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Abstract

IoT technology has been developing rapidly, while at the same time, notorious IoT malware
such as Mirai is a severe and inherent threat. We believe it is essential to consider systems that
enable us to remotely control infected devices in order to prevent or limit malicious behaviors
of infected devices. In this paper, we design a promising candidate for such remote-control
systems, called IoT-REX (REmote-Control System for IoT devices). IoT-REX allows a systems
manager to designate an arbitrary subset of all IoT devices in the system, and every device can
confirm whether or not the device itself was designated; if so, the device executes a command
given by the systems manager. Towards realizing IoT-REX, we introduce a novel cryptographic
primitive called centralized multi-designated verifier signatures (CMDVS). Although CMDVS
works under a restricted condition compared to conventional MDVS, it is sufficient for realizing
IoT-REX. We provide an efficient CMDVS construction from any approximate membership
query structures and digital signatures, yielding compact communication sizes and efficient
verification procedures for IoT-REX. We then discuss the feasibility of IoT-REX through the
cryptographic implementation of the CMDVS construction on a Raspberry Pi. Our promising
results demonstrate that the CMDVS construction can compress communication size to about
30% compared to a trivial construction, and thus its resulting IoT-REX becomes three times
faster than a trivial construction over typical low-power wide area networks with an IoT device.

1 Introduction

Internet-of-Things technologies have been spreading rapidly and enriching our lives. According to
a Cisco report [1], tens of billions of IoT devices are expected to be deployed over the next few
years. On the other hand, along with the rapid development of IoT technologies, we have to focus
our efforts on cybersecurity, though there are several constraints on that in the context of IoT
devices. For example, most IoT devices, unfortunately, do little to protect the data stored inside,
mostly likely due to the development cost and restricted resources. This has a profound effect on
the real world; for instance, a notorious IoT malware ‘Mirai’ infected many IoT devices, turning
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them into botnets. The botnets infected nearly 65,000 IoT devices in its first 20 hours [3]. The
widespread outbreak of Mirai had a considerable impact on the world. As described above, most
IoT devices do not have sufficient resources to implement and deploy security functions for each
specific security threat [6]. Hence, there seem to be no versatile solutions [5].

One possible approach is to design cryptographic schemes that can be used in cooperation with
existing methods such as controlling [46, 49, 51] or surveillance [27, 33, 38] of individual devices.
Cryptographic schemes can provide provable security that theoretically guarantees the security of
a cryptographic protocol through mathematical proofs.

In this paper, we present a novel system based on cryptography, IoT-REX (REmote-Control Sys-
tem for IoT devices), which has an arbitrary subset of all IoT devices and executes any commands
remotely and securely. The most likely scenario is to disable compromised IoT devices, e.g., those
infected with malware. IoT-REX allows such devices to be brought to a halt as soon as possible. It
is expected to, for example, stop and reboot malware-infected devices all at once, whereby a sender
can communicate with many devices simultaneously with a single piece of data.

We note that the efficient design of IoT-REX is non-trivial. One might think IoT-REX can
be realized with a standard digital signature, regarding an arbitrary subset of devices’ identifiers
as a single message and signing it. However, it is insufficient because the communication size is
linear in the size of the subset. Since IoT devices are resource-constrained [20], their battery life
is also limited. Even if the latency on a CPU is small enough, the communication should be used
sparingly to avoid consuming energy too quickly as well [24]. Namely, we need to achieve the
small communication size as well as the functionality to choose an arbitrary subset of receivers.
As an advanced cryptographic approach, broadcast authentication [36] might be employed; it can
broadcast a single piece of data to many receivers, i.e., IoT devices, with data authenticity for
controlling them. However, existing broadcast authentication schemes [9, 35, 36, 39, 41, 44] except
for a recent work [49] cannot support the functionality that a sender chooses an arbitrary subset of
receivers. Though the only exception [23], i.e., the broadcast authentication scheme that supports
such functionality, may be applied to IoT-REX, it still has the major drawback of communication
sizes since it just combines individual authenticators for all designated devices.

To this end, we propose a novel cryptographic scheme, centralized multi-designated verifier sig-
natures (CMDVS), as a core primitive for IoT-REX. CMDVS is an extension of multi-designated
verifier digital signature schemes [12, 25, 26, 52]. Unlike conventional schemes, anyone can be both
a signer and a verifier, while entities have completely different roles in CMDVS; there is only one
sender and many verifiers. Although CMDVS works under more restricted conditions than conven-
tional MDVS, it can be constructed efficiently and is sufficient for realizing IoT-REX. We define the
security of CMDVS formally and then propose an efficient CMDVS construction from any approxi-
mate membership query (AMQ) structure and digital signatures, which yields an efficient design for
IoT-REX. The proposed construction is provably secure. Note that we show CMDVS provides more
efficient communication sizes than the two trivial approaches described in the previous paragraph.

We also discuss the feasibility of IoT-REX for IoT devices through the implementation of
the proposed CMDVS construction with EdDSA [4] and vacuum filters [48], which is one of
the efficient AMQ structures. We then demonstrate that the proposed CMDVS construction
can compress communication size to about 30% compared to the trivial approach with stan-
dard digital signatures. (Hereafter, we call this approach trivial construction.) We also show
that our scheme can also compress communication size to about 4% compared to the broadcast-
authentication-based approach [49], which is simply called broadcast authentication hereafter. Our
promising results also show that, by virtue of the compression of the communication size, IoT-REX
is three times faster than the trivial construction and 25 times faster than the broadcast au-
thentication over typical low-power wide area networks with a Raspberry Pi3 as an IoT device.
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We also evaluate the communication overheads and power consumption for low-power wide area
networks. We have released our source code for reproducibility and subsequent work (https:
//github.com/naotoyanai/fiilter-signature_ABA).

To sum up, our primary goal is to design IoT-REX, and we make the following technical contri-
butions:

• We propose CMDVS as a novel cryptographic primitive to instantiate IoT-REX. We formally
define and prove the security of the proposed construction.

• We give an efficient instantiation of a CMDVS scheme from the (fine-tuned) Bloom filter. We
provide theoretical performance analysis, and show our CMDVS instantiation is three times
more compact than the trivial construction.

• Through an implementation, we experimentally demonstrate that the proposed CMDVS con-
struction can compress communication size to about 30% compared to the trivial construction
and 4% compared to the broadcast authentication. We have released our code via GitHub.

• We discuss the feasibility of IoT-REX, including the communication overheads for low-power
wide area networks and the power consumption.

2 IoT-REX: REmote-Control System for IoT Devices

2.1 System Setting

Suppose a large, simple system called IoT-REX (REmote-Control System for IoT devices) among a
systems manager and many IoT devices such as sensors and surveillance cameras below.

IoT-REX: An Overview. There are a systems manager and a number of IoT devices. For some
reason (e.g., based on data from outside sources such as device owner’s request and information on
vulnerable devices), the systems manager generates and broadcasts authenticated information in
order to make only designated IoT devices execute a command cmd remotely and securely, while
the devices themselves can detect a forgery of the authenticated information that aims to change
the designated-device set and/or the command.

Expected Applications. We believe there are various applications of IoT-REX. For example,
it enables one to put only designated devices to sleep, e.g., in order to extend their operational
lives. At the same time, it prevents an adversary from forging the authenticated information on
the ‘sleep’ command and which devices are designated. Besides, let us explain another important
application: the IoT devices usually communicate with each other via the Internet and could be
infected with malware. As explained in the introduction, it seems difficult to completely eliminate
the chance of devices being infected with malware, and IoT malware spreads rapidly between IoT
devices once the initial infection occurs. Therefore, IoT-REX can bring infected devices to a halt
as soon as possible in order to prevent or limit malicious behavior by said devices (e.g., DDoS
attacks), rather than preventing the initial infection.

2.2 System Model

Based on the above discussion, we formally define IoT-REX as a protocol among the following
entities: a device owner O, a systems manager SM, and IoT devices D. Let I be a set of possible
identifiers in the system, and IAct be an identifier set of activated devices, i.e., IoT devices taking
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part in the system. We denote an identifier set of devices designated by SM so that they execute
a command cmd by IDsg. We have IDsg ⊂ IAct ⊂ I.

System Overview. Suppose that the device owner O manages many IoT devices {Did}id∈IAct .
Note that O can dynamically add and remove IoT devices. Let us explain the protocol overview as
follows.

1○ O sends SM a request to have an arbitrary subset (i.e., IDsg) of all devices execute a command
cmd.

2○ SM generates an authenticated command ĉmd, which is an authenticated version of cmd and
contains the information on the designated devices IDsg, and broadcasts it to all devices.

3○ All IoT devices {Did}id∈IAct (including non-designated ones) receive ĉmd and check its validity.

If ĉmd is not valid, the devices reject it and terminate the process.

4○ If an IoT device Did confirms that the authenticated command ĉmd is valid and directed at
the device, Did executes cmd. Otherwise, i.e., if ĉmd is valid but does not designate Did, the
device does nothing and terminates the process.

2.3 Assumptions and Requirements

Adversarial Model and Assumptions. Suppose that the systems manager SM broadcasts an
authenticated command ĉmd to all devices {Did}id∈IAct . We assume an adversary A can eavesdrop,
insert, delay, and modify all the transmitted information. We also assume that A’s main purpose
is to maliciously modify authenticated commands so that some designated devices do not execute
cmd and/or some non-designated devices execute cmd. More formally, we assume that A mainly

aims to modify ĉmd in order to change a pair of (cmd, IDsg) to a different pair (cmd′, I ′Dsg) in order
to accomplish any of the goals below:

(a) At least one designated device Did for id ∈ IDsg does not execute cmd as a regular process.

(b) At least one designated device Did for id ∈ IDsg executes cmd′ ( ̸= cmd) as a regular process.

(c) At least one non-designated device Did for id ∈ I ′Dsg \ IDsg executes cmd′, which might be the
same as cmd, as a regular process.

Note that the above goals include that A tries to impersonate the systems manager SM and create
new (forged) authenticated commands. However, we assume A is not capable of forging any CMDVS

signature, which is a core element of authenticated commands ĉmd, according to Def. 2, which will
be defined later.

For simplicity, we assume that all devices receive the same information; if authenticated com-
mands are modified, all devices receive the modified ones. We also note that preventing attacks
in the physical layer is out of the scope, i.e., jamming. It can be prevented by existing techniques
such as the spread spectrum [30].

Requirements. Following the discussion in the introduction and our system goal, the secure
system for remotely controlling IoT devices, IoT-REX, should possess the following four properties.

• Completeness: Only designated devices {Did}id∈IDsg
execute a command cmd unless the cor-

responding authenticated command ĉmd is externally modified. In other words, any non-
designated device Did, where id ∈ IAct \ IDsg, never executes cmd as long as it receives ĉmd as
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it is. The system might have allowable errors; a very small percentage of devices might not
work as expected. This error seems likely in most large-scale applications.

• Integrity : If an authenticated command ĉmd is externally modified, any device can detect it
and reject ĉmd.

• Scalablity : The system allows a large number of IoT devices, e.g., up to a million. In par-
ticular, the size of authenticated commands should be small, i.e., it does not depend on the
number of designated devices linearly. Ideally, it should be independent of the number of
designated devices in the system.

• Light weight : The devices’ resources might be poor. Thus, the verification process executed
by the devices should be efficient enough that, ideally, even microcomputers such as an ARM
Cortex-M3 can run the process.

The first two requirements—completeness and integrity—are the fundamental properties to have
IoT-REX work well in practice. The last two requirements—scalability and light weight—are also
important properties for IoT-REX since we focus on various IoT devices. including microcomputers.
Indeed, a trivial system can be constructed by an arbitrary digital signature or MAC: SM just sends
each designated IoT device a command cmd with its signature/MAC. This trivial construction
requires the O(d · κ) communication size, where d is the number of designated devices and κ is
a security parameter, whereas its verification process is lightweight since it requires only a single
signature/MAC verification. Hence, achieving both scalability and lightweight is another important
goal for IoT-REX.

3 Centralized Multi-Designated Verifier Signatures

We introduce centralized MDVS (CMDVS), which is a core cryptographic primitive for IoT-REX.
Unlike existing MDVS schemes [12, 25], in CMDVS, we consider a situation where there are only
one signer and multiple verifiers. Note that CMDVS is not a special case of MDVS; there are
multiple users who are potential signers and/or verifiers in MDVS.

Notations. For any natural numbers a, b ∈ N s.t. a ≤ b, {a, . . . , b} is denoted by [a, b]. In
particular, if a = 1, we denote [b] := {1, . . . , b}. For any real numbers a, b ∈ R s.t. a ≤ b, let
(a, b] be a half-open interval. Concatenation is denoted by ∥. For a finite set X , we denote by
|X | the cardinality of X . For any algorithm A, out ← A(in) means that A takes in as input and
outputs out. Throughout the paper, we denote by κ a security parameter and consider probabilistic
polynomial-time algorithms (PPTAs). We say a function negl(·) is negligible if for any polynomial
poly(·), there exists some constant κ0 ∈ N such that negl(κ) < 1/poly(κ) for all κ ≥ κ0. In security
games, a flag flag, which indicates an adversary’s winning condition, is initialized as zero.

3.1 Syntax

First of all, a signer runs Setup to get a public parameter pp and a signing key sk. The signer can
run KeyGen with (pp, sk) to generate a verification key vkid for any id ∈ I. Let V be a verifier set,
i.e., a set of identities whose key pairs have been generated by KeyGen. To create a signature σ so
that only a designated-verifier set Dv ⊂ V accepts it, the signer executes Sign with sk, Dv, and a
message m. Each verifier can check the validity of (m, σ) by Vrfy with pp and vkid if the verifier
was designated by the signer, i.e., id ∈ Dv. In other words, for any non-designated verifier id /∈ Dv,
Vrfy with (pp, vkid) outputs ⊥ even if the pair (m, σ) is a valid one.
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CMDVS Π = (Setup,KeyGen,Sign,Vrfy) for an identity set I is defined as follows.

– Setup(1κ)→ (pp, sk): a probabilistic algorithm for setup. It takes a security parameter 1κ as
input, and outputs a public parameter pp and a signing key sk. It initializes a verifier set V.

– KeyGen(pp, sk, id) → vkid: an algorithm for verification-key generation. It takes pp, sk, an
identity id ∈ I as input, and outputs a verification key vkid for id. It also updates V := V∪{id}.

– Sign(sk,Dv,m, len)→ σ / ⊥: a signing algorithm. It takes sk, a designated-verifier set Dv ⊂ V,
a message m ∈ M, and the maximum length of a signature len as input, and outputs the
signature σ for Dv or ⊥, which indicates “failure of signature generation.”

– Vrfy(pp, vkid,m, σ) → ⊤ / ⊥: a deterministic algorithm for verification. It takes pp, vkid, m
and σ as input, and outputs ⊤ indicating “accept” or ⊥ indicating “reject.”

Remark 1 (On the Maximum Length len of Signatures). CMDVS allows a signer to specify the
maximum length len when generating the corresponding signature since we aim to design IoT-REX
so that it is compatible with various environments, including wireless ones, which often restricts
bandwidth. The length specification feature enables us to generate signatures so that they fit in
the channel’s bandwidth. Indeed, although a trivial construction in Section 4.2 produces signatures
whose length depends on the number of designated verifiers, the proposed generic construction in
Section 4.3 allows flexible parameter settings, i.e., a signer first fixes len and then chooses other
parameters (see also Remark 4).

3.2 Correctness and Security

We introduce the correctness property and security notions for CMDVS.

Oracles. We consider the following oracles. Let Listvk and Q be an array and a set, respectively,
and they are initialized as empty ones.

• Key-generation oracle Okg(pp, sk, ·): For any id ∈ I, it runs KeyGen(pp, sk, id) to get vkid. It
adds id and vkid to V and Listvk[id], respectively, and returns vkid.

• Signing oracle Os(sk, ·): For any (Dv,m, len) ∈ 2V ×M×N, it returns Sign(sk,Dv,m, len). It
adds (Dv,m) to Q if Sign(sk,Dv,m, len) ̸= ⊥.

Remark 2 (On Provable Anonymity). An adversary obtains all verification keys via the above
key-generation oracle, i.e., all verification keys are public. Namely, unlike ordinary MDVS, we
consider security against unbounded collusion of verifiers. In this setting, (provable) anonymity of
designated verifiers [12], which is an additional security notion for MDVS, cannot be achieved in
principle since the verification algorithm works with only public information. It might be possible
by restricting the range of verification keys that the adversary can get, though it would be expected
to make CMDVS less efficient.

Correctness. The correctness property guarantees that each verifier correctly obtains the output
of Vrfy algorithm unless signatures are maliciously modified.

Definition 1 (Correctness). Let Π be a CMDVS scheme. Π is said to meet correctness if for any
m ∈M, for any V ⊂ I such that |V| = poly(κ), any Dv ⊂ I, and for any id ∈ V, it holds that{

Pr [Vrfy(pp, vkid,m, σ)→ true] ≥ 1− negl(κ) if id ∈ Dv,
Pr [Vrfy(pp, vkid,m, σ)→ false] ≥ 1− negl(κ) if id ∈ V \ Dv,

where (pp, sk)← Setup(1κ), vkid ← KeyGen(pp, sk, id) for all id ∈ V, and σ (̸= ⊥)← Sign(sk,Dv,m, len).

6



Experiment: ExpUFΠ,A(κ)

1: (pp, sk)← Setup(1κ)
2: (D⋆

v,m
⋆, σ⋆)← AOkg,Os(1κ, pp)

3: if (D⋆
v,m

⋆) /∈ Q then
4: if ∃id⋆ ∈ D⋆

v s.t. Vrfy(pp, vkid⋆ ,m
⋆, σ⋆) →

⊤ then
5: flag := 1
6: return flag

Figure 1: The unforgeability game for
CMDVS.

Experiment: ExpConsΠ,A (κ)

1: (pp, sk)← Setup(1κ)
2: (D⋆

v,m
⋆, σ⋆)← AOkg,Os(1κ, pp)

3: if ∃id ∈ D⋆
v s.t. Vrfy(pp, vkid,m

⋆, σ⋆) → ⊤
then

4: if ∃id⋆ ∈ D⋆
v s.t. Vrfy(pp, vkid⋆ ,m

⋆, σ⋆)→ ⊥
then

5: flag := 1
6: return flag

Figure 2: The consistency game for CMDVS.

Remark 3 (On Designated-Verifier Sets). As can be seen in Def. 1, a designated-verifier set Dv

need not necessarily be a subset of the verification set V. This means that the signer can designate
identities before the corresponding verification keys are generated. Indeed, security definitions
below do not restrict the range of a designated-verifier set D⋆

v chosen by an adversary.

Unforgeability. We define unforgeability as a standard security notion for CMDVS. Intuitively,
unforgeability guarantees that no adversary can (maliciously) modify a signature for D⋆

v ⊂ V so
that at least one non-designated verifier id ∈ V \ D⋆

v accepts it. Specifically, we consider a security
game, given in Fig. 1, against an adversary A, and let AdvUFΠ,A(κ) := Pr[ExpUFΠ,A(κ) = 1] be A’s
advantage in the game.

Definition 2 (Unforgeability). Let Π be a CMDVS scheme. Π is said to meet unforgeability if for
any sufficiently large κ ∈ N and any PPTA A, it holds AdvUFΠ,A(κ) < negl(κ).

Consistency. We consider consistency, which was originally introduced by Damg̊ard et al. [12]
as a security notion for ordinary MDVS. Roughly speaking, consistency guarantees that if at least
one designated verifier accepts a signature, then all others also do so. This notion is important in
our setting, i.e., remote-control systems for IoT devices, for several possible reasons: for example,
it seems difficult to collect the acknowledgment messages from all IoT devices; or, there might be
only downstream communication from the systems manager to IoT devices. Therefore, it seems
hard to check which designated verifiers accepted a signature (without being maliciously modified).
Consistency allows the signer to just check a verification result of a specific designated verifier in
order to confirm all verifiers accept the signature.1

Specifically, we consider a security game, given in Fig. 2, against an adversary A, and let
AdvConsΠ,A (κ) := Pr[ExpConsΠ,A (κ) = 1] be A’s advantage in the game.

Definition 3 (Consistency). Let Π be a CMDVS scheme. Π is said to meet consistency if for any
sufficiently large κ ∈ N and any PPTA A, it holds AdvConsΠ,A (κ) < negl(κ).

4 CMDVS Constructions

4.1 Building Blocks

Digital Signatures. A digital signature Πds = (SigGen,SigSign,SigVer) is defined as follows.

1We assume all verifiers (including non-designated ones) receive the same data regardless of whether it is modified.
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Experiment: ExpCMA
Πds,A(κ)

1: (sigk, verk)← SigGen(1κ)
2: (m⋆, σ⋆)← AOSig(sigk,·)(1κ, verk)
3: if m⋆ /∈Ms ∧ SigVer(verk,m⋆, σ⋆)→ ⊤ then
4: flag := 1
5: return flag

Figure 3: A UF-CMA game for a digital signature Πds. OSig(sigk, ·) is a signing oracle that returns
SigSign(sigk,m) for any query m ∈M and adds m toMs.

– SigGen(1κ) → (sigk, verk): it takes a security parameter κ as input and outputs a pair of a
signing key and verification key (sigk, verk).

– SigSign(sigk,m)→ σ: it takes a signing key sigk and a message m ∈M as input and outputs
a signature σ.

– SigVer(verk, (m, σ)) → ⊤/⊥: it takes a verification key verk and a pair of a message and a
signature (m, σ) as input and outputs ⊤ or ⊥.

Definition 4 (Correctness). Let Πds be a digital signature scheme. For all κ ∈ N all (sigk, verk)←
SigGen(1κ), allm ∈M, SigVer(verk, (m, SigSign(sigk,m))) = ⊤ holds with overwhelming probability.

A standard security notion for digital signatures is defined by a UF-CMA game against a PPTA
A in Fig. 3.

Definition 5 (UF-CMA). Let Πds be a digital signature scheme. Πds is said to be UF-CMA secure if
for sufficiently large κ ∈ N and any PPTA A, it holds AdvCMA

Πds,A(κ) := Pr[ExpCMA
Πds,A(κ) = 1] < negl(κ).

Approximate Membership Query (AMQ) Structures. For an arbitrary set U ⊂ {0, 1}∗, an
AMQ data structure Πamq = (Gen, Insert, Lookup) over U is defined as follows.2

– Gen(U , par) → (T, aux): it takes U and a parameter par as input, and outputs an initial
structure T and auxiliary information aux. The parameter par varies depending on concrete
AMQ structure constructions.

– Insert(T, x, aux) → T′: it takes a data structure T, an element x ∈ U , auxiliary information
aux as input, and outputs an updated structure T′.

– Lookup(T, x, aux) → true/false: it takes a data structure T, an element x ∈ U , auxiliary
information aux as input, and outputs true or false.

An AMQ structure meets the following completeness, while it allows false positives to make the
structure size smaller and its probability can be bounded. Note that false negatives never occur.

Definition 6 (Completeness). Let Πamq be an AMQ sturcture over U . For any par, any (T0, aux)←
Gen(U , par), any S = {x1, . . . , x|S|} ⊂ U , we define T̂ := T|S| as Ti ← Insert(Ti−1, xi, aux) for

i ∈ [|S|]. Then, for all x ∈ S, it holds Pr[Lookup(T̂, x, aux) = true] = 1.
2Although there are various AMQ structures supporting deletion operations, we do not consider them since we do

not require deletion operations for our schemes.
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Definition 7 (Bounded False-Positive Probability). Let Πamq be an AMQ structure over U , and
suppose that T̂ is generated as in Def. 6 and n := |S|. Then, there exists µn ∈ (0, 1] such that it
holds Pr[Lookup(T̂, x, aux) = true] ≤ µn for any x ∈ U \ S, where the probability is over Gen and
Insert.

AMQ structures mainly aim to compress the description length of S by allowing false positive
errors. Therefore, the size of the structure T̂ should be smaller than the following trivial solutions:
(1) encode each element of S and list them, i.e., |S| · log2 |U| bits; and (2) prepare an |U|-bit string
and set every i-th bit to one if and only if xi ∈ S. Namely, it should hold |T̂| ≤ min{|S|·log2 |U|, |U|}.

There are many instantiations of AMQ structures: the Bloom filter [7] and its variants [22, 34],
cuckoo filter [14], vacuum filter [48], etc. Although the Bloom filter has been theoretically well-
analyzed due to its simple structure, recent constructions (e.g., [14, 48]) are (experimentally) more
efficient in terms of structure sizes. In Section 5, we will give formal description of the Bloom filter.

4.2 Trivial Construction

A digital signature scheme Πds = (SigGen, SigSign,SigVer) can be used to trivially construct a
CMDVS scheme Π = (Setup,KeyGen,Sign,Vrfy) as follows.

– Setup(1κ): It runs (sigk, verk) ← SigGen(1κ) and returns (pp, sk), where pp := verk and
sk := sigk.

– KeyGen(pp, sk, id): It returns vkid := verk.

– Sign(sk,Dv,m, len): It runs σds ← SigSign(sigk,Dv∥m) and sets σ := (Dv, σds). It returns ⊥
if |σ| > len; it returns σ otherwise.

– Vrfy(pp, vkid,m, σ): If id /∈ Dv, it returns⊥. Otherwise, it returns the output of SigVer(verk, (Dv∥m,
σds)).

The above construction clearly meets the correctness, unforgeability, and consistency. We omit
the proof.

Theorem 1. If Πds meets UF-CMA security, the above CMDVS scheme Π meets correctness,
unforgeability, and consistency.

Although the above construction is quite simple, the signature size |σ| is |Dv| · log2 |I|+ |σds|.
Namely, the maximum signature length len must always satisfy len ≥ |Dv| · log2 |I|+ |σds|.

Out construction in the next section realizes smaller signature sizes; in particular, it can flexibly
specify len s.t. len = o(|Dv|) with adjustment for other parameters (see Remark 4 for details).

4.3 Proposed Generic Construction

We show a CMDVS scheme from an AMQ structure and DS scheme. Compared to the trivial
construction, we can succeed in drastically reducing the signature size by allowing a small false-
positive probability, which can be made negligible with appropriate parameter settings.

In the following, we suppose a function Assign : N× I → 2U over U . Roughly speaking, Assign
is a function that uniquely assigns multiple elements in U to an arbitrary identity, and we assume
that for any fixed ℓ ∈ N and for any id, id′ ∈ I, it holds Assign(ℓ, id) ∩ Assign(ℓ, id′) = ∅. Note that
such a function can be realized in the following way: suppose I := {0, 1}γ ,U := {0, 1}γ+⌊log2 ℓ⌋+1,
and for any ℓ and any id ∈ I, we define Assign(ℓ, id) := {β1∥id, β2∥id, . . . , βℓ∥id}, where βi is binary
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representation of i ∈ [ℓ]. Our CMDVS scheme from an AMQ structure Πamq = (Gen, Insert, Lookup)
over U ⊂ {0, 1}∗ and a DS scheme Πds = (SigGen,SigSign,SigVer) as follows.

– Setup(1κ): It arbitrarily chooses ℓ ∈ N, and it returns (pp, sk), where pp := (verk, ℓ) and
sk := (sigk, ℓ).

– KeyGen(pp, sk, id): It returns vkid := Assign(ℓ, id).

– Sign(sk,Dv,m, len): It derives an appropriate parameter par from Dv, m, and len. If par
cannot be derived, it returns ⊥. For every idi ∈ Dv, let Xi = {x(i−1)ℓ+1, . . . , xiℓ} := Assign(ℓ,

idi).
3 It runs (T0, aux) ← Gen(U , par) and for every i ∈ [ℓ|Dv|], it computes T̂ := Tℓ|Dv| as

follows:

Ti ← Insert(Ti−1, xi, aux).

It sets σ := (T̂, aux, σds), where σds ← SigSign(sigk,m∥T̂∥aux). If |σ| > len, it returns ⊥;
otherwise, it returns σ.

– Vrfy(pp, vkid,m, σ): It runs SigVer(verk, (m∥T̂∥aux, σds)). If the output is ⊥, it returns ⊥ and
terminates. For every x ∈ Xid, it returns ⊥ and terminates if Lookup(T̂, x, aux) outputs false.
It returns ⊤ (if all Lookup outputs are true).

The above construction meets the desirable properties below.

Theorem 2. If a DS scheme Πds meets UF-CMA security and an AMQ structure Πamq meets com-
pleteness and bounded false-positive probability such that it holds µℓ|Dv| = 2−O(κ) for all possible
ℓ ∈ N and Dv ⊂ V in the above construction, the above CMDVS scheme Π meets correctness,
unforgeability, and consistency.

Proof. We prove the correctness, unforgeability, and consistency of Π as follows.

Correctness. Roughly speaking, we can prove the correctness property of Π from completeness
and bounded false-positive probability of Πamq and correctness of Πds.

We fix an arbitrary subset V ⊂ I, and let vkid := Assign(ℓ, id) for every id ∈ V. We also fix an
arbitrary subset Dv ⊂ V. 4 For any m ∈ M and any len ∈ N, Sign outputs σ := (T̂, aux, σds). Due
to the correctness property of Πds (Def. 4), it clearly holds that SigVer(verk, (m∥T̂∥aux, σds)) = ⊤.
We then consider the following two cases: id ∈ Dv and id ∈ V \ Dv.

The case of id ∈ Dv. Due to the completeness property of Πamq (Def. 6), for any id ∈ Dv and any
x ∈ Xid, it is obvious that it holds Lookup(T̂, x, aux) = true. Therefore, Vrfy(pp, vkid,m, σ)
always outputs ⊤.

The case of id ∈ V \ Dv. Due to bounded false-positive probability of Πamq (Def. 7), for any id ∈
V \ Dv and any x ∈ Xid, it holds that Pr[Lookup(T̂, x, aux) = true] ≤ µℓ|Dv|. We then have

Pr [Vrfy(pp, vkid,m, σ) = ⊤]

≤
(
µℓ|Dv|

)ℓ
= 2−ℓ·O(κ) = negl(κ),

where negl(κ) is a negligible function.

3Namely,
⋃|Dv|

i=1 Xi = {x1, x2, . . . , xℓ|Dv|}.
4Although Dv ⊂ I is considered in Def. 1, we here consider the case of Dv ⊂ V without loss of generality.
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Unforgeability. Loosely speaking, UF-CMA security of Πds guarantees unforgeability unless (T̂,
aux) = (T̂′, aux′) occurs for distinct Dv,D′

v ⊂ V, where σ := (T̂, aux, σds)← Sign(sk,Dv,m, len) and
σ′ = (T̂′, aux′, σ′

ds) ← Sign(sk,D′
v,m, len). If it occurs, σ, which is a valid signature for (m,Dv), is

also a valid one for (m,D′
v); it breaks unforgeability. The following lemma shows such a situation

occurs with negligible probability.

Lemma 1. Let Π be a CMDVS scheme and Πamq be an AMQ structure with completeness and
bounded false-positive probability such that it holds µℓ|Dv| = 2−O(κ) for any ℓ ∈ N and Dv ⊂ V.
Then, for any m,m′ ∈M, any len, len′ ∈ N, any V ⊂ I, and any distinct Dv,D′

v ⊂ V, it holds

Pr
[
(T̂, aux) = (T̂′, aux′)

]
≤ negl(κ),

where (T̂, aux, σds)← Sign(sk,Dv,m, len) and (T̂′, aux′, σ′
ds)← Sign(sk,Dv,m

′, len′).

Proof of Lemma 1. We assume that for some m,m′ ∈ M, some len, len′ ∈ N, some V ⊂ I, and
some distinct Dv,D′

v ⊂ V, it holds (T̂, aux) = (T̂′, aux′) with non-negligible probability, where (T̂,
aux, σds)← Sign(sk,Dv,m, len) and (T̂′, aux′, σ′

ds)← Sign(sk,Dv,m
′, len′). We show a contradiction.

Since Dv ̸= D′
v, there exists id⋆ ∈ D′

v \ Dv or id⋆ ∈ Dv \ D′
v. Without loss of generality, suppose

id⋆ ∈ D′
v \Dv. Let vkid⋆ = Xid⋆ . By the assumption and the completeness of Πamq, for any x ∈ Xid,

we have Lookup(T̂, x, aux) = Lookup(T̂′, x, aux′) = true. This means that for Dv, a false positive
occurs with non-negligible probability, which contradicts bounded false-positive probability for Dv,
which should be negligible, i.e., µℓ|Dv| ≤ negl(κ).

Thus, we can easily show that if there exists a PPTA A that breaks the unforgeability of Π, there
exists a PPTA F that breaks UF-CMA security of Πds. We omit the proof since it is straightforward.

Consistency. It clearly follows from completeness and bounded false-positive probability of Πamq

and UF-CMA security of Πds. Roughly speaking, Lemma 1, which requires bounded false-positive
probability of Πamq, guarantees that (T̂, aux) is a uniquely determined by a designated-verifier
set Dv. Namely, there exists at most one (T̂, aux) per Dv. UF-CMA security of Πds guarantees
that for any σ = (T̂, aux, σds), (T̂, aux) is correctly generated by the signer as long as σds is valid.
Finally, completeness of Πamq guarantees that all designated verifiers Dv accept correctly-generated
signatures σ.

It completes the proof.

Instantiations. The above construction can be instantiated with any AMQ structures and
digital signatures. After the seminal work of AMQ structures, i.e., the Bloom filter [7], there
are various (heuristically) efficient AMQ structure constructions such as the cuckoo filter [14] and
the vacuum filter [48]. In this paper, we will employ the Bloom filter and the vacuum filter as the
underlying AMQ structures for theoretical performance analysis in Section 5.3 and implementations
in Section 6, respectively.

4.4 System Description

We give a concrete description of IoT-REX with CMDVS Π = (Setup,KeyGen, Sign,Vrfy). We
consider a message spaceM of Π as a command space for IoT-REX.

System Setup. SM runs Setup with an appropriate security parameter κ to get a public parameter
pp and a signing key sk. SM updates a identifier set (or a list) IAct of activated IoT devices.
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Embedding Keys. For any device Did, SM runs KeyGen(pp, sk, id) and obtains vkid. SM then
embeds or sends (pp, vkid) into the device Did.

Sending Requests. O sends SM a request to have an arbitrary subset {Did}id∈IDsg
of activated

IoT devices execute a command cmd ∈M. Namely, the request includes IDsg and cmd. Note that
they can securely communicate with each other using the SSL/TLS.

Broadcast. SM runs Sign(sk, IDsg, cmd, len) to obtain σ, where len may be set depending on
environment, i.e., it might be set at the beginning of the system or every broadcast, etc. SM then
broadcasts an authenticated command ĉmd := (cmd, σ) to all devices.

Command Verification. Suppose every Did receives an authenticated command ĉmd
′
and parse

ĉmd
′
= (cmd′, σ′). It then runs Vrfy(pp, vkid, cmd′, σ′). If it outputs ⊤, then Did confirms that id

was designated and cmd′ is a valid one, and executes cmd′. Otherwise, Did does nothing.

It is obvious that the above system meets completeness and integrity from correctness, unforge-
ability, and consistency of the underlying CMDVS Π. Thanks to the underlying AMQ structures,
our CMDVS construction can achieve constant-size signatures by appropriately setting parameters,
and it also provides efficient verification since it only requires a single signature verification and
ℓ lookup operations. Note that lookup operations are basically lightweight; for example, Bloom
filter’s lookup operation is constructed with only (non-cryptographic) hash functions. Hence, the
above system clearly meets scalability and light weight.

5 Concrete Instantiation

To clarify the effectiveness of our proposed construction, we instantiate the underlying AMQ struc-
ture and show an instantiation of our construction from (an improved variant of) the Bloom filter
and any digital signatures.

5.1 An Improved Variant of Bloom Filter

We describe the Bloom filter employed in our instantiation. Roughly speaking, we employ Kirsch
and Mitzenmacher’s technique [22] to simplify the traditional construction [7] of the Bloom fil-
ter. Their technique reduces the number of hash functions used in the Bloom filter construction,
and effectively implements the Bloom filter without any increase in the asymptotic false-positive
probability.

Parameters. In the Bloom filter, par, which is input of Gen, consists of the following four
parameters.

• m: the size of data structure T. Namely, we have |T| = m.
• n: the (maximum) number of elements inserted to T.
• µ: an upper bound of false-positive probability. Namely, it holds µ|S| ≤ µ for any S ⊂ U .
• k: the number of hash functions used in Bloom filter.

We will discuss how to determine m, n, µ, and k later.

Construction. We employ (non-cryptographic) hash functions such as FNV-1a5 and Murmur2.6

(A variant of) the Bloom filter ΠBloom = (Gen, Insert, Lookup) is constructed as follows.

5http://www.isthe.com/chongo/tech/comp/fnv/
6https://github.com/aappleby/smhasher/blob/master/src/MurmurHash2.cpp
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– Gen(U , par)→ (T, aux): For every i ∈ {0, 1}, it randomly chooses hash functions hi : U → [m].
It returns (T, aux), where T := 0m and aux := (k, h0, h1).

– Insert(T, x, aux) → T′: For every i ∈ [k], it computes Hi(x) := h0(x) + i · h1(x) mod m and
T[Hi(x) + 1] := 1.7 It returns T′ := T.

– Lookup(T, x, aux) → true/false: For every i ∈ [k], it returns false and terminates the
process if T[Hi(x) + 1] = 0, where Hi(x) := h0(x) + i · h1(x) mod m. It returns accept (if
T[Hi(x) + 1] = 1 for all i ∈ [k]).

Goel and Gupta [18] showed the following lemma.

Lemma 2 ([18]). Let ΠBloom = (Gen, Insert, Lookup) be the Bloom filter. For any (m,n, k) ∈
[|U|]2 × N and any q ∈ [|U| − n], let

µ :=

(
1− e−

(n+(q/2))k
m−1

)kq

, (1)

and par := (m,n, µ, k). Then, for any (T0, aux)← Gen(U , par) and any S = {x1, . . . , xn} ⊂ U such
that |S| = n, we define T̂ := Tn, where Ti ← Insert(Ti−1, xi, aux) for i ∈ [n]. We say that the false
positive occurs if for any Q ⊂ U \ S such that |Q| = q, it holds Lookup(T̂, x, aux) = accept for all
x ∈ Q. Then, the false-positive probability p satisfies p ≤ µ.

Note that the above lemma includes µn in Def. 7 as a special case when we set q = 1.

Corollary 1 ([18]). Let ΠBloom = (Gen, Insert, Lookup) be the Bloom filter. For any (m,n, k) ∈
[|U|]2 × N, we set

µ :=

(
1− e−

(n+(1/2))k
m−1

)k

.

Suppose that T̂ is generated as in Lemma 2. Then, µn defined in Def. 7 satisfies µn ≤ µ.

5.2 Instantiation from the Bloom Filter and Any Digital Signatures

We show a concrete instantiation of the proposed CMDVS construction Π = (Setup,KeyGen,Sign,
Vrfy) in Section 4.3 with the parameter-tuned Bloom filter. The most crucial part is parameter
adjustment for the Bloom filter.

Parameter setting. Based on Lemma 2, we can flexibly set the Bloom filter parameters for our
CMDVS construction as follows.

As can be seen in the proposed construction, Setup determines ℓ at Step 2. In this instantiation,
for the security parameter κ ∈ N, Setup can choose arbitrary ℓ ∈ [κ].

Sign derives par = (m,n, µ, k) from Dv, m, and len, at Step 1. In this instantiation, par is
determined as follows. By setting n := ℓ|Dv| and q := ℓ in Lemma 2, Eq. (1) can be written as:

µ :=

(
1− e−

(|Dv|+(1/2))kℓ
m−1

)kℓ

. (2)

7Since Hi(x) ∈ [0,m− 1], we need to set T[Hi(x) + 1] := 1, not T[Hi(x)] := 1.
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Now, we would like to set k and m so that they satisfy

µ ≤ 1

2cκ
, (3)

for arbitrary constant c ∈ R, since the proposed construction requires the AMQ structure Πamq

with the negligible false-positive probability (see Theorem 2). To achieve that aim, let K := kℓ for
convenience and we set k such that

kℓ =

⌊
(m− 1) ln 2

|Dv|+ 1/2

⌋
. (4)

Then, from Eq. (2), we have

µ =

(
1− e−

(|Dv|+(1/2))K
m−1

)K

≤

(
1− e−

(|Dv|+(1/2))
(m−1) ln 2
|Dv|+1/2

m−1

)K

≤ 1

2K
. (5)

From Eqs. (3) and (5), µ has to satisfy µ ≤ 1/2K ≤ 1/2cκ. Therefore, we have to set (k, ℓ) so that
it satisfies

kℓ = K ≥ cκ. (6)

Since ℓ was already chosen by Setup, k := ⌈cκ/ℓ⌉ satisfies Eq. (6). Now we are ready to choose m.
From Eqs. (4)–(6), we have

(m− 1) ln 2

|Dv|+ 1/2
≥ kℓ ≥ cκ. (7)

Namely, m has to satisfy the following inequality to meet Eq. (7):

m ≥ (|Dv|+ 1/2)kℓ

ln 2
+ 1.

Therefore, the following m is sufficient:

m :=

⌈
(|Dv|+ 1/2)kℓ

ln 2

⌉
+ 1.

Note that the above parameters (c, k, µ,m, n) can be adaptively set every time Sign is executed.

Remark 4 (Towards CMDVS with Constant-Size Signatures). Although the above parameter
setting works for any n = ℓ|Dv|, i.e., for any Dv ⊂ V, the Bloom filter also allows us to fix the
size of data structures m first and then determine concrete n, i.e., an upper bound of the size of
Dv. Namely, the Bloom filter can also provide a concrete CMDVS construction with the constant-
size signatures regardless of the size of Dv, though Dv has to satisfy |Dv| ≤ n, where n is fixed
throughout the protocol and determined according to the constant m. From Eq. (7), for any
constant m ∈ N, |Dv| has to satisfy the following inequality:

|Dv| ≤
(m− 1) ln 2

kℓ
− 1

2
.

Hence, n has to satisfy the following:

n = ℓ|Dv| ≤ ℓ

(
(m− 1) ln 2

kℓ
− 1

2

)
=

(m− 1) ln 2

k
− ℓ

2
.
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Thus, n is defined as follows.

n :=

⌊
(m− 1) ln 2

k
− ℓ

2

⌋
.

Note that Sign outputs ⊥ when |Dv| > n.

Instantiation. With the above parameters, we can instantiate the proposed construction in
Section 4.3 by the Bloom filter ΠBloom = (Gen, Insert, Lookup) over U ⊂ {0, 1}∗. To be precise, this
concrete construction is a slightly-modified but more efficient version of an instantiation of Π from
the Bloom filter. Note that the modification does not affect the security proofs in Theorem 2. We
add footnotes on the differences between the simple instantiation and ours in this section at where
we make the modifications.

– Setup(1κ): Run (sigk, verk)← SigGen(1κ). It arbitrarily chooses ℓ ∈ [κ] and randomly choose
hi : U → [2κ] for every i ∈ {0, 1}, and it returns (pp, sk), where sk := (sigk, ℓ, h0, h1), pp :=
(verk, ℓ).

– KeyGen(pp, sk, id): For every i ∈ [ℓ], it computes h
(i)
id,0 := h0(x

(i)
id ) and h

(i)
id,1 := h1(x

(i)
id ), where

Xid = {x(1)id , . . . , x
(ℓ)
id } := Assignℓ(id). It returns vkid := {(h(i)id,0, h

(i)
id,1)}i∈[ℓ].

– Sign(sk,Dv,m, len): It derives (c, k, µ,m, n) as above. If ℓ|Dv| > n holds, it returns ⊥. For
every idi ∈ Dv, let Xi = {x(i−1)ℓ+1, . . . , xiℓ} := Assign(ℓ, idi).It initializes T0 as T0 := 0m and

computes T̂ := Tℓ|Dv| as follows:

Ti ← Insert(Ti−1, xi, (ℓ|Dv|, k, h0, h1)) for i ∈ [ℓ|Dv|].

Namely, for every i ∈ [ℓ] and every j ∈ [k], it computes H
(i)
j := h

(i)
id,0+ j ·h(i)id,1 mod m and sets

T̂[H
(i)
j +1] := 1. It sets σ := (T̂, aux, σds), where aux = k and σds ← SigSign(sigk,m∥T̂∥aux).8

If |σ| > len, it returns ⊥; otherwise, it returns σ.

– Vrfy(pp, vkid,m, σ): It runs SigVer(verk, (m∥T̂∥aux, σds)). If the output is ⊥, it returns ⊥ and
terminates. Let m := |T̂|. For every i ∈ [ℓ] and every j ∈ [k], it returns ⊥ and terminates if

T̂[H
(i)
j + 1] = 0, where H

(i)
j := h

(i)
id,0 + j · h(i)id,1 mod m.9 It returns ⊤ (if T̂[H

(i)
j + 1] = 1 for all

i ∈ [ℓ] and all j ∈ [k]).

5.3 Theoretical Analysis

We give an efficiency comparison between the concrete instantiation in the previous section and
the trivial construction in Section 4.2.

We set (the upper bound of) the false-positive probability µ in the range of 2−10 to 2−20, which
is comparable to the false-positive probability of our experimental results in the next section. Note
that the false-positive probability is related to correctness; each non-designated verifier rejects
correctly-generated signatures with probability 1− µ in our instantiation.

8aux only consists of k since hash functions h0, h1 were already chosen by Setup.
9This step corresponds to kℓ executions of Lookup, though AMQ elements x

(1)
id , . . . , x

(ℓ)
id were already embedded

into hash functions when generating vkid.
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Table 1: Efficiency comparison between our instantiation and the trivial construction.

|Dv|
Instantiated (§5.2) Trivial (§4.2)

µ = 2−cκ k |σ| (bits) |σ| (bits)

100
2−10 ⌈10/ℓ⌉ 1,967

6,9122−15 ⌈15/ℓ⌉ 2,692
2−20 ⌈20/ℓ⌉ 3,418

1,000
2−10 ⌈10/ℓ⌉ 14,952

64,5122−15 ⌈15/ℓ⌉ 22,169
2−20 ⌈20/ℓ⌉ 29,387

10,000
2−10 ⌈10/ℓ⌉ 144,794

640,5122−15 ⌈15/ℓ⌉ 216,933
2−20 ⌈20/ℓ⌉ 289,052

100,000
2−10 ⌈10/ℓ⌉ 1,443,220

6,400,5122−15 ⌈15/ℓ⌉ 2,164,571
2−20 ⌈20/ℓ⌉ 2,885,923

1,000,000
2−10 ⌈10/ℓ⌉ 14,427,475

64,000,5122−15 ⌈15/ℓ⌉ 21,640,954
2−20 ⌈20/ℓ⌉ 28,854,434

There is a trade-off between ℓ and the number of hash functions k. Therefore, small ℓ makes the
sizes of verification keys compact, whereas the computational costs, which depend on k, increase.

We assume that the bit length of id is 64 bits and the DS signature size is 512 bits (assuming
the EdDSA signatures as in the experiment section). Therefore, the signature sizes are calculated
by ⌊(|Dv| + 1/2)kℓ/ ln 2⌋ + ⌊log2 k⌋ + 514 for the instantiation and |Dv| · 64 + 512 for the trivial
construction. Obviously, compared to the trivial construction, our instantiation enables a 40%–
65% size reduction of the signature size, depending on the false-positive probability µ. Although
we employed the Bloom filter since we wanted to see the theoretical performance of the proposed
construction, in the next section, we implement IoT-REX from our generic construction instantiated
with the vacuum filter [48], which is a more recent AMQ structure yielding experimentally better
performance.

6 Experiments

In this section, we describe experimental evaluations of IoT-REX. Our primary motivation for the
evaluations is to confirm how communication sizes can be reduced by virtue of an AMQ struc-
ture compared with the trivial construction and broadcast authentication [49], which supports the
functionality that a sender chooses an arbitrary subset of receivers.10

We first describe our implementation of the proposed CMDVS constructions through their
instantiations and then demonstrate experimental results, including the computation time on a
laptop PC. Finally, we discuss the feasibility of IoT-REX by estimating the entire process on a
Raspberry Pi over a typical network and the power consumption. On the system model of IoT-REX
described in Section 2, the laptop PC corresponds to a systems manager SM, and the Raspberry Pi

10Although the broadcast authentication in [49] is based on message authentication codes (MAC), we simply say
signatures as MAC for the sake of convenience.
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Figure 4: Communication size versus the size of
designated-verifier set: The red line, denoted by
Generic Construction, represents the proposed
generic construction in Section 4.3 while the blue
line, denoted by Trivial Construction, represents
the trivial construction in Section 4.2, respec-
tively.

Figure 5: Computation time versus size of
designated-verifier set for Sign: This figure is
a box-and-whisker plot. Other setting is com-
mon with Figure 4. The yellow line, denoted by
Broadcast Authentication, represents the scheme
in [49].

corresponds to an IoT device among the designated devices IDsg. Since a Raspberry Pi has become
popular and widely used, we believe that the estimation gives us insight into IoT-REX in the real
world.

6.1 Implementation and Experimental Setting

We implemented the proposed CMDVS constructions in Section 4 in the C++ language with
EdDSA [4] and vacuum filters [48]. EdDSA is implemented in the libsodium11 library version
1.0.18-stable and the vacuum filter is implemented in the Vacuum-Filter library.12

We first measure the communication size when the proposed CMDVS constructions, i.e., the
trivial and generic constructions, are implemented on a laptop PC. Our code returns a bit length
per designated device via the vacuum filter library and then we count up the total size for com-
munication with the bit length. We also implemented the broadcast authentication [49] with the
OpenSSL library version 1.1.1. The environment of the laptop PC is Ubuntu 18.04.5 LTS on the
Windows Subsystem for Linux over Windows 11 and is with Intel Core i7-8565U and 16 gigabytes
memory. The entire performance is then estimated over LoRa with its maximum transmission speed
of 250 kilo-bits per second as a typical wireless network setting. We assume that a device identifier
is 64 bits and the bit length of commands sent to designated devices is 256 bits, respectively.

6.2 Results

Communication Size. The results of the communication size are shown in Figure 4. According
to the figure, the communication size for the generic construction becomes four times smaller than
the trivial construction and 25 times smaller than the broadcast authentication, respectively. Such
advantage of the communication size is obtained by an AMQ structure, i.e., the vacuum filter. The
false-positive probability of the vacuum filter is about 0.01% in this measurement.

11https://libsodium.gitbook.io/doc/
12https://github.com/wuwuz/Vacuum-Filter
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The bit length per designated device for the generic construction is about 20 bits and is almost
stable for any number of the designated devices. It means that the communication size could be
compressed by about 30% because the bit length per designated device for the trivial construction
is 64 bits as described in Section 6.1. Notably, the communication size could be compressed by
about 4% compared to the broadcast authentication.

Computation Time. We also measure the computation time for the Sign and Vrfy algorithms as
shown in Figures 5–7. For the Sign algorithm, the generic construction and the trivial construction
are two orders of magnitude faster than the broadcast authentication. (See in Figure 5). Indeed,
the generic construction and the trivial construction generate only a single signature, while the
broadcast authentication needs to generate individual signatures in proportion to the number of
devices. Consequently, the computation time could be drastically improved compared to broadcast
authentication.

We also compare the generic construction with the trivial construction in detail, and their
results are shown in Figure 6 and Figure 7, respectively. According to the figures, the computation
times for the Sign and Vrfy algorithms of the generic construction are almost identical to those for
the trivial construction until 200,000 devices. Meanwhile, the computation time for both Sign and
Vrfy algorithms of the generic construction is greater than the trivial construction.

The reason is that the Insert and Lookup process of the AMQ structure takes a long time in
proportion to the size of a designated-verifier set Dv. In contrast, the trivial construction needs only
string operations for each algorithm, i.e., concatenation of Dv for Sign and search of id in Dv for
Vrfy. We note that the computation time for the generic construction should be longer than that for
the trivial construction, because the generic construction executes the Insert and Lookup processes
as well as the generation of the EdDSA signatures, whereas the trivial construction generates only
the EdDSA signatures. The above phenomenon is common with broadcast authentication since it
computes a single verification computation in the Vrfy algorithm.

It also indicates that the overheads caused by the AMQ structure can be represented in the
differences between the generic construction and the trivial construction in Figure 6 and Figure 7.
Specifically, the computation time for the Sign algorithm of the generic construction becomes about
five times longer by using the AMQ structure than that of the trivial construction after 500,000
devices. We also note that the computation time for the Vrfy algorithm of the generic construction
becomes a hundred times longer due to the use of the AMQ structure.

Entire Performance. Based on the results in the previous subsections, the entire performance
of IoT-REX over the LoRa network is estimated as shown in Figure 8. This figure shows the entire
performance of IoT-REX over the LoRa network, including the computation for the Sign and Vrfy
algorithms, wherein a systems manager SM generates an authenticated command ĉmd and each
device id receives ĉmd. Here, the entire performance is then estimated over LoRa with its maximum
transmission speed of 250 kilo-bits per second as described above.

According to the figure, the performance of IoT-REX based on the generic construction can
be three times faster than that based on the trivial construction. Interestingly, compared to the
broadcast authentication, it is 25 times faster than the broadcast authentication, and therefore two
orders of magnitude faster. In particular, the elapsed time per device is about 0.08 milliseconds for
the generic construction, about 0.26 milliseconds for the trivial construction, and about 2 millisec-
onds for the broadcast authentication, respectively. The performance improvement is obtained by
virtue of compressing the communication size via the AMQ structures.

Since the performance improvement by the proposed construction is stable for any number of
devices in Dv, we can also estimate the number of IoT devices that can be controlled within a
second. Notably, devices of more than 12,000 can be controlled by IoT-REX based on the proposed
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Figure 6: Computation time versus size of
designated-verifier set for Sign: This figure is the
detail version of Figure 5 excluding Broadcast
Authentication.

Figure 7: Computation time versus size of
designated-verifier set for Vrfy: The setting is
common with Figure 5.
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Figure 8: Entire performance versus the size of
the designated-verifier set. The setting is com-
mon with Figure 6. This figure includes both the
communication time and the computation time.

construction over the LoRa network, which is greater than 4,000 devices by the trivial construction
and 400 devices by the broadcast authentication.

6.3 Feasibility on IoT Devices

We discuss the feasibility of IoT-REX for IoT devices in the real world. In particular, we deploy the
Vrfy algorithms in a Raspberry Pi as an IoT device and then estimate the performance in the same
setting as Section 6.1. We also evaluate the power consumption for battery life of IoT devices. The
environment is with a Raspberry Pi3 with Ubuntu Server 20.4.4 LTS for the arm64 architecture.

Entire Performance on Low-Power Devices. We measure the computation time for the
Vrfy algorithms on the Raspberry Pi and then estimate the entire performance with IoT devices as
Dv. Although we omit the detail of measurement results due to space limitation, the computation
time for the generic construction and the trivial construction is almost the same until 200,000
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devices, and that for the generic construction becomes greater than the trivial construction after
500,000 devices. In particular, the computation time for the generic construction is forty times
longer than the trivial construction. On the other hand, it is 1.1 times longer than broadcast
authentication. The broadcast authentication requires the Raspberry Pi to load a huge size of
signatures in its memory storage. Therefore the computation time for the generic construction is
close to the broadcast authentication.

Interestingly, even with the longer computation time on the Raspberry Pi, the entire perfor-
mance of IoT-REX over the LoRa network is almost the same as Figure 8. The reason is that the
bottleneck of IoT-REX is the communication overhead as long as a low-power wide area network
is utilized. For instance, the elapsed time for the entire process with the generic construction over
the LoRa network is about 789 seconds. It is divided into 781 seconds for communication and
8 seconds for computation of the Sign and Vrfy algorithms. Similarly, the elapsed time for the
entire process with the trivial construction is about 2560.4 seconds, which is divided into 2560 sec-
onds for communication and 0.4 seconds for computation. The elapsed time for the entire process
with the broadcast authentication is about 20800 seconds, which is divided into 20,480 seconds for
communication and 320 seconds for computation.

The above fact gives us two important insights. First, AMQ structures are attractive because
decreasing the communication size can significantly improve the entire performance, even on IoT
devices. An IoT device can be controlled with about 0.08 milliseconds per device under IoT-REX
based on the generic construction. Second, IoT-REX based on the generic construction can control
devices of more than 12,000 over the LoRa network within a second. It is more significant than
4,000 devices by the trivial construction and 130 devices by the broadcast authentication, and we
thus conclude that IoT-REX based on the generic construction is practical.

Communication Overheads on Low-Power Wide Area Networks. We discuss IoT-REX
over low-power wide area networks other than LoRa as further applications. We know eMTC13

with its maximum transmission speed of 1 mega-bits per second and SIGFOX14 with its maximum
transmission speed of 600 bits per second as specifications for low-power wide area networks.

IoT-REX based on the generic construction is stably three times faster than the trivial con-
struction and 25 times faster than the broadcast authentication over these networks by virtue of
compressing the communication cost. For instance, in the case of SIGFOX, 12,000 devices are
controlled within about 308 seconds by the generic construction, within about 1200 seconds by
the trivial construction, and within 10240 seconds by the broadcast authentication. In the case
of eMTC, 12,000 devices can be controlled within about 0.24 seconds by the generic construction,
0.64 seconds by the trivial construction, and 6.59 seconds by the broadcast authentication.

Overall, for a communication protocol with its maximum transmission speed of 50 mega-bits
per second, IoT-REX based on the generic construction is faster than the trivial construction. For
a communication protocol whose maximum transmission speed is 100 greater than mega-bits per
second, IoT-REX based on the generic construction is still faster than the trivial construction as
long as the number of IoT devices is fewer than 700,000. Moreover, it is also faster than broadcast
authentication over 5G with a maximum transmission speed of 10 gigabits per second by virtue of
the use of a single signature.

Power Consumption. To evaluate the impact on battery lifetime for IoT-REX, we measured the
power consumption when the codes of the CMDVS constructions are executed on the Raspberry

13https://halberdbastion.com/technology/iot/iot-protocols/emtc-lte-cat-m1\#:\~:text=An\%20eMTC\

%20Cat\%2DM1\%20network,any\%20existing\%20LTE\%20channel\%20width.
14https://www.sigfox.com/en/what-sigfox/technology
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Table 2: Average on power consumption and battery life for IoT-REX: Each value represents the
average of the power consumption and battery life on five executions.

Construction Watt Ampere Battery Life [h]

Generic Construction 2.4 0.48 21

Trivial Construction 2.5 0.50 20

Broadcast Authentication 2.8 0.56 18

Pi. In particular, the Raspberry Pi was connected to Watt Checker, TAP-TST10,15 and then we
measured the average current consumed for the codes of the Vrfy algorithms, that were executed
on the Raspberry Pi. We also assume the use of Anker 633 Magnetic Battery16 with 10,000mAh.
Here, the power consumption in the standby state of the Raspberry Pi is 1.7 watts, and a 5-volt
power supply is used. The size of Dv is 10,000,000.

The result is shown in Table 2. According to the table, the difference between the generic
construction and the trivial construction is 0.1 W, while that between the generic construction
and the broadcast authentication is 0.4 W, respectively. This difference seems stable even when we
change the size of Dv. Consequently, it is considered that the advantage is obtained by compression
of the communication size through AMQ structures. When the battery described above is used,
its battery life is a one-hour difference with the trivial construction and a three-hour difference
with the broadcast authentication. We also note that most parts of the battery life are due to the
standby state of the Raspberry Pi. When a lower-power device is used, the battery life will be
longer.

7 Related Work

Cryptographic Protocols Based on AMQ Structures. Most of the cryptographic research
related to AMQ structures (e.g., [13, 31, 45]) focus on the Bloom filter [7] since, unlike recent
experimentally-efficient AMQ structures, it has been well analyzed in a theoretical sense. The
previous works have completely different goals from ours: Derler et al. [13] introduced Bloom
filter encryption to efficiently realize puncturable encryption, which is a special type of public-key
encryption; Naor and Yogev [31] considered the Bloom filter in adversarial environments to make the
Bloom filter robust; and Sun et al. [45] employed the Bloom filter to maintain an encrypted database
for searchable encryption. To the best of our knowledge, there is no research on cryptographic
protocols based on AMQ structures in the context of secure remote control.

Message Authentication Protocols for Many Users. MDVS [12, 25] is digital signatures
in the multi-user setting. Each user has signing and verification keys, and any user can designate
an arbitrary subset of other users and generate a signature so that only the designated users can
check the validity of the signature. The recent MDVS construction [12] with strong security notions
require heavy cryptographic primitives such as bounded-collusion functional encryption [19]. On
the other hand, CMDVS is a restricted version of MDVS and our CMDVS construction only
requires AMQ structures and standard digital signatures, which are lightweight enough for IoT
environments. For the efficiency reason, we only employed our CMDVS scheme for the experimental
evaluations.

Broadcast authentication [9, 35, 36, 39, 41, 44] aims to broadcast a single piece of data to many
receivers with data authenticity. However, except for Watanabe et al.’s work [49], the existing

15https://www.sanwa.co.jp/en/power.html
16https://www.anker.com/products/a1641?ref=search\_battery\#!
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works do not support the functionality that a sender chooses an arbitrary subset of receivers;
data is always broadcast to all receivers. Watanabe et al. [49] introduced anonymous broadcast
authentication (ABA), which supports such functionality and provable anonymity. Although ABA
and CMDVS have similar functionality, they have a clear difference between them: due to the
provable anonymity, the lower bound on the authenticator sizes of ABA is Ω(d · κ), where d is
the number of designated receivers and κ is the security parameter. Our CMDVS construction
overcame the lower bound. Note that CMDVS can be used in combination with existing (unproved)
anonymizing techniques [28].

IoT Security. IoT security can be realized from the firmware level [10, 11] to the applica-
tion [16, 40]. Although the conventional approach focuses on controlling the data flow [8, 15, 17],
cartographic approach is discussed in recent years [2, 24, 32, 37, 43]. To the best our knowledge,
the IoT security in recent years is based on two ways [42], machine learning [21, 27, 29, 33, 38] or
trusted execution environments [46, 47, 51]. These approaches often utilize a central server to con-
trol resource-constrained IoT devices outside of them. In contrast, our approach is built-in for IoT
devices because the Vrfy algorithm is embedded in them.

8 Concluding Remarks

In this paper, we proposed IoT-REX, a secure system aiming to control IoT devices remotely.
IoT-REX enables us to not only bring infected IoT devices to a halt but also have any subset of
all IoT devices execute arbitrary commands. To this end, we introduced a novel cryptographic
primitive for IoT-REX, called centralized multi-designated verifier signatures (CMDVS). We also
provided an efficient CMDVS construction, which yields compact communication sizes and fast
verification procedures for IoT-REX. We further discuss the feasibility of IoT-REX by implementing
the CMDVS construction with vacuum filters and its experimental evaluation with a Raspberry
Pi. We have released our source to provide reproducibility and expect further subsequent work.
According to the evaluation results, the CMDVS construction can compress communication size to
about 30% for the trivial construction and 4% for the broadcast authentication; hence, it is expected
to IoT-REX based on the CMDVS construction is three times faster than the trivial construction
and 25 times faster than the broadcast authentication over typical low-power wide area networks
even with an IoT device. Furthermore, we discussed that IoT-REX is feasible with respect to
the communication overheads on low-power wide area networks and the power consumption. We
thus conclude that IoT-REX based on the CMDVS construction is practical. We plan to conduct
experiments of IoT-REX in the real world for further evaluation, including physics features.
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