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Abstract. The wide adoption of social media platforms has brought
about numerous benefits for communication and information sharing.
However, it has also led to the rapid spread of misinformation, caus-
ing significant harm to individuals, communities, and society at large.
Consequently, there has been a growing interest in devising efficient and
effective strategies to contain the spread of misinformation. One popular
countermeasure is blocking edges in the underlying network.
We model the spread of misinformation using the classical Independent
Cascade model and study the problem of minimizing the spread by block-
ing a given number of edges. We prove that this problem is computa-
tionally hard, but we propose an intuitive community-based algorithm,
which aims to detect well-connected communities in the network and
disconnect the inter-community edges. Our experiments on various real-
world social networks demonstrate that the proposed algorithm signifi-
cantly outperforms the prior methods, which mostly rely on centrality
measures.

Keywords: Social Networks · Misinformation Spreading · Countermea-
sure · Edge Blocking · Community Detection.

1 Introduction

In recent years, social media has revolutionized the way individuals connect with
each other, share information, and express themselves. It has created new op-
portunities for political engagement, social activism, and community building,
and has enabled individuals to access information and resources that were pre-
viously unavailable. Social media has also transformed the way businesses and
organizations interact with customers and stakeholders, providing new channels
for marketing, customer service, and public relations.

However, the widespread adoption of social media platforms has undeniably
resulted in a significant increase in the dissemination of misinformation. This
issue permeates various domains such as politics, economics, and sociology [9].
For example, following the breach of The Associated Press Twitter account, a
fabricated announcement circulated, stating that "Breaking: Two Explosions in
the White House and Barack Obama is injured." As a consequence, this false
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information led to a staggering loss of 10 billion USD in just a few hours and
triggered a rapid crash in the US stock market, cf. [33].

The far-reaching consequences of misinformation spreading in different con-
texts cannot be understated, as they possess the potential to shape public opin-
ion, influence decision-making processes, and even impact social cohesion. The
need to address the challenges posed by the rampant spread of misinformation
across diverse topics has emerged as a critical concern in today’s interconnected
digital age.

The spread of misinformation on social media is a complex and multifaceted
phenomenon that involves a range of factors, including the structure of social
networks, the psychology of misinformation diffusion, and the role of technol-
ogy in shaping information sharing. Understanding these factors is critical for
developing effective interventions to minimize the spread of misinformation.

In order to mitigate the spread of misinformation in social networks, several
approaches have been proposed in the past. Reducing the spread of misinforma-
tion can be achieved by some form of blocking, where a set of nodes or edges
are identified and blocked from the network, under some budget constraints.
Blocking a node implies that the account is either removed or banned and all
its connections with other nodes are suspended, while blocking an edge implies
that the connection between the two nodes connected by the edge is suspended,
for example by not exposing posts from one user to another.

To effectively combat the spread of misinformation within social networks,
the initial step involves promptly identifying the misinformation as it emerges,
this can be done using various misinformation detection techniques, cf. [45,54].
However, it is important to recognize that detected misinformation may resurface
in modified forms, highlighting the significance of monitoring subsequent posts
associated with a piece of misinformation. As a result, to minimize the spread
of misinformation within a network, two popular approaches can be used:

– Source-Aware Approach of misinformation contamination relies on iden-
tifying the sources responsible for propagating the misinformation and the
users who have accepted and disseminated it within a social network. Then,
containment strategies can be implemented to minimize their influence and
curb the spreading ability of the misinformation.

– Source-Agnostic Approach focuses on mitigating the flow of misinforma-
tion within the network, without the prior knowledge of the specific sources
of the misinformation. Through the implementation of a containment strat-
egy, the aim is to reduce the overall dissemination of misinformation without
specifically targeting its sources.

The source-aware approach is generally more powerful since it benefits from
some extra source of information. However, there are two fundamental issues.
Firstly, the identification of misinformation sources involves complexities such
as data collection and network evolution, and source identification algorithms
could be inaccurate. (Shelke and Attar [38] provide a compressive overview of
various source detection approaches and the challenges faced with these meth-
ods.) Furthermore, the source-aware approach disregards the anonymity and
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privacy of individuals within the social networks, up to a large extent. Con-
sequently, there has been a growing interest, cf. [26,49], in devising effective
source-agnostic strategies that aim to minimize the flow of misinformation in
the network without explicitly targeting individual sources. The present work
also falls under the umbrella of this line of research.

Two commonly employed strategies to contain the misinformation spread-
ing are node and edge blocking. Edge blocking has garnered greater attention
recently, cf. [48,40,26,49], since it is less intrusive (i.e., disrupts the original func-
tionality and flow of the network less aggressively) and provides controlling power
in a more granular level (note that usually blocking a node is equivalent to block-
ing all its adjacent edges).

In the present work, we focus on designing an effective and efficient source-
agnostic edge-blocking strategy. To model the spread of misinformation, we ex-
ploit the popular Independent Cascade model [19]. We investigate the problem
of minimizing the expected number of nodes that will be exposed to a piece
of misinformation when we are allowed to block k edges for some given inte-
ger k. We show that this problem is NP-hard. (It is worth stressing that while
this problem has been extensively studied by prior work and several approxima-
tion approaches were proposed [49], we are the first to formally prove that the
problem is computationally hard.)

We propose an intuitive community-based algorithm, which first uses a com-
munity detection algorithm such as Louvain community detection algorithm [2],
to partition the nodes into communities (i.e., subsets of well-connected nodes).
Then, we try to slow down the flow of misinformation between these communi-
ties by disconnecting the inter-community edges. The idea is that stopping the
spread of misinformation inside a community is hard since it requires blocking
a significant number of edges. However, there are substantially less edges be-
tween communities whose blocking could drastically reduce the extent that the
misinformation travels.

We provide our experimental findings on several real-world graph data. We
observe that our proposed algorithm consistently and significantly outperforms
the existing algorithms.

Outline. The rest of the paper is structured as follows. Section 1.1 covers the pre-
liminaries. Then, in Section 1.2 we give an overview of related previous work. The
hardness results are provided in Section 2. Our proposed algorithm is presented
in Section 3. Finally, our experimental findings and comparison of algorithms
are provided in Section 4.

1.1 Preliminaries

Graph Definitions. Let G = (V,E, ω) be a weighted graph, where function
ω : E → [0, 1] assigns a value between 0 and 1 to each edge in the graph. Let
us define n := |V | and m := |E|. For a node v ∈ V , N (v) := {v′ ∈ V : (v, v′) ∈
E} is the neighborhood of v. Furthermore, N̂(v) := N(v) ∪ {v} is the closed
neighborhood of v. Let d (v) := |N (v) | be the degree of v in G. The girth of a
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graph G is the length of the shortest cycle contained in the graph. If G has no
cycle, then the girth is defined to be infinity.

Independent Cascade Model [19,12]. Each node can have one of the fol-
lowing three states:

– Ignorant (white): A node which has not heard of the misinformation.

– Spreader (red): A spreader is a node who has heard the misinformation and
spreads it.

– Stifler (orange): A node who has heard the misinformation but does not
spread it.

Let a coloring C be a function C : V → {w, r, o}, where w, r, and o correspond
to white, red, and orange, respectively. The process starts from an initial coloring
C0. Then, in each round t ∈ N , all nodes simultaneously update their state
according to following updating rules:

– A white node v becomes red with probability:

p∗(v) := 1−
∏

v′∈N(v)&Ct−1(v′)=r

(1− ω ((v, v′))) . (1)

– A red node becomes orange.

– An orange node remains orange.

More precisely, we have:

Ct(v) =











r if Ct−1(v) = w with probability p∗(v)

w if Ct−1(v) = w with probability 1− p∗(v)

o if Ct−1(v) = o ∨ Ct−1(v) = r.

Let (v, v′) ∈ E, where v is white and v′ is red. Then, v′ makes v red with prob-
ability ω((v, v′)). This explains the choice of probability p∗(v) in Equation (1).
Furthermore, a red node has one chance to spread, and then it becomes orange
(stifler) and remains orange forever. This model is usually known as the Inde-
pendent Cascade (IC) model, cf. [12,19].

The main focus of the present paper is to devise an effective edge-blocking
strategy to minimize the spread of misinformation, simulated by the Independent
Cascade model. An exact formulation of the problem is given in Section 2.

1.2 Prior Work

Information Spreading Models. A plethora of (mis)-information spreading
models have been developed and studied in recent years, cf. [19,53,10,50,52,51].
Here, we focus on the most fundamental and relevant models.
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– Independent Cascade Model [12,19]. As described in Section 1.1, this
is a model of information diffusion that assumes that information spreads
through a network of individuals in a series of steps. In every step, it considers
each node to be in one of the three states, red (spreader), white (ignorant)
and orange (stifler). Then, each red node gets one chance (before becoming
orange) to make its white neighbors red (i.e., inform them). Motivated by
viral marketing, the main focus in this model is to develop algorithms for
finding subsets of nodes that maximize the spread of the red color, mostly
exploiting monotonicity and submodularity properties [30]. Different variants
of the Independent Cascade model have also been studied, for example, where
there is a forgetting mechanism in place [53] or when there are more than
one pieces of (mis)-information spreading [28]

– Linear Threshold Model [19]. This model of information diffusion as-
sumes that individuals are more likely to be exposed to some (mis)-information
if a larger fraction of their neighbors have been exposed to it. More precisely,
each node v has a threshold τv chosen randomly from the interval [0, 1]. Then,
a white node v becomes red once at least τv fraction of its neighbors are red,
and then remains red forever. In the Linear Threshold model also, motivated
by viral marketing, the problem of finding a set of seed nodes which can max-
imize the final number of red nodes has been extensively studied, cf. [19,35].
Generalized variants of threshold model have been considered too, cf. [25].

– Susceptible-Infected-Recovered (SIR) Model [6]. The SIR model is a
commonly used epidemiological model that describes the spread of infectious
diseases in a population. It divides the population into three compartments:
Susceptible, Infected, and Recovered. Then, each node can change its state
following a predefined stochastic updating rule relying on some model pa-
rameters, infection and recovery factor. While the model was originally in-
troduced to emulate the spread of diseases, it has gained some popularity in
modeling (mis)-information spreading. The original model assumes that the
homogeneous mixing condition holds, that is, the nodes are connected via a
clique. However, network based variants of the model have been studied as
well, cf. [20].

Countermeasures. Reducing the propagation of misinformation is a significant
challenge in the field of social network analysis and has garnered considerable
interest. Various approaches have been proposed to tackle this issue and mitigate
the spread of false information in social networks.

Edge Blocking Countermeasure: One countermeasure which has gained signifi-
cant popularity is edge blocking, cf. [48,40,26,49,31,53]. Holme et al. [17] consid-
ered four different edge blocking strategies: blocking by the descending order of
the degree and the betweenness centrality, calculated for either the initial net-
work or the resulting network during the blocking procedure. It is observed edges
blocked in order of betweenness show more efficient misinformation mitigation
as compared to edges blocked in decreasing order of degree. Kimura et al. [24]
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introduced a method of efficiently estimating the influence of nodes using bond
percolation. This bond percolation method then was used in [22,23] to identify
a set of edges which, when blocked, maximize the contamination degree of the
network. Yan et al. [46] proposed a greedy method to identify the most critical
edges among a set of candidate edges to minimize the spread of a misinforma-
tion. Pagerank centrality [3] is used in [46] as a criterion for blocking the edges to
minimize the spread of misinformation. The susceptibility of a graph to diffusion
is defined in [21] as the sum of the expected influence of each node when it is the
single source for a cascade. Further, a greedy method is proposed that minimizes
the spread susceptibility of the network. Tong et al. [41] provided an approach
where the edges blocked depend on the eigenvalue of the adjacency matrix of
the network. Finally, in a very recent work, Zareie and Sakellariou [49] took into
account additional features of edges (beyond centrality), such as entropy, to de-
termine what edges to block. Some more results on edge blocking problem are
discussed in, [4,47].

Other Countermeasures: Motivated by blocking accounts in real-world online
social platforms, the countermeasure of blocking nodes has been widely studied.
Various node blocking methods have been investigated in the literature, that
use degree centrality, betweenness centrality and closeness centrality as a crite-
rion to block nodes, cf. [16,44,15,7]. In [39], the authors proposed two heuristic
algorithms for minimizing the spread of misinformation simulated by the Inde-
pendent Cascade model via node blocking. Pham et al. [34] studied a variant of
the problem with some time and budget constraints. Schneider et al. [37] con-
sidered the setup where the sum of the sizes of the connected large clusters in
the network is considered as an information flow metric and nodes with high
betweenness centrality are suggested to be blocked to minimize the sum of the
sizes.

Some other countermeasures have also been considered. For example, the au-
thors of [43,8] studied truth spreading as a misinformation mitigation method,
where truth is spread as anti-misinformation. Zehmakan et al. [53] introduced a
similar countermeasure, where a subset of nodes is selected to be “fact-checkers”
whose role is to trigger the spread of truth once exposed to a piece of misinfor-
mation. See [11,53] for more examples of countermeasures.

2 Problem Formulation and Hardness Result

In this section, we aim to show that the problem of minimizing the spread of mis-
information via blocking edges is computationally hard. It is worth emphasizing
that while this problem has been studied extensively by prior work and several
approximation algorithms have been put forward, cf. [48,40,26,49], this work is
the first to analyze the computational complexity of this problem rigorously. Let
us first provide a more concrete formulation of the problem.

Edge Blocking Problem.

Input : A weighted graph G = (VG, EG, ω), an integer k, a random distribution
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over all possible colorings.
Output : The maximum expected final number of white nodes when k edges are
blocked (i.e., removed), starting from an initial coloring C0 chosen from the given
distribution and following the Independent Cascade model.

Our hardness result is provided in Theorem 2, building on the Densest

Subgraph Problem [29]. We first need to provide some basic definitions and
lemmas.

Densest Subgraph Problem

Input: A connected undirected graph H = (VH , EH) and an integer k < |VH |.
Output: The maximum number of edges in a subgraph induced by k nodes in H .

Theorem 1 ([29]). The Densest Subgraph Problem is NP-hard.

Remark. Note that to be precise, when talking about NP-hardness, we need
to refer to the decision variant of the problem, where an integer a is also given
as input and the problem is to determine whether there is a subgraph induced
by k nodes which has a edges.

Lemma 1. The Densest Subgraph Problem is polynomial-time solvable if
k is smaller than the girth of H.

Proof. Let OPTDS(H, k) be the optimal solution for the Densest Subgraph

Problem for input H and k. Consider an arbitrary set of nodes of size k. The
induced subgraph by this set contains at most k− 1 nodes. This is true because
otherwise, the graph has a cycle of length k or smaller which is in contradiction
with the assumption of the theorem. Therefore, we have OPTDS(H, k) ≤ k − 1.
On the other hand, any set of k nodes which induces a connected subgraph in k

has at least k−1 edges, which implies OPTDS(H, k) ≥ k−1. Hence, we conclude
that OPTDS(H, k) = k − 1. We can check whether the condition of the lemma
is satisfied in polynomial time and return k − 1 as the answer. ⊓⊔

Definition 1 (Transformer). Consider a connected undirected graph H =
(VH , EH), where VH := {v1, · · · , vnH

} and EH := {e1, · · · , emH
}. Construct

graph G = (VG, EG, ω) as follows:

– VG := X ∪ Y ∪ {z} where X := {x1, · · · , xnH
} and Y := {y1, · · · , ymH

}.
– EG := {(yj , xi) : vi ∈ ej} ∪ {(xi, z) : 1 ≤ i ≤ nH}.
– ω(e) = 1 for e ∈ EG.

Theorem 2. The Edge Blocking Problem is NP-hard, even when all edges
have weight 1.

Proof. The proof builds on a reduction from the Densest Subgraph Prob-

lem. Assume that there is a polynomial-time algorithm A for the Edge Block-

ing Problem (when all edge weights are 1). Let H = (VH , EH), for VH :=
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Fig. 1. An example graph H and the obtained graph G after applying Transformer
(from Definition 1).

{v1, · · · , vnH
} and EH := {e1, · · · , emH

}, and k be the input of the Densest

Subgraph Problem. If k is smaller than the girth of H , then we can solve the
problem in polynomial time according to Lemma 1. Otherwise, we use Trans-
former from Definition 1 to build graph G from H . Furthermore, consider the
coloring C0 where node z is colored red and the rest of nodes are white, see
Fig. 1 for an example. We define the random distribution to pick this coloring
with probability 1. Let OPTDS(H, k) be the optimal solution to the Densest

Subgraph Problem for the input H and k and OPTEB(G, k, C0) be the opti-
mal solution of the Edge Blocking Problem for the input G, k, and C0. We
prove that

OPTDS(H, k) = OPTEB(G, k, C0)− k. (2)

Note that the Transformer generates G from H in polynomial time. Thus,
there is an algorithm A′ for the Densest Subgraph Problem which first exe-
cutes Transformer. Then, it runs the algorithm A to compute OPTEB(G, k, C0)
and subtracts it by k to obtain OPTDS(H, k) (using Equation (2)). This algo-
rithm clearly runs in polynomial time. This implies that the Edge Blocking

Problem is NP-hard based on Theorem 1.
It remains to prove that Equation (2) holds. Let a set S ⊂ VH of size k induce

a subgraph with OPTDS(H, k) edges. Define XS := {xi : vi ∈ S}, which is of size
k. If we block the edges between nodes in XS and z (i.e., {(xi, z) : xi ∈ XS}),
then all nodes in YS := {yj : ej = {vi1 , vi2} for vi1 , vi2 ∈ S} remain white
because they become disconnected from node z (the only node which is red in
C0). Since |YS | = OPTDS(H, k), we have OPTDS(H, k) + k ≤ OPTEB(G, k, C0).
(We added k since nodes in XS also remain white.)

Now, we prove that OPTDS(H, k) ≥ OPTEB(G, k, C0) − k. Since in G all
edges have weight 1, all nodes, except the ones which cannot reach z, become
red and then orange after at most three rounds. Let EXZ be the set of edges
from nodes in X to z and EYX be the set of edges from Y to X . We claim
that there is an optimal solution which only blocks edges in EXZ . Let set S1
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be an optimal solution (i.e., blocking edges in S1 makes OPTEB(G, k, C0) nodes
remain white forever) and ej ∈ S1 for some ej ∈ EY X .

Note that k is at least as large as the girth of H (since we already excluded
the other case). This implies that OPTDS(H, k) ≥ k since a connected subgraph
including the smallest cycle induces at least k edges. Since we already proved
that OPTDS(H, k) ≤ OPTEB(G, k, C0)−k, we get 2k ≤ OPTEB(G, k, C0). Then,
there exists a maximal subset D ⊂ S1 ∩ EXZ which covers at least |D| nodes
in Y . We say a node yj is covered if both its neighbors in X are disconnected
from z by blocking edges in D. This is true because otherwise S1 ∩ EXZ covers
at most |S1 ∩ EXZ | − 1 nodes in Y . In addition to these nodes, the only nodes
which could remain white are the nodes in {w : (w,w′) ∈ S1 for some w′} whose
size is trivially at most |S1|. Thus, at most |S1|+ |S1∩EXZ |−1 ≤ 2|S1| = 2k−1
nodes remain white, which is a contradiction since we argued that the optimal
solution is at least 2k. This implies that there is such a node set D.

Define D′ := {vi : (xi, z) ∈ D} and S′
1 := {vi : (xi, z) ∈ S1}. Let v be a node

in VH \ S′
1, which has an edge e into D′. (Such a node must exist since k < n

and we defined D to be maximal.) Assume that x is the node corresponding to
v in X and y is the node corresponding to e in Y . If an edge from y to X is in
S1, remove it, otherwise remove another edge in S1 ∩EY X which must exist by
assumption, and instead add (x, z) to obtain S2. Since node y will be covered
(and will remain white), the solution of S2 is at least as large as the one from S1.
Thus, there exists an optimal solution S of size k such that S ∩ EYX = ∅. This
means that there are OPTEB(G, k, C0)− k nodes in Y which remain white (i.e.,
the edges between z and both their neighbors are in S). Note that we subtracted
by k since the k nodes in X whose edge to z is removed remain white too.

Let us define SH := {vi : (xi, z) ∈ S}. Then, SH induces a subgraph with
OPTEB(G, k, C0)−k edges. This implies that OPTDS(H, k) ≥ OPTEB(G, k, C0)−
k. ⊓⊔

Remark. Note that when all edges have weight 1, the problem of finding
the final expected number of orange nodes in the IC model for a given graph G

and coloring C0 is equivalent to a reachability problem, which can be solved in
polynomial time, while when any edge weight is allowed, the problem is known
to be #P-hard [19]. We proved that the Edge Blocking Problem is NP-hard
even when all edge weights are 1. Thus, the hardness comes from the choice of
k edges rather than the IC model.

3 Proposed Algorithm

A community refers to a subset of nodes within a graph that exhibits a higher
degree of interconnectedness than the rest of the network. Communities are often
characterized by a greater density of edges between nodes within the community
compared to edges connecting nodes between different communities. Identify-
ing communities within social networks can provide valuable insights into the
structure and dynamics of the network.
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There are several community detection algorithms in the literature. Some of
the most popular ones are the Louvain [2], Leiden [42], Surprise [1], and Walk-
trap [5] algorithm. We rely on Louvain algorithm for community detection, which
works by iteratively optimizing the modularity of a network, which is a measure
of how well the nodes in a network are grouped into communities. The Louvain
algorithm is fast and scalable, and it has been shown to be effective in detecting
communities in a variety of networks. Our algorithm uses this algorithm to first
find a set of communities such that the number of inter-community edges is at
most k, the budget for the number of edges to be blocked. Then, we simply block
all these edges.

The Louvain algorithm receives a graph G and a resolution parameter r. The
value of r controls the number of communities (and consequently, the number of
inter-community edges) the algorithm will output. Our goal is to generate a set
of communities such that the number of inter-community edges is smaller than
k but as close as possible to it.

To achieve this, we employ a multi-step process, which is described in Algo-
rithm 1. This essentially follows a hit-and-trial process by updating the resolution
parameter and re-running the Louvain algorithm. In addition to graph G and
budget k, it also receives an initial resolution parameter r, two repetition pa-
rameters h1 and h2, and an increasing factor f > 1. It initially sets S = ∅ and
count = 0. Then, it runs in a while loop until count is larger than the number
of repetitions h1. Inside this, it first runs a for loop for h2 times. Each time, it
runs the Louvain algorithm and finds the inter-community edges. Then, for each
of these edge sets E , if the size of E is smaller than k, but larger than current
S, then we update S = E . This way, the size of S gets closer to the budget k,
but it does not exceed it. Note that we run the for loop h2 times, since the
Louvain algorithm is nondeterministic. Once the for loop is over, we update the
resolution factor to r = r ∗ f , where f is the increasing factor. Furthermore, if
|E| > k, we increment count. Note that at the beginning, count might remain
zero until r is large enough such that E (the number of inter-community edges)
becomes large. Then, count will increase until it exceeds h1 and then the while
loop is over. We then return the set S.

4 Evaluation

4.1 Experimental Setup

Social Networks. For our experiments, we use three subgraphs of Facebook,
namely Facebook from SNAP dataset [27] and Facebook-Politician and Facebook-
Govt from Network Repository [36]. Some graph properties of these networks
are listed in the table below.

Edge Weights. Most real-world networks are unweighted, and one needs to in-
troduce a meaningful procedure for weight assignment. Using the communication
information of individuals on various real-world networks, the authors in [32,13]
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Algorithm 1 Pseudocode for our proposed algorithm

Input: G(V,E, ω), Resolution r, Increasing Factor f , Repetitions h1 and h2, and
Budget k

Output: Set of edges S of size at most k to be blocked.

1: procedure Algorithm(G, r, f, h1, h2, k)
2: S = ∅
3: count = 0
4: while (count <= h1) do

5: for i from 1 to h2 do

6: C = set of communities returned by the Louvain algorithm for G, r
7: E = set of inter-community edges for C

8: if |E| > |S| and |E| <= k then

9: S = E
10: end if

11: end for

12: update r = r ∗ f
13: if |E| > k then

14: count++
15: end if

16: end while

17: return S

18: end procedure

Table 1. Some characteristics of the networks used in the experiments, including
average degree davg, maximum degree dmax, diameter D, average clustering coefficient
Kavg, and number of triangles T .

Network n m davg dmax D Kavg T

Facebook 4039 88234 43.691 1045 8 0.6055 1612010
Facebook-Govt 7057 89429 25.344 697 10 0.410 523854

Facebook-Politician 5908 41706 14.118 323 14 0.6055 174632

observed that there is a strong correlation between the number of shared friends
of two individuals and their level of communication. Consequently, they proposed
the usage of similarity measures, such as Jaccard-like parameters, to approxi-
mate the weights of connections between nodes. This is also aligned with the
well-studied strength of weak ties hypothesis [14]. Therefore, we assign the edge
weights according to the Jaccard index [18] in our set-up. More precisely, for

each edge (v, u) ∈ E, we set ω ((v, u)) = |N̂(v)∩N̂(u)|
N(v)∪N(v) . We use |N̂(v) ∩ N̂(u)|

instead of |N(v) ∩N(u)| in the numerator to ensure that the weight of an edge
is never equal to zero.

Some of the prior algorithms that we discuss in Section 4.2 rely on a measure
of distance between two nodes. Since the edge weights represent the strength
of the relations, it is conventional to use their “opposite” form when calculating
distance. More precisely, for an edge (v, u), we use 1− ω((v, u)).
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Algorithm Parameters. For our algorithm, as discussed in Section 3, we need
to set the initial resolution parameter r, the repetitions h1 and h2, and increasing
factor f > 1. In our experiments, we set r = 0.01 for Facebook and Facebook-
Politician and r = 0.05 for Facebook-Govt, f = 1.05, and h1 = h2 = 5. Note
that the closer f is to 1 and the larger h1 and h2 are, the more precise our
algorithm would be. There is nothing specifically unique about these choices.
They are just some reasonable choices that allow our algorithm to perform well
on the datasets used, as will be discussed in Section 4.2.

Containment Factor. As mentioned, the Independent Cascade model serves
as a simulation tool to emulate the process of misinformation spreading. Initially,
a set R of nodes is red and the rest is white. To measure the effectiveness of an
edge blocking algorithm that blocks edges in a set S, we rely on containment
factor

cf = 100 ·
φ(G(V,E, ω), R) − φ(G(V,E \ S, ω), R)

φ(G(V,E, ω), R)
. (3)

Here φ(G(V,E, ω), R) and φ(G(V,E\S, ω), R) denote the expected final num-
ber of orange nodes (when initially nodes in R are red) before and after blocking
edges in S. (Note that we focus on orange nodes, since all red nodes eventually
become orange.) Thus, φ(G(V,E, ω), R) is the number of nodes that become or-
ange before blocking any edges, and cf measures what percentage of them will
remain white once edges in S are blocked.

Note that maximizing cf is the same as maximizing the final number of white
nodes, used in the Edge Blocking Problem. To be consistent with prior work,
cf. [49], we use cf in our evaluations to compare the algorithms.

4.2 Comparison of Algorithms

We compare our proposed algorithm against algorithms from prior work.

– RNDM: A set of edges is randomly selected to be blocked.
– HWT: Edges with the largest weight are blocked.
– DEG [19,46]: The edges for which the sum of the degree of their two

endpoints are the largest are blocked.
– WDEG: This is the same as DEG, except the weighted degrees (the sum

of the weight of adjacent edges for each node) are considered.
– CLO: The edges for which the sum of the closeness of their two endpoints

are the largest are blocked.
– WCLO: This is the same as CLO, except the edge weights (their “oppo-

site“ actually, as explained in Section 4.1) are considered when calculating
closeness.

– BET [7]: The edges with the highest betweenness centrality are blocked.
– WBET: The edges with the highest weighted betweenness are blocked.
– PGRK [3,46]: The edges for which the sum of the PageRank centrality of

their two endpoints are the largest are blocked.
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– IEED [49]: In each iteration, a “critical” edge is determined and blocked
from the network. Criticality is determined using nodes’ influence and edges’
blocking efficiency, weighed using a notion of entropy. (Please refer to [49]
for more details on this algorithm.)

For each of our three networks, we select a randomly chosen set R of nodes of
size |R| = 0.001n to be red initially (and the rest white). We let the number of
blocked edges to range from 0.01m to 0.2m. Then, we compute the containment
factor cf for all the algorithms by blocking the corresponding edges and running
the Independent Cascade model. For each experiment, we select | R | nodes to
be red, and then run the Independent Cascade Model 10 times to obtain the cf

for the same set of initial red nodes. We run each of these experiments 10 times
for different sets of initial red nodes and report the average value of cf . (The
standard deviations are given in Appendix A.)

Fig. 2. The containment factor for different algorithms on Facebook (top-left),
Facebook-Govt (top-right), and Facebook-Politician (bottom) networks.

The outcomes of our experiments are provided in Fig. 2. The vertical axis
denotes the containment factor of the algorithms, while the horizontal axis is
the percentage of edges blocked. As expected, it can be seen that as the percent-
age of blocked edges increases, the containment factor of the methods increases.
We observe that our proposed algorithm consistently outperforms all other algo-
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rithms, especially by a significant margin for higher percentages of blocked edges.
Our proposed algorithm is followed by BET, WBET, and IEED. The only case
where our algorithm does not perform better than the other algorithms is for
small percentages of blocked edges on the Facebook-Govt dataset.

5 Conclusion

We studied the problem of mitigating misinformation spreading in social net-
works using blocking edges. After providing a formal formulation of the problem,
we proved that it is NP-hard. Then, we proposed an intuitive community-based
algorithm, which first partitions the node set into well-connected communities
by leveraging the Louvain algorithm. Then, it blocks the inter-community edges.
Through experiments on real-world social networks, we observed that this algo-
rithm, despite its simplicity, consistently and significantly outperforms the prior
algorithms.

There are several potential future research avenues. It would be interesting
to devise more effective strategies to choose the final resolution parameter in
our proposed algorithm such that the number of inter-community edges is as
close as possible to the budget k. Furthermore, other community detection al-
gorithms can be explored, rather than the Louvain algorithm. One also might
apply a community detection algorithm to devise a node blocking strategy. Fi-
nally, studying the Edge Blocking Problem where each edge has a given cost
would be interesting from both a practical and theoretical perspective.
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A Standard Deviations

The standard deviation obtained for the proposed algorithm in cf for the three
datasets is given in Table 2.

Table 2. Standard deviation obtained for the proposed algorithm.

Percentage Facebook Facebook-Govt Facebook-Politician
1 13.13838739 0.536237924 13.62691459
2 11.47495844 0.41963079 11.68562978
3 7.922823641 0.406590157 12.87673285
4 7.828210311 3.765703269 11.54790164
5 5.521524447 12.09778772 6.344192445
6 5.794904371 9.049993554 8.917378102
7 4.393543369 10.34596116 6.689110222
8 6.45707192 9.882091322 4.062169098
9 7.01420812 9.639261152 4.078979175
10 4.586620155 11.71557316 4.285124269
11 5.191117306 9.887803037 6.042205631
12 4.300630574 9.524686288 3.913324957
13 3.196539101 9.898218078 2.538393193
14 4.516281164 9.493850407 3.342031983
15 5.215616401 10.76495219 3.927128581
16 5.813759159 4.749856723 4.339572944
17 2.844741933 5.597944464 2.68540086
18 5.075444151 7.42852049 2.974853124
19 3.379384559 5.622314272 3.102571693
20 3.678885097 5.077641732 2.681650404
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