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Abstract. Word embedding has become ubiquitous and is widely used
in various natural language processing (NLP) tasks, such as web re-
trieval, web semantic analysis, and machine translation, and so on. Un-
fortunately, training the word embedding in a relatively large corpus is
prohibitively expensive. We propose a graph-based word embedding al-
gorithm, called Word-Graph2vec, which converts the large corpus into a
word co-occurrence graph, then takes the word sequence samples from
this graph by randomly traveling and trains the word embedding on
this sampling corpus in the end. We posit that because of the limited
vocabulary, huge idioms, and fixed expressions in English, the size and
density of the word co-occurrence graph change slightly with the increase
in the training corpus. So that Word-Graph2vec has stable runtime on
the large-scale data set, and its performance advantage becomes more
and more obvious with the growth of the training corpus. Extensive
experiments conducted on real-world datasets show that the proposed
algorithm outperforms traditional Word2vec four to five times in terms
of efficiency and two to three times than FastText, while the error gen-
erated by the random walk technique is small.

Keywords: Word co-occurrence Graph - Random walk - Word embed-
ding.

1 Introduction

Word embedding is widely used in modern natural language processing (NLP)
tasks, including sentiment analysis [2], web retrieval [7]and so on. Current word
embedding methods, such as Word2vec [9] and Glove [12], rely on large corpora
to learn the association between words and obtain the statistical correlation
between different words so as to simulate the human cognitive process for a
word. The time complexity of these two approaches is O(|N|log(|V])), where
|N| is the total corpus size, and |V| is the size of vocabulary, which clearly
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indicates that the runtime of these two training approaches increases linearly as
the size of corpus increases. In the era of big data, how to speed up these existing
word embedding approaches becomes increasingly essential.

In this paper, we address the problem of efficiently computing the word
embedding on a large-scale corpus. Our solution is also established on a word co-
occurrence graph, Then text sampling by random walk traveling on the graph.
In detail, we intend to go one step further and propose a graph-based word
embedding method called Word-Graph2vec. This approach contains three steps.
First, Word-Graph2vec uses word co-occurrence information to construct a word
graph whose each word as a node, whose edges represent co-occurrences between
the word and its adjacency node, and whose edge direction represents word order.
Second, Word-Graph2vec performs random walk traveling on this word graph
and samples the word sequences. Third, skip-gram [9] has been applied to these
sampling word sequences to gain the final word embedding.

The main advantage of Word-Graph2vec is the performance on the large-scale
corpus. Because of the limited vocabulary 4, the number of nodes and density
of the word co-occurrence graph change slightly with the increase of training
corpus. So that Word-Graph2vec has stable runtime on the large-scale data set,
and its performance advantage becomes more and more obvious with the growth
of the training corpus. Parenthetically, noted that adding more training corpus
only results in adjusting the edge weights. Therefore, the time consumed by
training the model increases slowly as the corpus increases.

2 Related Works

We categorize existing work related to our study into two classes: word embed-
ding approaches and graph embedding approaches.
Word Embedding Approaches: One of the most prominent methods for
word-level representation is Word2vec [9]. So far, Word2vec has widely estab-
lished its effectiveness for achieving state-of-the-art performances in various clini-
cal NLP tasks. GloVe [12] is another unsupervised learning approach for obtain-
ing a single word’s representation. Different from Word2vec and GloVe, Fast-
Text [15] considers individual words as character n-grams. Words actually have
different meanings in different contexts, and the vector representation of the two
model words in different contexts is the same. However, the structure of these
pre-training models is limited by the unidirectional language model (from left
to right or from right to left), which also limits the representation ability of the
model so that it can only obtain unidirectional context information.
Word-Graph2vec model makes the training time in a stable interval with the
increasing of the size of the corpus and also ensures the accuracy for various
NLP tasks.

4 The vocabulary of the New Oxford Dictionary is around 170,000, but some of the
words are old English words, so that in actual training, the word co-occurrence graph
contains about 100,000 to 130,000 nodes.
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Graph Embedding Method: In graphical analysis, traditional machine learn-
ing methods usually rely on manual design and are limited by flexibility and high
cost. Based on the idea of representational learning and the success of Word2vec,
Deepwalk [13], as the first graph embedding method based on representational
learning, applies the Skip-Gram model to the generated random walk. Similarly,
inspired by Deepwalk, Node2vec [3] improves the random walking mode in Deep-
walk. Node2vec introduces a heuristic method, second-order random walk. Con-
sidering the difference between the linear structure of the text and the complex
structure of graphics, our model adopts the idea of Node2vec for node learning

3  Word-Graph2vec algorithm

3.1 Motivation

Word graphs, extracted from the text, have already been successfully used in
the NLP tasks, such as information retrieval [1]and text classification [4]. The
impact of the term order has been a popular issue, and relationships between the
terms, in general, are claimed to play an important role in text processing. For
example, the sentence “Lily is more beautiful than Lucy” is totally different from
the sentence “Lucy is more beautiful than Lily”. This motivated us to use a word
co-occurrence graph representation that would capture these word relationships.

Training the word embedding on a word co-occurrence graph is an efficient
approach. First, the number of nodes in this word co-occurrence graph is not
large. According to lexicographer and dictionary expert, Susie Dent, “the average
active vocabulary of an adult English speaker is around 20,000 words, while his
passive vocabulary is around 40,000 words." Meanwhile, even for the large En-
Wikipedia data set, the total number of word graph nodes is around 100,723,
and these word graphs are highly sparse(see Table 1). As the size of the training
corpus increases, the weight on edges will change a lot, but the size of nodes
and graph density do not have significant alterations. Thus, this pushes us to
propose our approach, Word-Graph2vec, to address this word embedding issue.

3.2 Framework of Word-Graph2vec

Figure 1 shows the framework of Word-Graph2vec.
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Fig. 1: The overall framework for Word-Graph2vec algorithm.
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Generate word co-occurrence graph A textual document is presented as a
word co-occurrence graph that corresponds to a weighted directed graph whose
vertices represent unique words, whose edges represent co-occurrence between
the words, and whose edge direction represents word order. An example of graph
creation is given in Figure 2(a). The source text is an extract of a sentence
from Philip Dormer Stanhope’s letter, “In truth, whatever is worth doing at
all, is worth doing well; and nothing can be done well without attention."
Figure 2(b) corresponds to the resulting weighted directed graph where each
vertex represents a unique word, and each edge is a co-occurrence of the two
words.

Weight on edges: The number of simultaneous occurrences of these two words
in the text is used as the weight on edge. A weighted adjacency matrix W is
used to store the edge weights, and W, , is the weight from node v to node z.

Wy = Z co-occurrence(v, x) (1)

where co-occurrence(v, ) is the number of times that the words v and x appear
together from left to right in the same order.

Weight on nodes: The weight of the node is used to determine the sampling
times in the random walk process. We take probability PW,, as a representation
of the importance of the word v in the whole corpus, that is, the weight of nodes
in the graph. This paper uses the terms frequency(TF) and inverse document
probability (TF-IDF) to set the word weights PW.

In truth, whatever is worth doing at all, is
AN\

worth doing well; and nothing can be done

well without attention.

(a) An example sentence. A solid (b) The word co-occurrence graph.
arrow represents a new directed The red dotted line describes a ran-
edge while a dashed arrow an al- dom walk with “whatever" as the
ready existing one in the graph. The starting node and “attention” as the
edges are drawn from or to word endding node.

“doing".

Fig.2: An example of word co-occurrence graph creating from a sentence in
Philip Dormer Stanhope’s letter.
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Sampling word sequences by random walk This random walk sampling
process [16] iteratively explores the global structure network of the object to
estimate the proximity between two nodes. Generate a random walk from the
current node, and select the random neighbors of the current node as a candidate
based on the transition probability on the word co-occurrence graph.

First, the different nodes, as distinct from the same selection probability
for graph embedding, should have different probabilities to be selected as the
starting point. We use the probability sampling method based on the word weight
is applied to select the rooted node. For example, the sampling times of node v
as the starting node are shown in Equ 2:

number _walks(v) = [total _walks x PW,] (2)

Where total _walks is the total number of random walk sampling, and PW,,
is the weight of word v.

Second, considering the shuttle between two kinds of graph similarities (ho-
mophily and structural equivalence), Node2vec [3] is selected as the graph sam-
pling approach. Then, according to the the 2"? order random walk transfer
probability of the Node2vec model, the random neighbours of the current node
is selected as the candidate node. The sampling sequence of a node is determined
by simulating several biased random walks of fixed length .

Learning embedding by Skip-Gram Model After obtaining a much smaller
set of walking sequences compared to the original corpus, we used the Skip-Gram
model to learn the final word embedding.

3.3 Word-Graph2vec Algorithm

Word-Graph2vec algorithm is presented in Algorithm 1.

The algorithm first initializes variables (Lines 1-2). We scan all the corpus
once and build the word co-occurrence graph (Lines 1-3). The adjacency matrix
W and node’s weight PW have been calculated in this scanning. Line 4 is to
calculate the transitive matrix using the 2"¢ transfer probability formula pro-
vided by Node2vec. Line 6-7 introduces how to generate the word sequences SC
by traveling on the word co-occurrence graph. The node on the graph is scanned
one by one, and the number of times in which each node is traversed as the

: PW,
rooted node is equal to NP, -

3.4 Time and Space Complexity Analysis.

Denoting N as the total corpus size and V' as the unique word vocabulary count.
In Word-Graph2vec, the training corpus for Skip-Gram is our sampling corpus
whose size is nl, where n is the number of random walks and 1 is the walk
length. The time complexity is reduced to O(nllog(V')), since nl is smaller than
N (nl =~ 1.9¢% for both 1GB and 4GB data set).
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Algorithm 1: Word-Graph2vec Algorithm

1 Input: A processed corpus C', The number of sampling n, Walk length [, p, ¢
Context size k, Dimension d

2 Output: Word vector representations @
1: W<« ( // Adjacency Matrix ;

PW «+ 0 // Weight on nodes ;

for i =1 to Size(C) do

for word to C; do

L Wuwordword+1 = Wuwordword+1 +1 PWayord < PWiyora + 1

7 < PreprocessModifiedWeights(W, p, q) ;
G' = (V,E,m, PW);
SC + 0 // SC is the result set of random walk sampling.
for all nodes uw € V do
for iter =1 to nzfvggvk do
word_sequence + () RandomWalkSampleProcess (G, u,1);
L Append word_sequence to SC

& = Skip-Gram(k, d, SC);
return &;

As for the space complexity, Word-Graph2vec needs to store the word graph,
the generated word corpus, and the final word embedding. So, the space complex-
ity of the word graph is O(m|V]), m is the average degree of the graph; the space
complexity of generated word corpus is O(nl); the word embedding is O(d|V]).
Therefore, the space complexity of Word-Graph2vec is O(m|V| + nl + d|V]).

4 Experimental Analysis

4.1 Experimental Setting

We use various data sets to test our approaches. The processed dataset informa-
tion can be found in Table 1.

Text8 °: Text8 [10] contains 100M processed Wikipedia characters created by
changing the case to lower of the text and removing any character other than
the 26 letters a through z. Meanwhile, PyDictonary, as in the English language
dictionary, Wordnet lexical database, and Enchant Spell Dictionary, is applied
to filter the correct English words.

One billion words benchmark (1b words banchmark) 6: This is a new
benchmark corpus with nearly 1 billion words of training data, which is used to
measure the progress of statistical language modeling.

® http://mattmahoney.NET/dc/text8.zip
S https://www.kaggle.com/datasets/alexrenz/one-billion-words-benchmark
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Enlish Wikipedia data set (En-Wikipedia) 7: This is a word corpus of
English articles collected from Wikipedia web pages.

Concatenating data set: To test the scalability of our approach, we also
process several En-Wikipedia data sets successively as a single sequential data
set. We use Con-En-Wikipedia-i to denote the concatenating data set with i-th
data sets merged together. By the way, Con-En-Wikipedia-2 is 16.4G, and Con-
En-Wikipedia-3 is 24.6 G.

Table 1: Statistics of Datasets
Data sets Size [V |E| Density
Text8 95.3M[135,317| 3,920,065 | 0.02%
1b words benchmark|2.51G | 82,473 |54,125,475| 0.80%
En-Wikipedia 8.22G [100,723|64,633,532| 0.64%

Baseline method: Word2vec and Fasttext are two standard methods for train-
ing static word embedding, so we use them as our baseline to compare with
Word-Graph2vec. For these two baselines, all parameters are the default values
provided by the original function

All our experiments are conducted on a PC with a 1.60GHz Intel Core 5
Duo Processor, 8GB memory, and running Winl0, and all algorithms are imple-
mented in Python and C++. Meanwhile, instead of using Node2vec, the Pecanpy
model [6], which uses cache optimized compact graph data structure and pre-
computing/parallelization to improve the shortcomings of Node2vec, is applied
in our experiment.

4.2 Evaluation Criteria

We adopted the three evaluation tasks mentioned in [14]: Categorization, Simi-
larity, and Analogy, and we tested them with the method proposed in [5].
Categorization: The goal here is to restore word clusters to different categories.
Therefore, the corresponding word embedding of all words in the data set are
clustered, and the purity of the cluster is calculated according to the marked
data set.
Similarity: This task requires calculating the cosine similarity of paired words
calculated using word vectors and comparing it with the relevant human judg-
ment similarity.
Analogy:The goal is to find a term x for a given term y so that x : y is most
like the sample relationship a : b. It requires predicting the degree to which the
semantic relations between x and y are similar to those between a and b.

The word similarity prediction effectiveness is measured with the help of
Spearman’s rank correlation coefficient p [11]. For the analogy and the concept

" https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.
xml . bz2
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categorization tasks, we report the accuracy [8] in predicting the reference word
and that of the class, respectively 8.

4.3 Parameters Study

Study of P, Q: We explored the best combination of parameters p and ¢ on
[(0.001,1),(1,1),(1,0.001)]. Table 2 shows the evaluation results of the three
tasks. It can be seen from the results that the (p, ¢)combination of (1,0.001) can
obtain better accuracy.

Node’s weight study: Table 2 shows a comparison of the evaluation results of
word embedding obtained by setting various word weight. Method 1 (Pecanpy+TF)
uses TF value as the weight of the node; Method 2 (Pecanpy+TF-IDF) uses
TF-IDF value; Method 3 (Pecanpy) do not set the node’s weight. The results
show that using TF-IDF to set weights is the best, so we will use this method
in the following experiments.

Table 2: Evaluation results of different p , ¢ combinations and word weight setting
Different (p, q) Combimations|| Different Word Weight Setting Method

Tasks Dataset G50, 1)[(T, 1)) (1,0.001) | Pecanpy - TF|Pecanpy | TF-IDF|Pecanpy
Categorization Tasks BLESS 48.0 |59.5 66.0 60.5 61.0 60.0
(Accuracy*100) Battig 25.1 | 30.0 32.2 32.1 34.3 30.1
Word Similarity MEN 37.7 1524 56.0 54.5 54.4 54.1
(Spearman’s p ¥100) | SimLex999 20.6 |18.1 21.5 21.3 21.7 20.4
Word Anology MSR 4.0 15.7 11.9 12.9 12.3 12.1
(Accuracy(P@1)*100)|SemEval2012 2| 8.4 |13.5 104 11.0 11.5 10.3

Due to space limitations, we have only reported test results for some impor-
tant parameters. Our final experiment used the best performing values for each
parameter in the test.

4.4 Accuracy Experiments

We compared the performance of Word-Graph2vec, Word2vec, and FastText on
three tasks. Table 3 show the experimental results of the categorization task,
word similarity task and word analogy task. The experimental results show
that: (i) On the three tasks, the quality of word embedding trained by Word-
Graph2vec, Word2vec, and FastText will improve with the increased data set. We
can see that the performance of Word-Graph2vec is gradually close to Word2vec
and FastText, or even better. This shows that a random walk has a certain prob-
ability to capture marginal words that appear relatively few times. Thus, this
makes the sampled corpus closer to the real text and even can follow the similar
word’s distribution in advance. Moreover, this may be the reason to explain that
the word embedding obtained by Word-Graph2vec performs better in some test
tasks.

8 The detailed information and the source code shows on this website https://
github.com/kudkudak/word-embeddings-benchmarks
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Table 3: Precision Experiments Results

Tasks Categorization Tasks| Word Similarity Word Anology
Accuracy*100 Spearman’s p *100| Accuracy(P@1)*100
Datasets Method  |prro™ BattigIMEN] SimLox099 MSE Serr};IE]va122)12_2
Texts Word2vec 58.0 35.2 63.0 26.3 27.6 13.2
FastText 50.5 36.2 61.1 27.5 41.4 10.1
‘Word-Graph2vec| 66.0 32.2 56.0 21.5 11.9 10.4
1b Words ‘Word2vec 77.0 30.8 68.6 33.0 34.8 13.9
Benchmark FastText 72.5 32.3 70.0 30.3 37.5 12.2
Word-Graph2vec| 83.5 31.6 70.1 31.6 24.8 15.7
En-Wikipedia Word2vec 70.5 35.4 67.7 28.6 30.8 13.8
FastText 77.0 37.3 69.0 28.4 42.8 15.6
Word-Graph2vec| 83.5 36.5 66.5 29.7 28.8 15.9

<~ Word2vec -
—=— Fasttext
o~ Word-Graph2vec
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Fig.3: Times (h) vs. Size (G)

4.5 Efficiency of proposed algorithm

In order to observe the time trend more intuitively, we generated two more
extensive data sets (Con-En-Wikipedia-1, 16.4G; Con-En-Wikipedia-2, 24.6G)
for testing using the En-Wikipedia. As shown in Figure 3, we have plotted the
experimental results on four data sets of different sizes (2.51G, 8.22G, 16.4G,
24.6G) into time curves (including 1b Words Benchmark and En-Wikipedia).
Figure 3 indicates that the runtime of Word2vec and FastText increase almost
linearly. But Word-Graph2vec ’s runtime increases slowly (the slight increase of
runtime is due to loading the word corpus).

5 Conclusion

We propose the Word-Graph2vec algorithm to improve the performance of word
embedding, which converts the large corpus into a word co-occurrence graph,
then takes the word sequence samples from this graph by randomly walking and
trains the word embedding on these sampling corpora in the end. We argue that
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due to the stable vocabulary, relative idioms, and fixed expressions in English,
the size and density of the word co-occurrence graph change slightly with the
increase of the training corpus. Thus, Word-Graph2vec has a stable runtime on
the large-scale data set, and its performance advantage becomes more and more
obvious with the growth of the training corpus. Experimental results show that
the proposed algorithm outperforms traditional Word2vec in terms of efficiency
and two-three times than FastText.
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