cluster
throughput of ten million records per second, while we need eight producers to
double this throughput. Next experiments introduce concurrent consumers in
parallel with concurrent producers.

The subsequent evaluation looks at concurrently running producers and con-
sumers and compares pull-based versus push-based consumers. The broker is
configured with 16 working cores to accommodate up to eight producers and
eight consumers concurrently writing and reading chunks of data. Since con-
sumers compete with producers, we expect the producers’ cluster throughput to
drop compared to the previous evaluation that runs only concurrent producers.
This is shown in Figure 3: due to higher competition to broker resources by con-
sumers, producers obtain a reduced cluster throughput compared to the previous
experiment. We observe that consumers fail to keep up with the producers’ rate.

These experiments illustrates the impact on performance of the interference
between reads and writes. Increasing the chunk size, we observe that pull-based
consumers obtain better performance than push-based. Increasing the number of
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consumers, we observe that the dedicated thread does not keep up with more than
four consumers; otherwise, push-based is competitive with pull-based or slightly
better. However, (although with eight consumers the pull-based strategy can
obtain a better cluster throughput,) for up to four consumers the push-based
strategy not only can obtain slightly better cluster throughput but the number of
resources dedicated to consumers reduces considerably (two threads versus eight
threads for the configuration with four consumers). While pull-based consumers
double the cluster throughput when using 16 threads for the source operators,
push-based consumers only use two threads for the source operator.

Synthetic Benchmarks: The Filter Operator. We further compare pull-based ver-
sus push-based consumers when implementing the filter operator, in addition,
to counting for a stream with eight partitions. Similar to previous experiments,
the push-based consumers are slower when scaled to eight for larger chunks,
as illustrated in Figure 4. As illustrated in Figure 5, when experimenting with
up to four producers and four consumers over a stream with four partitions,
the push-based strategy provides a cluster throughput slightly higher with smaller
chunks, being able to process two million tuples per second additionally over the
pull-based approach. With larger chunks, the throughput reduces: architects have
to carefully tune the chunk size in order to get the best performance. When ex-
perimenting with smaller chunks, more work needs to be done by pull-based
consumers since they have to issue more frequently RPCs (see Figure 7). More-
over, the push-based strategy provides higher or similar cluster throughput than
the pull-based strategy while using fewer resources.

Next, we design an experiment with constrained resources for the storage and
backup brokers configured with four cores. We ingest data from four producers
into a replicated stream (factor two) with eight partitions. We concurrently run
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Fig. 6. Iterate, count and filter benchmark constrained broker resources. Comparing
C++ pull-based consumers with Flink pull-based and push-based consumers. Prods-
Push corresponds to producers running concurrently with push-based Flink consumers
i.e. ConsPush. ProdsPullF corresponds to producers running concurrently with pull-
based Flink consumers i.e. ConsPullF. ProdsPullZ corresponds to producers running
concurrently with C++ pull-based consumers. Four producers and four consumers in-
gest and process a replicated stream (factor two) with eight partitions over one broker
storage with four working cores. Consumer chunk size equals the producer chunk size.

four consumers configured to use Flink-based push and pull strategies and native
C++ pull-based consumers. Consumers iterate, filter and count tuples that are
reported every second by eight Flink mappers. We report our results in Figure
6 where we compare the cluster throughput of both producers and consumers.
Producers compete directly with pull-based consumers, and we expect the cluster
throughput to be higher when concurrent consumers use a push-based strategy.
However, producers’ results are similar except for the 32 KB chunk size when
producers manage to push more data since pull-based consumers are slower. We
observe that the C++ pull-based consumers can better keep up with producers
while push-based consumers can keep up with producers when configured to use
smaller chunks. The push-based strategy for Flink is up to 2z better than the
pull-based strategy of Flink consumers. Consequently, the push-based approach
can be more performant for resource-constrained scenarios.

Wikipedia Benchmarks: (Windowed) Word Count Streaming. For the following
experiments, the producers are configured to read Wikipedia files in chunks with
records of 2 KiB. Therefore, producers can push about 2 GiB of text in a few
seconds. Consumers run for tens of seconds and do not compete with producers.
As illustrated in Figure 8, pull-based and push-based consumers demonstrate
similar performance. We plot word count tuples per second aggregated for eight
mappers while scaling consumers from one to four. Results are similar when
we experiment with smaller chunks or streams with more partitions since this
benchmark is CPU-bound. To avoid network bottlenecks when processing large
datasets like this one (e.g., tens of GBs) on commodity clusters, the push-based
approach can be more competitive when pushing pre-processing and local aggre-
gations at the storage.
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Fig. 8. Pull-based consumers versus push-based consumers for the word count bench-
marks with 4 partitions. The left figure presents the word count benchmarks, the right
figure corresponds to the windowed word count benchmark. FLCons2 represents two
push-based consumers while FPLCons4 represents four pull-based consumers.

Discussion and Future Implementation Optimizations. Regarding our prototype
implementation, we believe there is room for further improvements. One future
step is integrating the shared object store and notifications mechanism inside
the broker storage implementation. This choice will bring up two potential op-
timizations. Firstly, it would avoid another copy of data by leveraging existing
in-memory segments that store partition data (necessary for high-throughput
use cases). Secondly, we could optimize latency by implementing the notification
mechanism through the asynchronous RPCs available in KerA. Furthermore, im-
plementing pre-processing functions in-storage (e.g., as done in [11]) can further
improve performance by reducing data movement.

5 Conclusion

We have proposed a unified real-time storage and processing architecture that
leverages a push-based strategy for streaming consumers. Experimental evalua-
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tions show that when storage resources are enough for concurrent producers and
consumers, the push-based approach is performance competitive with the pull-
based one (as currently implemented in state-of-the-art real-time architectures)
while consuming fewer resources. However, when the competition of concur-
rent producers and consumers intensifies and the storage resources (i.e., number
of cores) are more constrained, the push-based strategy can enable a better
throughput by a factor of up to 2x while reducing processing latency.
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