
BAHS: a Blockchain-Aided Hash-based
Signature Scheme

Yalan Wang[0000−0002−6963−7582], Liqun Chen*[0000−0003−2680−4907], Long
Meng[0000−0002−5648−5049], and Yangguang Tian[0000−0002−6624−5380]

University of Surrey, Guildford, UK
{liqun.chen}@surrey.ac.uk

Abstract. Hash-based one-time signatures are becoming increasingly
important as they are post-quantum safe and have been used in multi-
cast communication and other applications. However, managing the state
of such signatures can present a significant challenge, as signers are typ-
ically responsible for ensuring that the state cannot be reused. Recently,
blockchain, as a public platform, is used to design revocation manage-
ment and status verification systems. While blockchain revocation is at-
tractive, many well-known blockchains make use of ECDSA as their un-
derlying signature scheme, and this is not post-quantum safe. Researchers
have been working on replacing ECDSA with post-quantum signature
schemes but they are much more costly. In this paper, we introduce a
new one-time signature scheme, called Blockchain-Aided Hash-based Sig-
nature (BAHS), in which a hash-based commitment scheme acts as the
building block, and signers’ commitments and opened commitments are
publicly accessible via a distributed blockchain. A signature is formed
from the commitment/opened commitment and blockchain. Unlike ex-
isting blockchain systems, the commitment in BAHS is simpler than that
in most existing hash-based one-time signature schemes or other post-
quantum signature schemes. We provide a formal security model for the
BAHS scheme and give the security proof. Finally, we have implemented
our BAHS scheme and the result shows its practicality.

Keywords: Digital signature · Hash function · Blockchain · Crypto-
graphic protocols.

1 Introduction

Digital signatures are a cryptographic primitive for verifying the authenticity of
digital data. A one-time hash-based signature, as proposed by Lamport in [21],
is a special type of digital signature, in which each signing key can be used only
once and one-way functions without trapdoors are applied. One-time hash-based
signatures can be used in multi-cast communications, such as wireless sensor
networks [26] and smart grids [24]. In these applications, signatures are used to
achieve demand response, operation and control. The deployment of hash-based
one-time signature schemes faces a significant challenge, i.e., state management.
This refers to the process of ensuring that a signature cannot be reused.

2 Y. Wang et al.

The problem of state management was discussed in [15]. A comprehensive
assessment of the security impact of reusing a one-time signature private key was
provided in [9]. Based on the research on this topic, ISO/IEC 14888-4 2nd Com-
mittee Draft [2] provides the following recommendations to implement robust
state management mechanisms:

– The state used in hash-based one-time signatures is a piece of information,
which should be stored, maintained, and updated for the whole lifespan of
the private key.

– One way to reduce the chances of state reuse is to prevent the copy or ex-
traction of the private key from the signing module. Assuming this way can
be guaranteed, the issue of state management is simplified to a single signing
environment, rather than having to manage multiple signing environments.
Consequently, the problem of state management is replaced by a more intri-
cate issue: the state synchronization problem.

– During the signing, the signer will first update the state and then start the
signing procedure. If this process was done in a reverse order, there is a risk
that the signature is produced but the state remains in its previous value.

In accordance with these recommendations, a signer is responsible for ensuring
state management. Nevertheless, the signer may either lack the ability or may
not be trustworthy enough to assume full responsibility.

Recently, blockchain is used to design revocation management and status ver-
ification systems [3, 13]. In these blockchain-based systems, the blockchain acts
as data storage. During signature verification, verifiers must examine the key sta-
tus to determine if the signer has been revoked or not. Obviously, a risk is that
a malicious signer will not revoke their key. As a result, these blockchain-based
schemes are still unable to effectively implement state management. Recently,
in [23], they took the public ledger to assist the threshold signature scheme
and the state management, but the underlying signature scheme is based on
classical signature algorithms, which is complicated and not post-quantum se-
cure. Generally, most existing blockchains make use of a traditional signature
scheme, ECDSA, or its variants, e.g., [8, 25], as an underlying signature scheme.
This type of signature scheme is not post-quantum secure. Recently, NIST has
announced to standardize three post-quantum signatures, Dilithium [20], Fal-
con [7] and SPHINCS+ [11]. They are being considered to replace the traditional
RSA- and EC-based signatures. There has been some research on considering
the use of post-quantum secure signatures in blockchains (cryptocurrency) [7,
11, 12, 14]. However, based on the result of Holmes’ work [17], all the well-known
post-quantum signatures are quite expensive to be implemented in blockchains.

Now, the question is whether we can use the state verification capability in
a blockchain to create a simpler one-time signature scheme. In this paper, by
leveraging the Merkle tree in the blockchain to generate commitments, we enable
state management through the public accessibility of keys, commitments/opened
commitments. Therefore, we develop a straightforward post-quantum one-time
signature scheme. We call this new scheme blockchain-aided hash-based signature
(BAHS). In the BAHS scheme, there are three types of entities, a set of signers,

BAHS: a Blockchain-Aided Hash-based Signature Scheme 3

a blockchain, and a set of verifiers. To sign a message m using the signing key
sk, the signer creates a commitment input cInput (cInput = H(m, sk)||H(sk))
and sends it to a blockchain. Before accepting this input, the blockchain checks
whether the signing key has been used before. If not, cInput will be appended
to the blockchain to be time-stamped and the commitment com is formed. At a
later time (block), the signer needs to open the commitment by sending the input
oInput, oInput = (m, sk, cInput) to the blockchain. And the opened commit-
ment on the blockchain is denoted by ˜com. Finally, com and ˜com form a signa-
ture. During verification, the verifier retrieves the signature from the blockchain
and checks whether the signature is valid or not. The aid of the blockchain
guarantees the key state management in the scheme.

Our contributions can be summarized as follows:

– We propose a BAHS scheme, which is the first hash-based one-time signature
scheme that achieves key state management without entirely relying on the
signer.

– Our BAHS scheme only makes use of hash functions and blockchain (Merkle
tree) to generate the commitment, which is post-quantum secure and more
efficient and simpler than traditional signatures and other post-quantum
signatures.

– We introduce a formal definition of the security model for our proposed
BAHS scheme and provide concrete security proof. This security analysis
indicates that the BAHS scheme holds the properties of correctness and
unforgeability.

– We provide a proof of concept implementation of the BAHS scheme. The
implementation and evaluation confirm its practicality.

The rest of this paper is structured as follows. We introduce preliminaries
in Section 2. We present the syntax for a generic BAHS scheme in Section 3.
Based on the generic BAHS definition, we present our BAHS scheme in detail in
Section 4. In Section 5, we introduce the security model and provide the security
proof. In Section 6, implementation results are given. Finally, in Section 7, we
present the conclusion.

2 Preliminaries

2.1 Hash functions

Definition 1. A secure hash function maps a string of bits of variable length
(but usually upper bounded) to a fixed-length string of bits.

The properties of hash functions are one-wayness, second preimage-resistance
and collision-resistance [1], which are described as follows:

– One-wayness. Given a hash function H and a hash value H(m), it is com-
putationally infeasible to get the input message m.

4 Y. Wang et al.

– Second Preimage-resistance. Given a hash value H(m) of a message m,
it is computationally infeasible to find a second input m′ which maps to the
same output H(m).

– Collision-resistance. Given a Hash function H, it is computationally in-
feasible to find a pair of messages m and m′ to make H(m) = H(m′).

2.2 Commitment scheme

In a commitment scheme [10, 19], there are two phases, i.e., committing and
opening. Here we give a definition of these two phases as follows:

– Committing: To commit a data string b, the prover P chooses r randomly
r←{0, 1}l and computes the commitment com← commit(r, b), where commit
is a function:{0, 1}l×{0, 1}l → {0, 1}l. Then the prover can send com to the
verifier V .

– Opening: The prover can reveal r, b to the verifier V . Then the verifier V
computes com′ = commit(r, b) and checks whether com′ = com or not.

Hash functions can be used to design commitment scheme [4, 6]. In our scheme,
we follow the Merkle tree method to compute signers’ commitments.

2.3 Blockchains

A blockchain is a distributed digital blockchain of signed transactions that are
grouped into blocks. As shown in Fig. 1, a block header contains a block index
number bidi, a nonce noni, a hash value of the previous block header hbhi−1,
a time-stamp tsi, and a Merkle tree root ri of all block data. The block data
contains a list of transactions along with their corresponding digital signatures.
The generation of block bi and the process of connecting with the block bi+1 are
described as follows:

......

Block

Block data

......

Block header

Fig. 1. A general block structure for a blockchain

– Assume there are J transactions in block i, each transaction txij(j ∈ [1, J])
is signed using a signature scheme SIG, i.e., sigij ← SIG(txij). Then block
data bdi, i.e., bdi = ([txi1, sigi1], ..., [txiJ , sigiJ]).

BAHS: a Blockchain-Aided Hash-based Signature Scheme 5

– The consensus nodes aggregate bdi with a Merkle Tree (MT) by using a hash
function H. i.e., ri ← MT(H; bdi). Then consensus nodes calculate the hash
value hbhi−1 of the previous block header bhi−1, i.e., hbhi−1 = H(bhi−1).

– The block header bhi is formed, i.e., bhi = (hbhi−1, ri, bidi, noni, tsi). The
block bi is formed as bi = (bdi, bhi).

– The consensus nodes calculate the hash value of the block header of the
block bi, hbhi = H(bhi), which is recorded in the next block bi+1.

Then the process of calculating the hash value of the block header hbhi using
a blockchain algorithm Blc is defined as follows:

(ap, hbhi)← Blc(..., [txip, sigip], ...)

where p ∈ [1, J] and ap is the authentication path from the transaction [txip, sigip]
to hbhi.

Blockchain integrity. Let a blockchain be an entity that maintains an au-
ditable database L. We model the capability of an adversary against a blockchain
as corrupted users or power-limited consensus nodes (no more than 49% mali-
cious nodes). A successful adversary could launch the following attacks that
bypass the blockchain auditing check:

– Tampering attack. The adversary changes, adds, or removes information
in the blockchain without being audited.

– Back-dating attack. The adversary claims any non-existed information on
the blockchain.

Then we define the data integrity property of L as follows:

Definition 2. A blockchain L holds data integrity, if for any Probabilistic Poly-
nomial Time (PPT) adversary A, the probability of making either a tampering
attack or a back-dating attack is negligible.

2.4 Quantum random oracle

In this scheme, we are concerned with its post-quantum security. On a classi-
cal computer, we can model a hash function as an random oracle F . Based on
Boneh’s work [5], hash functions used in this work meet the history free reduc-
tion. Therefore, we can model the hash function as a quantum random oracle.
Formally, for the case of an random oracle F , executions of the unitaries describ-
ing the adversary are interleaved with executions of an oracle unitary:

Of :
∑
x,y

αx,y |x⟩ |y⟩ →
∑
x,y

αx,y |x⟩ |y ⊕ f(x)⟩ . (1)

For q queries, the adversary is described by a sequence of unitaries U0,...,Uq and
executed as UqOfUq−1Of ...OfU0 |0⟩.

6 Y. Wang et al.

3 Generic definitions for a Blockchain-Aided Hash-based
Signature Scheme (BAHS)

Let com = commit(sk,m) be a hash-based commitment scheme. The function of
commit can be realized by the Merkle tree in the blockchain. The main concept
behind our one-time signature scheme is for a signer to commit to both the
private signing key and the message and store the commitment on one block of a
blockchain. At a later time, the signer opens the commitment with the message
and private key and stores the opened commitment on another block of the
blockchain. Each signer’s commitment and opened commitment form a signature,
which can then be verified by anyone who can access the blockchain. In our
BAHS scheme, each block generation happens at a time epoch. Authentication
of signers is application-oriented, i.e., some applications only allow legitimate
users to submit their keys and signatures; some applications allow any users to
do so. The choice of user authentication is out the scope of this paper.

3.1 Notation

The notation is listed in Table 1.

Table 1. Notation used in the BAHS scheme

Notation Meaning

S signer space

i ∈ S signer identity

ski signer i’s signing key

pki signer i’s public key

mi message to be signed by i

cInputi signer i’s commitment input

oInputi signer i’s opened commitment input

comi signer i’s commitment

˜comi signer’s opened commitment

σi signer i’s signature

β epoch index associated with a block in the blockchain

Lβ blockchain database from the genesis block to β-th block

BAHS players. A BAHS scheme consists of three types of players: a blockchain,
a set of signers, and a set of verifiers.

– By maintaining its database L, the blockchain aids signers by storing their
commitments, opened commitments and signatures. The blockchain also
maintains the status information of those commitments.

BAHS: a Blockchain-Aided Hash-based Signature Scheme 7

– Let S be the space of signers. Given a message mi, a signer i ∈ S generates
their one-time secret signing key ski, input cInputi to commitment comi

and oInputi input to the opened commitment ˜comi and submits cInputi
and oInputi to the blockchain in two different blocks. The outputs on the
blockchain can become comi and ˜comi, respectively. Finally, signature is
σi = (cInputi, comi, oInputi, ˜comi).

– A verifier retrieves a signature from the blockchain and verifies the signature.

BAHS key management. Let Sβ ⊂ S be the set of signers whose commit-
ments have appeared in the blockchain’s database up to the start of epoch β.
The blockchain maintains information about the status of cInputi (because it
is computed by signing key ski), i ∈ Sβ , for each epoch β, and this information
is denoted by infoiβ . We write infoβ for the set of all these infoiβ with different i

and infoi for the set of all these infoiβ with different β. We give the definition of
infoβ as follows:

Definition 3. The key status information infoβ can be retrieved from the blockchain.
It can be used to obtain the status, statusiβ, of any given cInputi. This status
will be as follows :

statusiβ ∈ {(cInputi, +), (cInputi, −), (cInputi, ⊥)},

where (cInputi, +) means that cInputi has been submitted to the blockchain
and the signer i is allowed to sign, (cInputi, −) means that cInputi has been
submitted to the blockchain but the signer i is not allowed to sign, (cInputi, ⊥)
means that cInputi has not yet been submitted to the blockchain.

3.2 Description of a generic construction of BAHS

A generic construction of BAHS is described in a timeline with multiple epochs
and it consists of the following algorithms/protocols. Note that during signing,
the signer will generate the signing key and message to be signed, in which both
sk and m are random numbers.

– Setup(1λ) → (pp, info0,L): In epoch 0, the blockchain nodes run the Setup
algorithm by taking as input a security parameter λ and outputting the
system parameters pp, the initial system information info0 and database L.

– Sign
{
β, infoβ , (ski,mi)i∈[Q],Lβ

}
→ (σi,Lβ+1, infoβ+1): In epoch β, a set of

Q users and the blockchain nodes run the Sign protocol as follows. We assume
Q = M + N , M is the number of users submitting the commitment onto
the blockchain, N is the number of users opening their commitment onto
the blockchain. The nodes take as inputs system information infoβ , and the
database Lβ . A user is in one of the two following stages:
1. Committing. For a user ib (ib ∈ [M]), who wants to commit, given a

private key skib and a message mib , he/she computes the input to the
commitment cInputib and submits it to the blockchain. If cInputib does
not exist on the blockchain database L, the blockchain nodes will record
it and the record of this transaction is called commitment comib .

8 Y. Wang et al.

2. Opening. To make a signature publicly verifiable, user jd ∈ [N] releases
skjd on the blockchain to open the commitment. Upon receiving skjd ,
the blockchain nodes check the status of cInputjd . If skjd has not been
used before, the blockchain nodes store oInputjd = (cInputjd ,mjd , skjd)
to the blockchain datebase L, and the record of this transaction is called
opened commitment ˜comjd .

After the signing protocol, the outputs include a signature σi = (cInput, comi,
oInput, ˜comi), the updated database Lβ+1, in which public information for
verification forms signer i’s public key pki, and system information infoβ+1

for the next epoch. From a signer’s view, the Committing and Opening stages
are run in sequence in two different blocks. From the blockchain’s view, these
two stages are run simultaneously in every block for different signers.

– Verify(σi, infoi) → 0/1: In any epoch after a signature σi is generated and
available on the blockchain database L, a verifier can retrieve σi together
with the system information infoi and verify it. The verifier outputs 0 for
rejecting the signature and 1 for accepting it.

3.3 Security model for BAHS

We adopt a security model modified based on [18] for the BAHS scheme. The
capability of an adversary against the BAHS scheme can be modeled as corrupted
signers who can generate signing keys by themselves or outside attackers who
cannot obtain signing keys. A successful adversary can launch any one of the
following attacks:

– Tampering attack. The adversary changes, adds, or deletes existing records
on the blockchain.

– Forging attack. The adversary claims a valid signature that is generated or
released by an entity using a signing key more than once or is not generated
by an entity.

The security of a BAHS scheme can be captured through two properties: correct-
ness and unforgeability. The unforgeability is defined as an experiment, which is
performed between an adversary A and a challenger C. Several global variables
are used in experiments: h records the honest signer, M is the number of signers
who are invoked in the experiment, and K is the number of honest signers who
attempt to submit commitments onto the blockchain. βCurrent and βRevoke denote
the current epoch as well as the epoch in which the honest signer is revoked.
R is the set of signers to be revoked. The adversary can access the blockchain
database L and the system information infoβ for any epoch β.

Note that we need to model hash functions as oracles. It is common prac-
tice to model hash functions as random oracles [22], specifically, with a random
value space, and a table T to record values. Furthermore, Boneh et al. [5] for-
malized the notion of quantum-accessible random oracle model (QROM), where
the adversary can query the classical random oracle (RO) with quantum states.
They introduced a concept called history-free reduction, showing that certain

BAHS: a Blockchain-Aided Hash-based Signature Scheme 9

lattice-based schemes in the random oracle model (ROM) can be proven se-
cure in QROM, such as GPV’08 [16]. Specifically, if a simulator can decide the
classical RO answers independently of the history of previous queries, then it
implies security in the QROM. Therefore, in our scheme, the hash function can
be modeled as a quantum random oracle because it meets the history-free reduc-
tion requirements and the scheme can be proved post-quantum secure. A simple
definition of executions in quantum random oracle is given in Section 2.4.
Correctness. In general, correctness means a signature generated by an honest
signer should always be valid (if the signer has not been revoked). We give the
definition of correctness as follows:

Definition 4. A BAHS scheme is correct that we get the result 1← Verify(σi, infoi),
where λ is the security parameter, if (infoβ+1,Lβ+1, σi)← Sign

{
β, infoβ , (ski,mi)i∈[Q],Lβ

}
and (pp, info0,L)← Setup(1λ).

Unforgeability. It means that the adversary can corrupt any number of signers
except for one honest signer h. The adversary can query signatures from h on any
messages at the adversary’s choice, but can not generate a new valid signature
of h. The adversary can generate a valid signature σi for a corrupted signer
i but this signature generation must be with the assistance of the blockchain.
Formally, unforgeability is defined as an experiment in Fig. 2.

Experiment ExpUnforge
BAHS,A(λ)

– h =⊥; iS = ∅; cS = ∅.
– (pp, L, info0)← Setup(1λ), L = ∅, info0 = ∅.
– (Lβ+1, σi, infoβ+1)← AAddHU,AddCU,Update,Revoke,H(pp, L, info0)
– If i = h:
• If (cInputh, m) ∈ iS ∧ (σh, m) ∈ cS return 0.

– Else:
• If (σi, m) ∈ cS return 0.

– Return Verify
(
σi, infoi

)
.

Fig. 2. The unforgeability experiment for the BAHS scheme

The adversary can have access to the following oracles and the details of
oracles are shown in Fig. 6 in Appendix A. We present details of the random
oracle H and it can be modelled as the corresponding quantum random oracle
following the definition in Section 2.4.

– AddHU(): This oracle allows the adversary to add a single honest signer
in the experiment. In each call, this oracle executes the submission of the
commitment onto the blockchain by simulating the honest signer and the

10 Y. Wang et al.

blockchain. This oracle can be called at most k(λ) times where k(·) is any
polynomial. Once the commitment is submitted successfully, further calls
will be ignored. This oracle only returns the honest signer’s input to the
commitment cInputh.

– AddCU(i, cInputi): This oracle allows the adversary to add a corrupt
signer i to the system. The adversary can choose the corrupted signer’s
signing key ski and the corresponding input cInputi to the commitment.

– Revoke(R): This oracle allows the adversary to update the information list
from infoβCurrent to infoβCurrent+1 , by revoking the set of signers R and keeping
the remaining. If h is revoked in this oracle query, set βRevoke to βCurrent.

– Update(): This oracle allows the adversary to query the signature associated
with a signer i which is recorded in the list cS. Note that the signer i can
be an honest signer h or a corrupted signer i ̸= h, who was created by the
adversary via the AddCU(i, cInputi) oracle.

– H(): On input a string x, the oracle checks if x has been queried before. If
yes, it returns T [x]. If no, a random string h can be returned and be recorded
as T [x] = h.

Based on the above definitions, we define unforgeability as follows:

Definition 5. A BAHS scheme is unforgeable, if for any p.p.t. (quantum) ad-
versary A, the following condition holds:

Pr
[
ExpUnforge

BAHS,A(1
λ) = 1

]
≤ negl(λ) (2)

4 The Blockchain-aided Hash-based Signature scheme
(BAHS)

We now present a concrete BAHS scheme. In this scheme, we need the following
three extra hash functions: H1 : {0, 1}λ → {0, 1}l; H2 : {0, 1}∗ × {0, 1}λ →
{0, 1}l; H3 : {0, 1}l × {0, 1}l × {0, 1}λ × {0, 1}∗ → {0, 1}l, where λ is the system
security level and l is the length of hash outputs. It is required that H1, H2,
and H3 hold the properties of one-wayness and collision-resistance. Note that
in this scheme, the key status information can be instantiated by the status of
H1(sk), which is part of the input cInput. In the following proof, we will apply
this instantiation.

4.1 BAHS algorithms/protocols

Following the BAHS syntax in Section 3.2, the concrete BAHS algorithms/pro-
tocols are instantiated in detail as follows:

BAHS: a Blockchain-Aided Hash-based Signature Scheme 11

protocol 1: Sign protocols for BAHS
Input: β, L, infoβ , cInput[M], oInput[N], /* (M, N) ∈ N× N, [M] = {i1, . . . , iM},

[N] = {j1, . . . , jN}, (ib, jd) ∈ S × S, [M] ∩ [N] = ∅. */
Output: L (updated), infoβ+1.

1 initiate infoβ+1 = ∅, z[M+N] = ∅; /* A set storing leaf values */
2 initiate a[M+N] = ∅; /* A set storing authentication path */
3 initiate rβ = ∅; /* This is used to store the root value. */, /*

statuskβ ∈ {(H1(skk), +), (H1(skk), −), (H1(skk, ⊥)}*/.
4 ∀k ∈ Sβ , set infok

β+1 = infok
β ;

5 for b = 1; b ≤M; b + + do
6 initiate σib

= ∅;
7 obtain statusibβ from infoib

β ;/* A = H1(skib
) and B = H2(mib

, skib
). */

8 parse cInputib = A||B;

9 if statusibβ = (A, ⊥) then
10 set statusibβ+1 = (A, +), σib

= σib
∪ cInputib ; compute zb = H2(cInputib);

11 else
12 reject this entry;
13 end
14 end
15 for d = 1; d ≤ N; d + + do
16 initiate σjd

= ∅, num.H1(skjd
) = 0, /* num.H1(skjd

) is the number of H1(skjd
); */;

obtain statusjdβ from infojd
β ; /* C = H1(skjd

), D = H2(mjd
, skjd

), E = skjd
, and

F = mjd
; */

17 parse oInputjd = C||D||E||F ;

18 if statusjdβ = (C,⊥) ∨ (C,−) then
19 reject this entry;
20 else
21 if statusjdβ = (C, +) then
22 retrieve cInputjd = C||D′ from L;
23 else
24 if D = D′ ∧H1(E) = C ∧H2(F, E) = D then
25 num.H1(skjd

) + +;
26 else
27 reject this entry;
28 end
29 end
30 if num.H1(skjd

) == 1 then
31 set statusjdβ+1 = (C, −);
32 set σjd

= σjd
∪ oInputjd ;

33 compute zd+M = H3(oInputjd);
34 else
35 reject this entry;
36 end
37 end
38 end
39 compute a block β by using the Blc algorithm: (ai, hbhβ)← Blc(z1, ..., zi, ..., zM+N);
40 for b = 1; b ≤M; b + + do
41 set σib

= σib
∪ zb ∪ ab ∪ hbhβ ; L=L∪σib

;
42 end
43 for d = 1; d ≤ N; d + + do
44 set σjd

= σjd
∪ zd+M ∪ ad+M ∪ hbhβ ; L=L∪σjd

;
45 end

– Setup(1λ)→ (pp, info0, L): The blockchain nodes run this algorithm Setup
to initiate the system. Given a security parameter λ, choose three hash func-
tions H1, H2 and H3, initiate the system public parameters pp, the beginning
epoch as epoch 0, the associated system information info0 and the database
L to be empty.

12 Y. Wang et al.

. .

Signer

consensus nodes

......Block

 .

Block

 .

 .

 .

.
.

Fig. 3. The signature generation protocol from the signer’s view

– Sign(β, infoβ , (ski,mi)i∈[Q], Lβ) → (σi, Lβ+1, infoβ+1): From a signer’s
view, the process of this protocol can be seen in Fig. 3. From s ledger’s
view, the process of this protocol can be shown in Fig. 4. All steps are also
arranged in protocol 1.
• Committing: For user ib (ib ∈ [M]), the commitment input is computed

as cInputib = A||B, A = H1(skib) and B = H2(mib , skib). Then the user
sends the cInputib to the blockchain nodes. The blockchain nodes need to
check the validity of A based on infoβ . If the check result is positive, the
blockchain nodes add cInputib to the corresponding signer’s commitment
comib recorded by the blockchain by time-stamping the input cInputib .
Note that comib = (cInputib , zb, ab, hbhβ), where zb is a leaf value, ab
is the authentication path, hbhβ is the hash value of the block header.
Otherwise, reject it.

• Opening: To make a signature publicly verifiable, user jd (jd ∈ [N]) re-
leases oInputjd = (cInputjd ,mjd , skjd) = (H1(skjd)||H2(mjd , skjd)||skjd ||
mjd) = C||D||E||F on the blockchain. Upon receiving the oInputjd , the
blockchain nodes use C to retrieve cInputjd . Then the blockchain nodes
check the validity of oInputjd . If the check is positive, the blockchain
nodes add oInputjd to the corresponding signer’s opened commitment
˜comjd recorded by the blockchain by time-stamping the oInputjd . Note

that ˜comjd = (oInputjd , z̃d, ãd, hbhβ), where z̃d is a leaf value, ãd is the
authentication path, hbhβ is the hash value of the block header. Other-
wise, reject it.

For a signer i, the signature σi = (cInputi, comi, oInputi, ˜comi) (β < β′).
The public key for the signer i is pki = (ab, hbhβ , ãb, hbhβ′). Finally, the
blockchain outputs the updated database Lβ+1 and information list infoβ+1.

– Verify(σi, infoi) → 0/1: A verifier runs the algorithm Verify to verify a
signature. The verifier works as follows:
• Parses σi as (comi, ˜comi), where β′ < β.
• Computes z′i = H2(cInputi) and checks whether z′i equals zi or not.

BAHS: a Blockchain-Aided Hash-based Signature Scheme 13

• Use zi and ai to recompute the Merkle tree root in the block β′, and
then compute hbh′β′ . Finally checks whether hbh′β′ equals hbhβ′ or not.

• Computes z′i = H3(oInputi) and checks whether z̃′i equals z̃i or not.
• Use ãi, z̃i to recompute the Merkle tree root and hbh

′

β . Checks whether
hbh

′

β equals hbhβ or not.
• If all previous checks pass, outputs 1 for “accept”. Otherwise, outputs 0

for “reject”.

.

Signer

consensus nodes

......

.

Signer

.

Block Block

 . .

Block

 . . .

Fig. 4. The signature generation protocol from the blockchain’s view

5 Security Analysis

Following the security model defined in Section 3.3, we need to clarify three
random oracles H1, H2 and H3 for hash functions H1, H2 and H3, respectively.
Details of these oracles are similar to the definition in Section 3.3. Due to the
page limit, we omit details here. In the unforgeability experiment, these three
oracles can not only be accessed by the adversary but also internally be called
by the simulation of the AddHU and Update oracles. The oracle AddHU
includes the process of Committing while Update includes the process of Sign.

Because the simulator of each RO Hi, i ∈ {1, 2, 3}, can decide the RO answers
independently of the history of previous queries, hash functions meet the history-
free reduction requirements. These three ROs can be modeled as QROs.

Theorem 1. The BAHS scheme is correct, assuming the hash function H1 is
collision-resistant and the blockchain follows the BAHS scheme description cor-
rectly.

Proof. On one hand, if a signer A is corrupt, there will be two cases. Firstly,
he can predict the honest signer’s signing key skh and the corresponding com-
mitment is successfully submitted with the same H1(skh) in a previous session.

14 Y. Wang et al.

However skh must be selected at random, and the probability of A picking the
same signing key, i.e., ski = skh, is negligible in the security parameter. Except
this, the only probability is that skh ̸= ski but H1(skh) = H1(ski) – when this
happens, the collision of the hash function H1 is found, which contradicts to the
assumption that the function H1 is collision-resistant. Therefore, the probability
of this case happening is negligible. Secondly, there is another signer i created
by A with ski = skh and this signer i is revoked when h is valid. If the adversary
attempts to add i with ski = skh after the signer h, it will be rejected by the
blockchain. Therefore, the adversary’s attempt will always fail.

On the other hand, based on statushβ = (H1(skh), +), we can get that at
epoch β, the honest signer h has been submitted and is allowed to sign. Following
the BAHS scheme description, the signature on the blockchain for this valid
signer h can pass the Verify algorithm.

Theorem 2. The BAHS scheme is unforgeable if the hash function H1 holds
properties of one-wayness and collision-resistance, the hash functions H2 and
H3 hold properties of collision-resistance, and the blockchain follows the BAHS
scheme descriptions correctly and holds integrity.

Proof. The adversary wins the unforgeability experiment in any one of the two
scenarios: (1) The adversary generates (σh, infoh) for an honest signer h, where
comh and σh are respectively a valid signer commitment and signature for m at
epoch β, statushβ = (H1(skh), +). (2) The adversary generates (σi, infoi) for a
corrupted signer i, who is controlled by the adversary, and the adversary does
not get help from the blockchain. The proof for unforgeability is as follows.

In scenario (1), The adversary outputs (σh, infoh), which meets following
conditions:

– statushβ = (H1(skh), +) ∧ Verify(infoh, σh) = 1.
– (cInputh, m) /∈ iS ∨ (σh, m) /∈ cS.

This may happen in any one of the following cases:

1. The honest signer h generated an input to the commitment cInputh and
H1(skh), which have been recorded on the blockchain. If the adversary wins
the game, there are some sub-cases described as follows:
– Case 1. Given certain record H1(skh) on the blockchain, the adver-

sary gets the right signing key skh. Using skh and a different mes-
sage m′, the adversary can create a valid commitment input cInput′ =
H1(skh)||H2(m

′, skh) by querying the oracle H2. Then the commitment
input cInput′ can pass the blockchain’s check and the algorithm Verify.
This means the one-wayness of the hash function H1 is broken which is
contradicted with the assumption that the hash function H1 is one-way.
Therefore, the probability of this sub-case happening is negligible.

– Case 2. The adversary can use a different pair of sk′ and m′ to query or-
acles H1 and H2 to get H1(skh) = H1(sk

′), H2(mh, skh) = H2(m
′, sk′).

Then the adversary can forge a valid commitment input and open it on

BAHS: a Blockchain-Aided Hash-based Signature Scheme 15

the blockchain before the honest signer h opens it. This means two sce-
narios happened at the same time: (1) the challenger can find a collision
sk′ and skh in the oracle H1, which contradicts the assumption that the
function H1 is collision-resistant; (2) the challenger can find a collision
m′||sk′ and mh||skh in the oracle H2, which contradicts to the assump-
tion that the function H2 is collision-resistant; Therefore, the probability
of this case happened is negligible.

2. The honest signer h has send the input to the opened commitment oInputh =
(cInputh, mh, skh) to the blockchain. In this case, the adversary can get
the signing key skh directly. Using the signing key skh, the adversary can
use a different message m′ to generate the commitment input cInput′ =
H1(skh)||H2(m

′, skh), which can be submitted to the blockchain. However,
this is contradicted with the assumption the blockchain follows the scheme
description. Therefore, the probability of this case happening is negligible.

3. During computing the Merkle tree, the adversary can have access to the
blockchain to change some input value of hash function H2. For example,
the adversary changes certain leaf values zh to be z′. If the final record on
(including the authentication path ai) the blockchain can keep the same,
which means the challenger finds a collision for the hash function H2. This
is contradicted to the assumption the hash function H2 is collision-resistant.
Or the final record on the blockchain can be changed. This is contradicted
to the assumption that the blockchain is trusted. Therefore, the probability
of this case happening is negligible.

In scenario (2) i ̸= h, the adversary outputs (σi, infoi) and there are some cases,
which meet the following conditions:

– Verify(σi, infoi) = 1
– (σi, m) /∈ cS.

This may happen in any one of the following cases:

1. The adversary uses a different signing key ski to query oracles H1 and H2 to
make H1(ski) = H1(skj) and H2(m, ski) = H2(m, skj), then submits the
commitment input cInputj on the blockchain to claim that this commitment
is valid for an uncorrupt signer j. This means the challenger can find a
collision in oracles H1 and H2, which is contradicted to the assumption that
hash functions H1 and H2 are collision-resistant. Therefore, the probability
of this case happening is negligible.

2. The adversary can use a different pair of ski and mi to query oracles H1 and
H2 to get H1(ski) = H1(skj), H2(mi, ski) = H2(mj , skj). Then the adver-
sary can forge a valid commitment input and submit it on the blockchain,
which is considered as a valid commitment input generated by the signer
j. This means two scenarios happened at the same time (1) the challenger
can find a collision ski and skj in the oracle H1, which contradicts to the
assumption that the function H1 is collision-resistant; (2) the challenger can
find a collision mi||ski and mj ||skj in the oracle H2, which contradicts to

16 Y. Wang et al.

the assumption that the function H2 is collision-resistant; Therefore, the
probability of this case happened is negligible.

3. Because the adversary can control a corrupted signer to get the signer’s
signing key ski. The adversary can send a number of commitment inputs
cInputj , j ∈ [1, R] with one signing key ski and different messages mj ,
j ∈ [1, R] to the blockchain in one block. These commitment inputs can be
recorded on the blockchain. Then the adversary can try to open these com-
mitments to the blockchain. However, this is contradicted to the assumption
that one signing key can be used only once. If there is more than one com-
mitment input using the same signing key recorded on the blockchain, all
of these commitment inputs will be rejected. So the probability of this case
happening is negligible.

4. Considering a signer i has submitted the input to the opened commit-
ment (cInputi, mi, ski) to the blockchain, the adversary uses a differ-
ent pair of (m′, sk′) to generate the input to the opened commitment
cInput′i = H1(sk

′)||H2(m
′, sk′) = cInputh to make H1(skh) = H1(sk

′),
H3(H1(sk

′)||H2(m
′, sk′)||m′||sk′) = H3(H1(skh)||H2(mh, skh)||mh||skh). This

means the challenger finds a collision in H1, H2 and H3, which is contra-
dicted to the assumption that hash functions H1, H2 and H3 are all collision-
resistant. Therefore, the probability of this case happening is negligible.

5. During computing the Merkle tree, the adversary can have access to the
blockchain to change some input value of hash function H2. The adversary
changes a certain leaf value zh to be z′. If the final record (including the
authentication path ai) on the blockchain can keep the same, which means
the challenger finds a collision for the hash function H2. This is contradicted
to the assumption the hash function H2 is collision-resistant. Or then the
final record on the blockchain can be changed. This is contradicted to the
assumption that the blockchain is trusted. Therefore, the probability of this
case happening is negligible.

Overall, the BAHS scheme provides unforgeability.

6 Implementations

We have made a prototype implementation, in which we only measure the com-
munication and computational overhead of our commitment scheme rather than
the cost or transaction overhead on the blockchain.
Implementation of a specific blockchain. We implement our BAHS scheme
in Python. Note that the signing time includes the time for the blockchain to
generate the whole Merkle tree in one block and the corresponding hash value of
the block header. The programs were compiled using Pycharm and executed on
a laptop (processor: 2.6GHz, 6-Core, Intel Core i7; Memory: 16GB 2667 MHz)
with the macOS operating system. We set the security level as 256-bit. As shown
in Table 2, J is the number of signers in a block. For simplicity, we assume J

2

signers to submit commitments and the other J
2 signers to open signatures. We

BAHS: a Blockchain-Aided Hash-based Signature Scheme 17

implement two blocks as an example of blockchains. We choose 210,..., 215,...,220
as different parameters for the number of signers, which are larger than that in
Bitcoin. According to Table 2, we can see that the signing time is far less than
15 seconds in Ethereum or 10 minutes in Bitcoin. Our scheme is practical.

Fig. 5. The returned proof from the OriginStamp service

Implementation based on public blockchains. In this implementation,
we want to test performance of the BAHS scheme on known blockchain plat-
forms. Therefore, classic signature algorithms, such as ECDSA, used in ex-
isting blockchain does not influence our implementation. Considering existing
blockchains, we use the platform "OriginStamp" to publish and timestamp
our opened signature, which contains three typical blockchains, i.e., Bitcoin,
Ethereum, and Aion. Due to the page limit, we take the Bitcoin as an example.
We upload data to Bitcoin and each time the web server calculates the Merkle
tree root value and inserts it into a Bitcoin transaction. After the transaction is
committed, the web server returned a proof for verification, which is shown in
Fig. 5. Also, the information on the certificate can be accessed at the website
https://verify.originstamp.com.

Our BAHS scheme is the first blockchain-aided hash-based signature scheme
and it is different from any traditional digital signature schemes, so we do not
compare the BAHS scheme with other signature schemes.

7 Conclusion

In this paper, we propose a new one-time signature scheme, i.e., BAHS, in which
signing keys, commitments and opened commitments are publicly accessible via
a distributed blockchain. The BAHS scheme is much simpler than traditional
signature schemes and other post-quantum signature schemes. We also provide
a formal definition of the security model for the BAHS scheme and security
proof. Finally, we implement this scheme and show its practicality.

18 Y. Wang et al.

Table 2. The implementation results for the signature scheme

Parameters SS(KB)a CIG(ms)b ST(ms) c

J = 210 1.69 5.42 ∗ 10−3 3.38

J = 211 1.81 5.36 ∗ 10−3 5.94

J = 212 1.93 5.79 ∗ 10−3 11.55

J = 213 2.06 6.03 ∗ 10−3 23.15

J = 214 2.19 5.61 ∗ 10−3 53.23

J = 215 2.31 5.26 ∗ 10−3 102.04

J = 216 2.43 2.82 ∗ 10−3 258.52

J = 217 2.55 1.3 ∗ 10−3 499.65

J = 218 2.67 0.68 ∗ 10−3 1123.12

J = 219 2.79 0.32 ∗ 10−3 2131.42

J = 220 2.91 0.16 ∗ 10−3 4337.23
a SS stands for the signature size and KB means kilobytes.
b CIG stands for the commitment input generation time and ms

stands for millisecond.
c ST stands for the signing time and ms stands for millisecond.

Acknowledgments

We thank the European Union’s Horizon research and innovation program for
support under grant agreement numbers: 101069688 (CONNECT), 101070627
(REWIRE), 952697 (ASSURED), 101019645 (SECANT) and 101095634 (EN-
TRUST). These projects are funded by the UK government’s Horizon Europe
guarantee and administered by UKRI. The first author thanks the China Schol-
arship Council (CSC) for providing the research scholarship. We also thank the
anonymous reviewers from ISPEC for their valuable comments.

References

1. ISO/IEC 10118-1. Information technology – Security techniques – Hash functions
– Part 1: General. Standard, (2016).

2. ISO/IEC CD 14888-4.2. Information technology – Security techniques – Digital
signatures with appendix – Part 4: Stateful hash-based mechanisms, (2022).

3. Yakubov A., Shbair W., and Wallbom A. A blockchain-based PKI management
framework. In The First IEEE/IFIP International Workshop on Managing and
Managed by Blockchain (Man2Block) colocated with IEEE/IFIP NOMS, (2018).

4. Georg Becker. Merkle signature schemes, merkle trees and their cryptanalysis.
Ruhr-University Bochum, Tech. Rep, 12:19, (2008).

BAHS: a Blockchain-Aided Hash-based Signature Scheme 19

5. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,
and Mark Zhandry. Random oracles in a quantum world. In ASIACRYPT, pages
41–69, (2011).

6. Dario Catalano and Dario Fiore. Vector commitments and their applications. In
PKC, pages 55–72, (2013).

7. Cozzo D. and Smart N. P. Sharing the luov: threshold post-quantum signatures.
In Cryptography and Coding: IMACC, pages 128–153, (2019).

8. Johnson D., Menezes A., and Vanstone S. The elliptic curve digital signature
algorithm (ecdsa). International journal of information security, 1:36–63, (2001).

9. McGrew D., Kampanakis P., Fluhrer S., Gazdag S. L., Butin D., and Buchmann
J. State management for hash-based signatures. In SSR, pages 244–260, (2016).

10. Ivan Damgård. Commitment schemes and zero-knowledge protocols. In School
organized by the European Educational Forum, pages 63–86, (1998).

11. Bernstein D.J. and Hülsing A. The SPHINCS+ signature framework. In ACM
CCS, pages 2129–2146, (2019).

12. Bernstein D.J., Hopwood D., and Hülsing A. SPHINCS: practical stateless hash-
based signatures. In EUROCRYPT, pages 368–397, (2015).

13. Adja Y. C. E., Hammi B., Ahmed S., and Zeadally S. A blockchain-based certificate
revocation management and status verification system. Computers & Security,
104:102209, (2021).

14. Bansarkhani R. E., Mohamed M. S. E., and Petzoldt A. MQSAS-a multivariate
sequential aggregate signature scheme. In Information Security, pages 426–439,
(2016).

15. Bruinderink L. G. and Hülsing A. “Oops, i did it again”–security of one-time
signatures under two-message attacks. In SAC, pages 299–322, (2017).

16. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In STOC, pages 197–206, (2008).

17. Stephen Holmes. Impact of post-quantum signatures on blockchain and DLT sys-
tems. In DLT, (2023).

18. Bootle J., Cerulli A., Chaidos P., Ghadafi E., and Groth J. Foundations of fully
dynamic group signatures. Journal of Cryptology, 33(4):1822–1870, (2020).

19. Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In ACM CCS,
pages 28–36, (1999).

20. Ducas L., Lepoint T., Lyubashevsky V., Schwabe P., Seiler G., and Stehlé D.
Crystals–dilithium: Digital signatures from module lattices. (2018).

21. Lamport L. : Constructing digital signatures from a one way function. (1979).
22. Bellare M. and Rogaway P. Random oracles are practical: A paradigm for designing

efficient protocols. In ACM CCS, (1993).
23. Laurane Marco, Abdullah Talayhan, and Serge Vaudenay. Making classical (thresh-

old) signatures post-quantum for single use on a public ledger. Cryptology ePrint
Archive, (2023/420).

24. Li Q. and Cao G. Multicast authentication in the smart grid with one-time signa-
ture. IEEE Transactions on Smart Grid, 2(4):686–696, (2011).

25. Gennaro R., Goldfeder S., and Narayanan A. Threshold-optimal DSA/ECDSA
signatures and an application to bitcoin wallet security. In ACNS, pages 156–174,
(2016).

26. Chang S.M., Shieh S., Lin W. W., and Hsieh C.M. An efficient broadcast authen-
tication scheme in wireless sensor networks. In ASIACCS, pages 311–320, (2006).

20 Y. Wang et al.

Appendix

A Oracles for the unforgeability

AddHU()

– If K = k(λ) return ⊥.
– K = K + 1.
– If h =⊥: N = N + 1; h = N + 1.
– comh ← Committing(skh, m).
– If cInputh ̸=⊥:
• βAdd = βCurrent.
• K = k(λ).
• Set statushβCurrent = (cInputh, +) and let L = L ∪ comh.

– Return (skh, cInputh).

AddCU(i, cInputi)

– If i /∈ [N + 1] ∨ i = h, return ⊥.
– If statusiβCurrent ̸= (cInputi, ⊥), return ⊥.
– If i = N + 1: N = N + 1.
– Set statusiβCurrent = (cInputi, +) and let L = L ∪ cInputi.

Revoke(R)

– If R ̸⊆ [N] return ⊥.
– βCurrent = βCurrent + 1.
– ∀i ∈ R, set statusiβCurrent = (cInputi, −).
– If h ∈ R and βRevoke =∞ set βRevoke = βCurrent.

Update (β, infoβ , L, ..., cInputib/oInputjd , ...)

– If inputs=(β, infoβ , L, ..., cInputi, ...)
• (σib , Lβ+1, infoβ+1)← Committing(β, infoβ , L, ..., cInputib , ...).
• Return σi.

– If inputs=(β, infoβ , L, ..., oInputjd , ...)
• (σjd , Lβ+1, infoβ+1)← Opening(β, infoβ , L, ..., oInputjd , ...).
• Return σjd

Fig. 6. Oracles for the unforgeability

