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Abstract. Learning-based methods have attracted a lot of research attention and
led to significant improvements in low-light image enhancement. However, most
of them still suffer from two main problems: expensive computational cost in
high resolution images and unsatisfactory performance in simultaneous enhance-
ment and denoising. To address these problems, we propose BDCE, a bootstrap
diffusion model that exploits the learning of the distribution of the curve param-
eters instead of the normal-light image itself. Specifically, we adopt the curve
estimation method to handle the high-resolution images, where the curve param-
eters are estimated by our bootstrap diffusion model. In addition, a denoise mod-
ule is applied in each iteration of curve adjustment to denoise the intermediate
enhanced result of each iteration. We evaluate BDCE on commonly used bench-
mark datasets, and extensive experiments show that it achieves state-of-the-art
qualitative and quantitative performance.

Keywords: Low-light image enhancement · Diffusion model · High resolution
image · Image processing

1 Introduction

Low-light image enhancement (LLIE) is a very important and meaningful task in com-
puter vision. Images captured in environments with insufficient lighting often exhibit
numerous issues, including diminished contrast, dark colors, low visibility, etc. There-
fore, LLIE is often used to process these poor quality images, and the processed images
can also be better suited for other downstream tasks [23].

The traditional LLIE method is mainly implemented based on histogram equaliza-
tion [2, 27] and Retinex model [35, 47, 57]. However, these methods still do not do a
good job of detail and accurate color restoration. In the past few years, with the contin-
uous development of deep learning, there are more and more LLIE methods based on
deep learning [16,19,24,28,32,37,38,42,56,66–70,77,78]. Compared with traditional
methods, these methods achieve better visual effects and are more robust.
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Input naive w/o denoise w/o diff w/o self BDCE
Fig. 1: Visual results of ablation study. The naive DCE-based method can’t denoise and
obtain satisfactory result. w/o means without. Detail settings are provided in Sec. 4.4
and Tab. 3

Despite the progress of existing methods, two major problems remain: 1) The first
problem is that LLIE on high resolution images is computationally too expensive. 2)
The second problem is that simultaneous enhancement and denoising is unsatisfactory.
Solving both problems is extremely challenging.

For the first problem, many LLIE methods [19,28,32,37,38,42,56,66–70,77] are not
specifically designed for high resolution images, and these methods need to feed high
resolution images into their networks, which is computationally expensive. The first
problem can be solved using DCE-based methods [16], which achieve a small compu-
tational cost by downsampling the input image to a lower resolution, then predicting
the Light-Enhancement curves (LE-curves) at the low resolution. However, DCE-based
methods [16, 78] tend to use lightweight networks, resulting in poor curve estimation,
and their pixel-wise adjustment causes them to fail to denoise, so they are less effective
on real data as shown in Fig. 1 (naive result).

Hence, while the first problem can be addressed using the existing DCE-based meth-
ods, the second problem remains unresolved. Some existing diffusion models [9–11,61]
for image restoration also fail to solve these two problems, because they work on RGB
pixel space, which makes them computationally expensive on high resolution images.

To deal with these two key problems, we proposes BDCE, an effective bootstrap
diffusion model based high-resolution low-light enhancement and denoising method.
The main contributions are summarized as follows:

– In BDCE, a bootstrap diffusion model is presented for model the distribution of
optimal curve parameters, which can then be used for high resolution images.

– We set a denoising module into each iteration of curve adjustment for enhancement
and denoising simultaneously.

– Extensive experiments on benchmark datasets demonstrate the superiority of BDCE
over previous state-of-the-art methods both quantitatively and qualitatively.

2 Related Work

2.1 Learning-Based Methods in LLIE

Recently, there has been a notable surge in the development of deep learning solutions
for addressing the LLIE problem [37, 38, 56, 59, 63, 66, 68, 73–75, 78]. Wei et al. [63]
introduce a Retinex-based method that achieves superior enhancement performance in
most cases while maintaining physical interpretability. DCC-Net [77] employs a collab-
orative strategy based on a strategy of partition and resolve to preserve information of
color and retain a natural appearance. Zhang et al. [75] introduce KinD, which consists
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of three specialized subnetworks for layer decomposition and reflectance restoration,
and illumination adjustment. LLNet [38] utilizes a multi-phase encoder for reducing
sparse noise to enhance and denoise images captured under low-light conditions. Wang
et al. [59] present LLFormer, a computationally efficient approach that leverages blocks
employing multi-head self-attention along different axes and cross-layer attention fu-
sion for computational reduction. Wu et al. [66] propose a novel approach where the
Retinex decomposition problem is reformulated as a learnable network that incorpo-
rates implicit prior regularization. Liu et al. [48] employ a cooperative prior architec-
ture search strategy along with a principled optimization unrolling technique. Liang et
al. [36] propose a unique self-supervised approach that optimizes a separate untrained
network specifically for each test image. SCI [42] utilizes a self-supervised approach
to autonomously adjust the reflection component. EnGAN [28] takes an unsupervised
learning approach to tackle the challenges of overfitting and limited generalization.
Zero-DCE [16] performs pixel-level adjustments by leveraging a depth curve estima-
tion network and a collection of non-reference loss functions. This combination allows
for precise adjustments and improvements in image quality. Jin et al. [29] propose a spe-
cialized network designed to suppress light effects and enhance illumination in darker
regions. However, these methods are still challenging to solve the two problems men-
tioned in Sec. 1.

2.2 Diffusion Models

Within the domain of computer vision, diffusion models have garnered significant at-
tention as a category of generative models. These models are trained to reverse the
sequential corruption process of data by utilizing Gaussian random noise. Two main
types of diffusion models have emerged: score-matching based [26, 55] models and
diffusion-based models [50]. Notably, denoising diffusion probabilistic models [20,45]
and score networks [12, 43, 52–54] conditioned on noise have shown great promise in
generating high-quality images. In recent times, there has been a notable increase of
interest in exploring the advantages of conditional forward processes in diffusion-based
models. This exploration has demonstrated promising potential across diverse computer
vision applications, including image synthesis [6,14,21,22,31,79], deblurring [65], and
image-to-image translation [8, 49, 60]. Moreover, diffusion models have found applica-
tions in image restoration [25]. For example, Ozan et al. [46] proposed a patch-based
diffusion model for restoring images captured under challenging weather conditions.
While many existing methods [9–11, 61] in image restoration focus on solving inverse
problems and require prior knowledge of the degradation models, several concurrent
works [39, 64] have specifically addressed blind restoration problems such as derain-
ing, deblurring, denoising, and face restoration. Kawar et al. introduced DDRM [30]
as a solution for linear inverse image restoration problems, but its applicability is lim-
ited to linear degradation. However, these diffusion based methods can’t handle the first
problems (high resolution image) mentioned in Sec. 1.

3 Methodology

In this section, we describe the details of BDCE given a low-light image Il. Firstly, we
describe the curve estimation for high resolution image in Section 3.1. Then, we design
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Fig. 2: The training pipeline of our BDCE. We first downsample the high resolution
low-light image and use curve estimator to predict the low-resolution curve parameters
C̄. Then diffusion model is applied to learn a more accurate distribution of C̄. The
estimated Ĉ is upsampled and we adopt our denoise module in each iteration of curve
adjustments to get a denoised final result.

the bootstrap diffusion model for curve estimation in Section 3.2. Finally, we describe
the denoising module for real low-light image in Section 3.3.

3.1 Curve Estimation for Hight Resolution Image

Deep Curve Estimation Network (DCE-Net) [16] is one of the most effective methods
for enhancing low-light images since their adaptability to high resolution images. In
DCE-Net [16], a network is designed to predict a set of optimal Light-Enhancement
curves (LE-curves) that match well with the input low-light image. This method maps
all pixels of the input image by progressively applying curves to achieve the ultimate
enhanced image. DCE-Net uses quadratic curves LE(Il,C) = Il +CIl(1 − Il) for
mapping, where Il ∈ R3×H×W , C ∈ [−1, 1]3×H×W and LE(Il,C) ∈ R3×H×W

denote the input image, the curve parameters and the adjusted image, respeatively. The
curve parameters C are per-pixel predicted by a CNN in DCE-Net.

The above procedure LE(Il,C) represents only one iteration of curve adjustment,
in fact 8 curve adjustments are used in DCE-Net and each iteration can be denoted as

ai+1 = LEi(ai,Ci) = ai +Ci ai(1− ai), i = 1, ..., 8, a1 = Il . (1)

Then the total adjustment can be denoted by

LE(Il,C) = LE8(a8,C8), a8 = LE7(a7,C7), ..., a2 = LE1(a1,C1). (2)
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Ci ∈ [−1, 1]3×H×W and C = [C1, ..., C8] ∈ [−1, 1]24×H×W . We express the above
adjustment by C = ϕθ(Il) and Ie = LE(Il,C), where ϕθ is a CNN network.

Based on the localised nature of the curve adjustment, DCE-Net can efficiently cope
with high resolution input images. For a high-resolution input image Il, DCE-Net first
resizes to get a fixed low resolution image Īl ∈ R3×H̄×W̄ where H̄ and W̄ are always
set to 256, then uses the curve estimation described above C̄ = ϕθ(Īl) to get a curve
C̄ ∈ [−1, 1]24×H̄×W̄ at the low resolution, then upsamples that curve C̄ to the original
high resolution C ∈ [−1, 1]24×H×W , and performs curve adjustment at high resolution.
For any high resolution image, the computational cost of network is the same.

3.2 Bootstrap Diffusion Model for Better Curve Estimation

In order to make BDCE adaptable to arbitrary high resolution images, BDCE is very
different from other diffusion model based methods, where other diffusion model based
methods learns the distribution of target images, while our BDCE learns the distribution
of curve parameters C̄ ∈ [−1, 1]24×H̄×W̄ . Because the target image In (the normal-
light image in our task) may have a high resolution such that In ∈ R3×H×W , the
learning burden of In will be much bigger than it of C̄ if H ≫ H̄ .

The forward process in DDPMs aims to learn the distribution of x0, i.e., C̄ (curve
parameters) in our BDCE. However, the values of C̄ are unknown at the beginning of
training. To solve this, first we enter resized Īl into curve estimator ϕθ to get a curve
estimation C̄. Then, we denote x0 = C̄ as the data distribution of our diffusion model.
Specifically, the forward process of BDCE can be described as follows:

q(xt |x0) = N (xt;
√
ᾱt x0, (1− ᾱt) I). (3)

xt =
√
ᾱt x0 +

√
1− ᾱtϵt, ϵt ∼ N (0, I) (4)

With the same setting of µ̃t(xt,x0) in [51], the reverse process from xT to x0 is:

q(xt−1 |xt,x0) = N (xt−1; µ̃t(xt,x0), σ̃
2
t I), (5)

where x0 can be predicted by a noise estimation network ϵθ(xt, Īl, C̄, t):

x̂0 =
xt −

√
1− ᾱtϵθ(xt, Īl, C̄, t)√

ᾱt
. (6)

As shown in Fig. 2, a U-Net similar to that in [72] is used as the noise estimation
network ϵθ of BDCE. As for the curve estimator ϕθ, we adopt a lightweight network
following [16]. In each step t of training, the given low-light image Il and the curve
parameters C̄ serve as the conditions in BDCE to model the distribution of C̄. Lsimple

defined in [44] is utilized as the supervision for ϵθ.
Note that the curve parameters C̄ estimated by ϕθ are not the optimal curve pa-

rameters for enhancement. Therefore, we adopt a bootstrap diffusion model for stable
training and better optimization for learning the distribution of C̄. To achieve this, the
following bootstrap loss is used:

Lbootstrap = ||LE(Il, Ĉ)− In ||2, Ĉ = Upsample(x̂0), (7)

where Ĉ ∈ [−1, 1]24×H×W denotes the estimated curve parameters from x̂0 in Eq. 6
upsampled to the original high resolution.
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Input EnGAN
23.28/0.804

Zero-DCE
15.45/0.7173

IAT
26.49/0.8839

URetinex-Net
26.85/0.912

SNR
27.58/0.904

BDCE
27.82/0.922

GT
PSNR/SSIM

Fig. 3: Visual comparison on LOL-v1. BDCE yields less noise and more natural colors.

Input EnGAN
12.89/0.736

DeepUPE
18.17/0.812

SCI
15.99/0.766

HWMNet
12.43/0.584

AdaInt
15.49/0.763

BDCE
25.85/0.837

GT
PSNR/SSIM

Fig. 4: Visual comparison on MIT-Adobe FiveK. BDCE yields better colors.

3.3 Denoising Module for Real Low-Light Image

Because most of the real low-light images are degraded by real noises, LLIE always
includes the demands of real image denosing. However, using only LE-curves is dif-
ficult to remove the real noises since curve adjustment is pixel-wise without localised
smoothing, so all DCE-based methods suffer from the problem of real noises [16].

To solve this problem, we propose to combine enhancement and denoising in one
model by applying a denoising module ψθ consisting of servel residul blocks. We im-
plement the denoising during each iteration by refining the intermediate enhanced result
ai as following, given a1 = Il:

a2 = LE1(a1, Ĉ1), â2 = ψθ(a2),

a3 = LE2(â2, Ĉ2), â3 = ψθ(a3),

...

a9 = LE8(â8, Ĉ8), În = ψθ(a9),

(8)

where ai denotes the intermediate enhanced result of the i-th iteration. The process
described above can be briefly expressed as În = LEde(Il, Ĉ). It can be understood
as using the denoising module to denoise after each iteration of brightness adjustment
before proceeding to the next iteration of brightness adjustment. After 8 iterations of
brightness adjustment and denoising, the result is an enhanced output with less noise.
To train ψθ, a full-supervised loss Lsup and a self-supervised loss Lself are used:

Lsup = ||În − In ||2,
âd1i = Down1(âi), âd2i = Down2(âi),

Lself =
∑

i=1,...,8

||âd1i − âd2i ||2,
(9)

where Down1 and Down2 denote two types of downsampling way (randomly choose
from max-pooling, average-pooling, nearest, bilinear, bicubic and lanczos interpola-
tion), because the MSE between two different downsampling results âd1i and âd2i should
be small for a denoised image.
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Input Zero-DCE++ Retinex-Net RUAS SCI SSIENet BDCE Reference

Fig. 5: Visual comparison on LSRW. BDCE yields natural colors with clear details.

LOL-v1

Method KinD [75] Retinex [63] DRBN [70] URetinex [66] IAT [13] SNR [67] DCC-Net [77]BDCE

PSNR ↑ 20.87 18.23 19.55 21.32 23.38 24.61 22.72 25.01
SSIM ↑ 0.800 0.720 0.746 0.834 0.809 0.842 0.810 0.850

LOL-v2-real

Method KinD [75] SID [5] MIR-Net [73] A3DLUT [58] Retinex [63] SNR [67] Uformer [62] BDCE

PSNR ↑ 14.74 13.24 20.02 18.19 18.37 21.48 18.82 22.70
SSIM ↑ 0.641 0.442 0.820 0.745 0.723 0.849 0.771 0.851

LOL-v2-synthetic

Method KinD [75] SID [5] MIR-Net [73] A3DLUT [58] Retinex [63] SNR [67] Uformer [62] BDCE

PSNR ↑ 13.29 15.04 21.94 18.92 16.66 24.14 19.66 24.93
SSIM ↑ 0.578 0.610 0.876 0.838 0.652 0.928 0.871 0.929

MIT

Method LCDPNet [19] DPE [7] DeepUPE [56] MIRNet [73] HWMNet [15] STAR [78] SCI [42] BDCE

PSNR ↑ 23.23 22.15 23.04 23.73 24.44 24.13 20.44 24.85
SSIM ↑ 0.842 0.850 0.893 0.925 0.914 0.885 0.893 0.911

LSRW

Method Retinex-Net [63] KinD [75] Zero-DCE [16] SSIENet [76] Zero-DCE++ [34]RUAS [48] SCI [42] BDCE
PSNR ↑ 15.90 16.47 17.66 16.74 15.83 14.43 15.01 20.10
SSIM ↑ 0.3725 0.4929 0.4685 0.4879 0.4664 0.4276 0.4846 0.5308

Table 1: Results on LOL-v1, LOL-v2, MIT and LSRW. The best and second best are in
bold and underlined, respectively.

4 Experiments

4.1 Datasets Settings

In our supervised experiments, we utilize several datasets, including LOL-v1 [63],
LOL-v2 [71], MIT-Adobe FiveK (MIT) [4] and LSRW [18]. The LOL-v1 dataset con-
sists of 485 training pairs and 15 testing pairs of real low-light images. As for LOL-v2,
it consists of two parts: LOL-v2-synthetic and LOL-v2-real images. LOL-v2-synthetic
contains 900 pairs of synthetic low-light images for training and 100 pairs for test-
ing, while LOL-v2-real comprises 689 pairs of real low-light images for training and
100 pairs for testing. The MIT dataset comprises 5,000 paired synthetic low-light and
normal-light images. We adopt the same training and testing settings as previous meth-
ods [56, 78] for consistency. To assess the generalization ability of BDCE, we further
evaluate its performance on unpaired real low-light datasets, including DICM [33],
LIME [17], MEF [41], NPE [57], and VV [1].

4.2 Comparison with SOTA Methods on Paired Data

First, we assess the performance of our BDCE model through supervised training on
paired datasets (LOL-v1, LOL-v2, MIT, LSRW). Subsequently, we evaluate the model’s
effectiveness by conducting testing on the corresponding test sets of these datasets.
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Method Retinex-Net [63] KinD [75] Zero-DCE [16] EnGAN [28] Zero-DCE++ [34] SSIENet [76] BDCE

NIQE ↓ 4.85 4.09 4.93 4.27 5.09 4.50 3.99
BRISQUE ↓ 27.77 26.87 24.78 18.97 21.11 21.08 17.43

NIMA↑ 4.24 4.16 3.87 3.92 3.85 3.53 3.86
NRQM ↑ 7.86 7.47 7.52 7.50 7.34 7.58 7.44

PI ↓ 3.15 3.26 3.21 2.90 3.29 3.47 2.87

Table 2: Average results in terms of 5 NR-IQA metrics (NIQE, NIMA, BRISQUE,
NRQM [40] and PI [3]) on the 5 unpaired real low-light datasets (DICM, LIME, MEF,
NPE and VV).

Input Retinex-Net EnGAN RUAS KinD Zero-DCE Zero-DCE++ BDCE

Fig. 6: Visual comparisons on unpaired real low-light images, and the example is from
the NPE dataset.

LOL Dataset. Our BDCE is evaluated on LOL-v1 and LOL-v2 datasets. Results
in the Table 1 demonstrate BDCE’s superiority over other state-of-the-art methods. The
PSNR and SSIM metrics for the compared methods are sourced from their respective
papers. Visual comparisons in the Fig. 3 reveal that BDCE yields visually appealing
results with reduced noise.

MIT Dataset. The performance of BDCE is assessed on the MIT dataset [4], and
the obtained results in Table 1 indicate that it achieves the highest PSNR and SSIM
scores. Fig. 4 clearly demonstrates that our BDCE method effectively prevents color-
shift in the enhanced images. In contrast, some of the compared methods tend to exhibit
over-enhancement or under-enhancement.

LSRW Dataset. Among the evaluated methods, BDCE achieves the highest scores
on PSNR and SSIM, as shown in the Table 1. Fig. 5 presents a visual comparison of the
results. While the images enhanced by other methods suffer from color shifts or appear
under-enhanced, the images enhanced by BDCE exhibit a more natural appearance.

4.3 Comparison with SOTA Methods on Unpaired Data

Our BDCE approach’s effectiveness is evaluated on various unpaired datasets, namely
DICM, LIME, MEF, NPE, and VV datasets. The evaluation is conducted by directly
testing our pretrained model on the test set of each dataset.

We compare the result of BDCE with other SOTA methods on these unpaired real
low-light image datasets. The quantitative results in terms of 5 NR-IQA metrics are
provided in a Table 2. Additionally, a visual comparison is presented in Fig. 6, demon-
strating that the results obtained by the compared methods often exhibit unrealistic
appearances, loss of fine details, or excessive enhancement. In contrast, BDCE consis-
tently produces images with enhanced colorfulness and sharp details.

4.4 Ablation Study

We evaluate the performance of BDCE using various modules, presenting the results in
Table 3 and providing visual comparisons in Fig. 1.
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Method Bootstrap Diffusion Model Denoising Module Self-supervised Loss PSNR SSIM
naive % % % 18.51 0.721

w/o denoise " % % 22.15 0.809
w/o diff % " " 23.33 0.807
w/o self " " % 24.56 0.810
BDCE " " " 25.01 0.850

Table 3: Comparison of different settings in BDCE on LOL-v1. Bootstrap Diffusion
Model: using the proposed bootstrap diffusion model for learning the distribution of
curve parameters. Denoising Module: using the proposed denoising module in each
iteration of curve adjustment. Self-supervised Loss: using self-supervised loss in Eq. 9.
": used.%: not used.

The absence of the bootstrap diffusion model makes it challenging to acquire desir-
able curve parameters, leading to noticeable deficiencies in color rendition and illumi-
nation quality.

Removing the denoising module results in severe noise in the enhanced output due
to the inability of pixel-wise curve adjustment alone to effectively leverage the spatially
local smooth prior for denoising.

The denoising module’s performance is enhanced by our self-supervised loss, which
enables it to focus on denoising during each iteration of curve adjustment. Conse-
quently, the utilization of the self-supervised loss proves advantageous. Overall, the
combination of the proposed components effectively enhances the LLIE performance.

5 Conclusion and Limitation

In this paper, we first analyse the problems of high computational cost in high resolution
images and unsatisfactory performance in simultaneous enhancement and denoising.
To mitigate these problems, we propose BDCE, a bootstrap diffusion model adapted to
LLIE. For high resolution images, a curve estimation method is adopted and the curve
parameters are estimated by our bootstrap diffusion model. At each iteration of curve
adjustment, a denoise module is applied to denoise the intermediate enhanced result of
each iteration. BDCE outperforms SOTA methods on LLIE benchmarks.

The main limitation of BDCE is its time cost, which is due to the multiple steps of
the sampling process of the diffusion model. For future research, we aim to devise a
more streamlined approach for acquiring the curve parameter distribution. In addition,
finding a lightweight network design is also a consideration.
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