
CryptoMask: Privacy-preserving Face Recognition

Jianli Bai1, Xiaowu Zhang2, Xiangfu Song3,(�), Hang Shao4, Qifan Wang1, Shujie
Cui5, and Giovanni Russello1

1 University of Auckland, Auckland, New Zealand
{jbai795,qwan301}@aucklanduni.ac.nz g.russello@auckland.ac.nz

2 CloudWalk Technology, Beijing, China
zhangxiaowu@cloudwalk.com

3 National University of Singapore, Singapore, Singapore
songxf@comp.nus.edu.sg

4 Beijing Institute of Graphic Communication, Beijing, China
mir soh@163.com

5 Monash University, Melbourne, Australia
shujie.cui@monash.edu

Abstract. Face recognition is a widely-used technique for identification or veri-
fication, where a verifier checks whether a face image matches anyone stored in a
database. However, in scenarios where the database is held by a third party, such
as a cloud server, both parties are concerned about data privacy. To address this
concern, we propose CryptoMask, a privacy-preserving face recognition system
that employs homomorphic encryption (HE) and secure multi-party computation
(MPC). We design a new encoding strategy that leverages HE properties to reduce
communication costs and enable efficient similarity checks between face im-
ages, without expensive homomorphic rotation. Additionally, CryptoMask leaks
less information than existing state-of-the-art approaches. CryptoMask only re-
veals whether there is an image matching the query or not, whereas existing ap-
proaches additionally leak sensitive intermediate distance information. We con-
duct extensive experiments that demonstrate CryptoMask’s superior performance
in terms of computation and communication. For a database with 100 million
512-dimensional face vectors, CryptoMask offers ∼5× and ∼144× speed-ups in
terms of computation and communication, respectively.

Keywords: Face recognition · Privacy-preserving · Homomorphic Encryption ·
Secure Multiparty Computation.

1 Introduction

Biometric authentication has become increasingly vital in various applications in re-
cent years. This work focuses on face recognition, which identifies or verifies a per-
son’s identity based on their facial features. Due to its ease of use and convenience,
face recognition has gained significant traction in real-world applications such as pub-
lic place surveillance (e.g., streets, airports, etc.) [22], social media [6], and corporate
punch card supervision [13].
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As face recognition systems become more widespread, concerns about privacy have
grown. In a typical system, a server stores face images belonging to users who are regis-
tered. When a verifier, who possesses a user’s face image, queries the server to check if
the user is verified, the system measures the similarity or distance between the queried
image and the images in the database. However, in many cases, it may not be permissi-
ble to disclose users’ face images to the server due to privacy concerns or the possibility
of human rights abuses [4]. Therefore, it is essential to develop privacy-preserving face
recognition protocols that protect data privacy while maintaining efficient recognition.

Encrypting pre-processed images (e.g., extracted face vectors) and performing face
recognition over encrypted data is a straightforward approach to ensure data privacy.
Homomorphic Encryption (HE) is a promising encryption scheme for this purpose,
which was first proposed in [27] and realized in [12]. HE allows computation in the en-
crypted domain without decryption. However, HE-based privacy-preserving face recog-
nition protocols, such as the one proposed in [3], are several orders of magnitudes
slower than the original method, even when utilizing the Single-Instruction-Multiple-
Data (SIMD) technique [33] to amortize the cost of homomorphic operations. To over-
come this, the approach proposed in [9] explores encoding methods on the image
database, reducing the number of homomorphic multiplications and rotations required
and improving computation efficiency. Moreover, previous works [3,9] in this field fail
to protect the private information of the database, as they allow the verifier to learn
sensitive distance or similarity information and the number of face images close to the
queried one.

In this paper, we propose Cryptomask, an efficient privacy-preserving face recog-
nition protocol that only reveals a single bit of information to the verifier, indicating
whether the queried face image is present in the database. We propose a novel encod-
ing method to encrypt the database in a compact manner, resulting in improved per-
formance. For distance computation, we use efficient matrix multiplication techniques
that avoid expensive homomorphic rotations. Additionally, we ensure the privacy of
distance calculations by designing a secure result-revealing protocol and optimizing
its efficiency. CryptoMask outperforms existing distance-based privacy-preserving bio-
metric schemes constructed via HE in terms of computation and storage overhead, and
information leakage. Table 1 provides a comparison of different schemes, showing that
our approach requires the least number of HE multiplications and additions and has
minimal information leakage. We implement CryptoMask and compare its performance
with existing works [3] and [9]. In the case of a database with 100 million face images,
CryptoMask outperforms others up to ∼5× and ∼144 × in computation and commu-
nication, respectively.

1.1 Related Work

The early work given in [28] relies on secret sharing to authenticate face recogni-
tion. However, it cannot ensure the privacy of face images. There are some similar
works [25,35,21] working for biometric authentication. Another line is employing pat-
tern recognition to protect the queried database [23,19]. However, this method also fails
to ensure the security of the database and the queried face image. Some works [31,37]
employ secure multi-party computation (MPC) [38] to achieve the privacy-preserving
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Table 1: Summary of existing privacy-preserving face recognition protocols.

Protocol Multiplication Addition Rotation Memory Leakage
Naı̈ve md m(d− 1) 0 O(mdℓ) A, b, d, r

Hu et al. [14] md3 md2(d− 1) 0 O(md2) d,m
Pradel et al. [24] md m(d− 1) 0 O(mdN) d,m
Boddeti et al. [3] m mlog2d mlog2d O(mN) d,m

HERS [9] ⌈m
N
⌉d ⌈m

N
⌉(d− 1) 0 O(dN⌈m

N
⌉) d,m

Erkin et al. [10] m(d+ 2) 2m(d− 1) 0 O(mdN) m

CryptoMask ⌈ m
N−d
⌉d ⌈ m

N−d
⌉d 0 O(dN⌈ m

N−d
⌉) m

A : database containing face vectors; b : queried face vector; m : database size;
d : dimension of each face vector; N : HE plaintext polynomial degree; l : length
of each element in face vector; d : distance vector; r : face recognition result. The
notation ⌈x⌉ denotes rounding up to the nearest integer of x. naı̈ve represents the face
recognition performed in plaintext.

goals, yet they are communication costly due to multiple interactions between the par-
ticipants. Homomorphic encryption [27] allows computations to be performed over en-
crypted data without first decrypting it. Many face recognition protocols [36,10,34,3,9]
based on HE have been proposed. Unfortunately, they either result in heavy computa-
tion [10,34,3] or cannot provide full secrecy (e.g. leakage of distance similarity) [3,9].
We fill this gap by employing HE to perform distance computations and utilizing MPC
to do a secure result-revealing process. Compared with the state-of-the-art [9], our work
reduces both the computation and communication while maintaining the privacy of not
only inputs and outputs but also intermediate data.

2 Background

In this section, we describe the face recognition algorithm and introduce the encoding
method for a given matrix. Then we present some cryptographic primitives we use.

2.1 Face Recognition

In a face recognition system, each face image is represented by a feature vector, we say a
face vector. The extraction algorithm usually consists of face detection, alignment, nor-
malization, and feature extraction, which is out of the scope of this work. We assume
the face vector of each image is ready to use. In fact, the face vector extracted from
the facial images of the same person could be slightly different. Thus, for face recog-
nition, we should compare the similarity between two face vectors rather than check
the equality. A simple method is to use either the Euclidean distance [7] or the cosine
similarity [32] to measure the similarity between two face vectors. In this paper, we
employ cosine similarity. Specifically, given two vectors ã = (ã0, ..., ãd−1) ∈ Zd and

b̃ = (b̃0, ..., b̃d−1) ∈ Zd, their cosine similarity is d(ã, b̃) =
∑d−1

i=0 ãib̃i√∑d−1
i=0 (ãi)2

√∑d−1
i=0 (b̃i)2

.

By setting ai = ãi

∥ã∥ and bi = b̃i

∥b̃∥ , which are the normalization representations, we can
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convert it to d(ã, b̃) =
∑d−1

i=0 aibi. By doing so, d(ã, b̃) can be considered as the inner
product of vector a = (a0, ..., ad−1) and b = (b0, ..., bd−1). Note that ai and bi can be
pre-computed offline. A larger value of d(ã, b̃) means higher similarity between ã and
b̃, and if it is greater than a threshold value, we say ã and b̃ matches with each other,
i.e., they represent the same person. In the following of this paper, all the face vectors
are normalization representations.

2.2 Encoding Method

Given a set of encrypted face vectors, computing the cosine similarity one by one
is time-consuming. A promising method is computing that in parallel. The encoding
method from Cheetah [17] achieves the best paralleling performance. In the following,
we briefly describe the encoding method in Cheetah [17].

Given a matrix A = {a0,a1, ...,am̃−1} ∈ Zm̃×d with m̃ rows and d columns,
where ai = (a0i , ..., a

d−1
i ) and 0 ≤ i ≤ m̃− 1, it can be represented into a polynomial

as

π(A) = ad−1
0 X0 + ad−2

0 X1 + · · ·+ a0
0X

d−1

+ ad−1
1 Xd + ad−2

1 Xd+1 + · · ·+ a0
1X

2d−1+

· · ·

+ ad−1
m̃−1X

(m̃−1)d + ad−2
m̃−1X

(m̃−1)d+1 + · · ·+ a0
m̃−1X

m̃d−1.

Given another polynomial π(b) = b0X0 + b1X1 + · · ·+ bd−1Xd−1, we can get poly-
nomial π(d) by computing π(d) ← π(A) ∗ π(b), where ∗ denotes polynomial multi-
plication. It is notable that the coefficient of degree X(i+1)d−1, where i ∈ [0, m̃ − 1]
in polynomial π(d) forms the dot product result of the i-th row vector from A and the
vector b. The correctness comes from the fact that the elements order of each vector
in matrix A is revised when it is encoded into a polynomial. We refer readers to Chee-
tah [17] to see the detailed proof of correctness.

2.3 Homomorphic Encryption

HE [1] allows us to compute over encrypted data where the result is indeed the en-
crypted version of the operations on the plaintext. In this work, we use a lattice-based
HE: ring learning with errors (RLWE)-based HE called BFV [11]. We briefly describe
the construction of BFV scheme. See [11] for a detailed formal description and security
definition.
BFV Scheme. The plaintext space of BFV scheme is taken from Rt = Zt/(x

N + 1)
which represents polynomials with degree less than N where N is a power of 2, with
the coefficients modulo t. Similarly, the ciphertext is defined in a ring Rq with the
coefficients modulo q. We use symbols ⊞ and ⊠ to represent homomorphic addition and
homomorphic multiplication, respectively. The BFV scheme consists of the following
algorithms:

– (pk, sk) ← KeyGen(1λ): On input the security parameter λ, it generates a pair of
keys (pk, sk).
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– ct ← Encrypt(pk,m): On input the public key pk and the plaintext m, it outputs
the ciphertext ct.

– m← Decrypt(sk, ct): On input the secret key sk and the ciphertext ct, it outputs a
plaintext m.

– Eval(cti, ctj): Given two ciphertexts cti and ctj , output a ciphertext corresponding
to the following operation.

- Eval.Add(cti,ctj): Output ct← cti ⊞ ctj .
- Eval.Mul(cti,ctj): Output ct← cti ⊠ ctj .

2.4 Key-switching

Key-switching enables the data encrypted by one set of encryption keys to be re-encrypted
by another without decrypting the data. BFV scheme [11] naturally supports the key-
switching operation. The key-switching process consists of two algorithms:

– kA→B ← SwKeyGen(skA, skB): On input two BFV secret keys skA, skB , it out-
puts a key-switching key kA→B .

– ctB ← Switching(ctA, kA→B): On input a key-switching key kA→B and a cipher-
text ctA encrypted by a public key pkA associated with skA, it outputs a ciphertext
ctB encrypted by a public key pkB associated with skB .

More details about the key-switching technique can be found in [20].

2.5 Secret Sharing

For an l-bit value x ∈ Z2l , we use ⟨x⟩A to denote x is arithmetically shared between
parties P0 and P1 where P0 holds xA

0 and P1 holds xA
1 such that x = xA

0 + xA
1 with

xA
0 , xA

0 ∈ Z2l . Similarly, ⟨x⟩B denotes a boolean share of x where x = xB
0 ⊕ xB

1 with
xB
0 , xB

0 ∈ Z2l . Note that each share itself does not reveal any information about x. In
some cases, we need the conversion between different sharing formats. We use the B2A
technique to convert x from its boolean sharing ⟨x⟩B to its arithmetic sharing ⟨x⟩A,
which we represent as (xA

0 , x
A
1 )← B2A(xB

0 , x
B
1 ). The detailed B2A conversion can be

referred to [8]. If x is a vector, then x = xA
0 + xA

1 means each element in the vector is
additionally shared between two parties. In our design, the cloud server (CS) plays the
role of P0, and the verifier plays the role of P1.

2.6 Secure Comparison

Secure comparison, also known as Millionaire’s problem [38], compares two integers
held by two parties. The inputs contain x from one party and y from another party,
and the output bit 1 or 0 is shared between the two parties. Cryptflow2 [26] proposes
an efficient comparison protocol based on the observation: assume x = x1||x0 and
y = y1||y0, we must have x < y either when x1 = y1 and x0 < y0 or when x1 < y1,
i.e., 1{x < y} = (1{x1 = y1} ∧ 1{x0 < y0}) ⊕ 1{x1 < y1}1. By separating the
binary represented values into small parts, the queried Oblivious Transfer (OT) [18] is

1 1{condition} and 0{condition} mean the condition is true and false, respectively.
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Fig. 1: System model.

also small, optimizing the communication cost. Recently, Cheetah [17] provides further
optimization by replacing the underlying secure AND implementation with Random
OT (ROT) [18] generated Beaver Triples [2]. For simplicity, we represent secure com-
parison as (b0, b1) ← SClt(x, y) which means one party inputs x and another party
inputs y and outputs b = 1 if x < y and b = 0 otherwise, where b = b0 ⊕ b1. For more
details about the state-of-the-art secure comparison, please refer to [17,26].

3 Overview of Our Approach

This section describes the system model and threat model and overviews CryptoMask.

3.1 System Model

In CryptoMask, we consider the scenario where the database is stored on a cloud server,
and the corresponding face vectors are received from a group of data providers. A veri-
fier wants to check if a given face image matches an image in the database. Our system
consists of four types of entities: a trusted Key Generator (KG) who generates keys
for other entities for privacy-preserving purposes. A group of Data Providers (DPs)
who upload extracted face vectors to a cloud server, a Cloud Server (CS) who stores
the database of face vectors, and a Verifier who checks if a given face vector is in the
database, as shown in Fig. 1.
KG. KG generates a pair of HE public/private keys (pk, sk) and distributes pk to other
entities. KG also generates another pair of public/private keys (pkv, skv) and sends
them to the verifier. When KG receives a “setup” request from the verifier, it computes
a key-switching key ksw based on sk and skv and sends it to CS.
DPs. In our system, DPs can upload images (represented by face vectors) to CS. To
keep their data private, DPs encrypt the face vectors using the public key pk before
uploading them to CS. We call this process enrolment.
CS. CS stores the encrypted face vectors. It performs face recognition protocol with the
verifier without learning anything about the queried face information or the result.
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Verifier. The verifier has a face image and intends to check if the image is in the
database by performing a privacy-preserving face recognition protocol with CS. We
call this process evaluation. It learns the image exists in the database if the check result
is one. For example, a verifier can be a service provider who receives or collects a face
image from a user after the user’s consent. The verifier then wants to check whether the
user is a verified user in order to provide subsequent service.

3.2 Threat Model

Similar to previous work, such as [3] and [9], we assume the CS and the verifier are
honest-but-curious (semi-honest). That is, they will follow the protocol honestly but
may try to infer as much information as possible. We also assume CS and the verifier
will never collude with each other. It is reasonable in practice because CS (e.g., educa-
tion management organization) is motivated to maintain its reputation and is not likely
to take the risk of colluding with the verifier. The KG is a fully trusted party.

3.3 Overview of CryptoMask

Encrypting each face vector with HE and computing the cosine similarity between the
query and each vector in the database is a straightforward but expensive way to per-
form face recognition securely. With m face vectors and d features per vector, this
method requires md homomorphic multiplications, which can be significantly time-
consuming. Additionally, this approach poses a privacy risk by leaking sensitive infor-
mation, such as the computed distance vectors d. Previous works, such as those pro-
posed in [3,9,10,24], also suffer from the same issue. To tackle all the issues above, we
introduce CryptoMask. In particular, we design a novel encoding method to enhance
performance and a secure result-revealing protocol to minimize information leakage.

To reduce both the communication and computation overhead, our main idea is to
encrypt face vectors in batches and compute the cosine similarity between the query
and a batch of face vectors, rather than one by one. Specifically, during the enrollment
process, given a batch of face vectors, DP encodes them into one BFV ciphertext cti
and sends it to CS. When the verifier queries for an image, CS performs only one homo-
morphic multiplication between each BFV ciphertext cti and the encrypted query. The
resulting ciphertext contains the cosine similarity between batched face vectors and the
queried face vector. To determine if the queried image matches any image stored in the
CS, the next step is to compare the cosine similarity with the threshold. Directly reveal-
ing the cosine similarity results to the verifier or the CS exposes sensitive information.
For example, they can learn how many face images in the database are similar to the
given one. To avoid such leakage, CryptoMask runs a secure result-revealing protocol
between CS and the verifier, which only reveals whether the queried face image exists
in the database to the verifier.

To further enhance the performance of CryptoMask, we can adopt a paralleling tech-
nique to compute the cosine similarity between the query and batched face vectors. As
done in work [3] [9], the homomorphic multiplication performed during the evaluation
can be processed in parallel with the SIMD technique. However, this technique requires
a prime plaintext modulus[17], implying that the homomorphic encryption must be



8 J. Bai et al.

performed in Zp with p as prime. In our secure result-revealing protocol, the secure
comparison is a non-linear function, and [26] has shown that OT-based protocols on
the ring Z2l perform 40%-60% better than on the prime field Zp in bandwidth con-
sumption, with almost no cost for modulo reduction. Hence, in this work, rather than
employing SIMD, we opt for the parallelization technique from [17] to compute homo-
morphic multiplication in parallel. This technique enables us to work exclusively in the
ring domain Z2l and brings another efficiency improvement by avoiding expensive ro-
tation, the key operation for SMID-based work. Furthermore, while [17] necessitates an
extraction algorithm (RLWE-based ciphertext to LWE-based ciphertext) for useful in-
formation extraction from the resulting ciphertext, we avoid it by masking the resulting
ciphertext and sending it back to the verifier, which is more efficient.

3.4 Data Representation

The coefficients of the BFV plaintext polynomial must be integers. To achieve this, we
need to encode our real-valued representation A ∈ Rm×d as an integer-valued repre-
sentation, which we denote by A ∈ Zm×d. For the remainder of the paper, we use A
to refer to the matrix where all elements are integers. We scale the real-valued features
into integers using a specified precision. This scaling method results in a loss of preci-
sion during computation. In our experiments, we evaluate the level of precision loss by
setting different precision scales, and report the results in Table 2 in Appendix B.

4 CryptoMask Details

This section describes the enrollment and evaluation processes of CryptoMask in detail.

4.1 Our Encoding Method

BFV scheme [11] is designed to work on a polynomial ring Rt = Zt/(x
N + 1) with

degree N . The observation is that the number of slots in a polynomial (e.g., 4096) is
far more than the dimension of a face vector (e.g., d = 128). Thus, we can employ one
polynomial to represent multiple face vectors as done in Cheetah [17]. In our design,
each row in the matrix A represents a face vector. That is, before encrypting and upload-
ing the face vectors to CS, DP encodes them into a matrix A and then transforms it into
the polynomial π(A). Then DP encrypts this polynomial using BFV as cti and sends
it to CS. The verifier encrypts the queried face vector b as ct and sends it to CS. The
cosine similarity is computed by multiplying these two ciphertexts cti and ct, whose
underlying plaintext polynomial is exactly π(d). As mentioned, the plaintext space of
BFV scheme is taken from Rt = Zt/(x

N + 1), which means the maximum degree of
a plaintext polynomial is N . The direct method is we fill all the coefficients slots in the
plaintext polynomial when considering encoding our face vectors database. However,
this might result in a loss of valid similarity. The reason is that the valid value in the
product will be dropped (module reduced to a position with a degree less than N ) if
its associated degree is greater than N , which means we will get the wrong distance
between the last face vector in the matrix and the queried image. Our idea is to leave
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Algorithm 1 Secure enrolment
Input: An indicator ind and the last ciphertext ctla from CS; nu d-dimensional face vectors
V = {a0, · · · ,anu−1} ∈ Znu×d and public key pk from DP.
Parameter: δ = ⌈N−d

d
⌉ where N is the plaintext polynomial degree.

Output: CS adds the encrypted face vectors to the database.
1: DP informs CS to add new face vectors. CS sends ind to DP.
2: DP takes δ − ind face vectors and organizes them into a matrix A0 ∈ Zδ×d by padding ind

zero vectors before these real samples. Then DP represents A0 as π(A0) and gets ct0 ←
Encrypt(pk, π(A0)).

3: DP separates the remaining vectors into eδ vectors and remains f vectors where f < δ and
nu = δ − ind+ eδ + f .

4: DP constructs e polynomials π(A1), · · · , π(Ae) using eδ face vectors and performs cti ←
Encrypt(pk, π(Ai)) for each i ∈ [1, e].

5: DP pads δ − f zero vectors to the remaining f vectors and gets π(Ae+1). Then DP encrypts
it as cte+1 ← Encrypt(pk, π(Ae+1)) and sets ind← δ − f .

6: DP uploads {ct0, · · · , cte+1} and ind to CS.
7: After receiving the ciphertexts, CS first updates ind and saves {ct1, · · · , cte+1}. Then CS

performs ctla ← Eval.Add(ctla, ct0).

the last d positions in the polynomial π(A) for “buffer” use and set their coefficients
as 0. Thus, all valid values will be presented as coefficients with degrees less than N .
That is, if the degree of a plaintext polynomial is N , we only encode its lower N − d
coefficients and leave the higher d coefficients as zeros. A similar strategy applies to
the queried face vector. Using this encoding method, the concrete number of ciphertext
for m face vectors with dimension d will be ⌈ md2

N−d⌉.

4.2 Enrolment Process

Based on our encoding method, we improve enrollment efficiency by reducing the num-
ber of ciphertexts uploaded by DPs. Specifically, we use one plaintext polynomial with
degree N to represent ⌈N−d

d ⌉ face vectors, which results in only one homomorphic ci-
phertext. Thus, DP only needs to upload a single homomorphic ciphertext for ⌈N−d

d ⌉
images to CS while the state-of-the-arts [3] and [9] require ⌈N−d

d ⌉ and d ciphertext,
respectively. This encoding strategy is also beneficial to CS for saving storage overhead
compared with work [3], [9]. The reason is that our designed encoding method allows
CS to merge its last stored ciphertext with a new one that comes from another DP.

The details of the enrollment process are given in Algorithm 1. We suppose CS al-
ready stored some encrypted face vectors under the public key pk and a DP then wants
to add nu d-dimensional face vectors V = {a0, · · · ,anu−1} to CS. CS maintains an in-
dicator ind, which tells DP the start vacant position in the last stored ciphertext. Rather
than directly encrypting these vectors and sending them to CS, DP first encodes the
data based on our proposed encoding method and then performs BFV encryption over
the encoded data. When receiving the indicator ind from CS, DP divides its vectors
into three parts. The first part contains δ− ind vectors where δ = ⌈N−d

d ⌉ represents the
maximum number of face vectors that can be encoded into a polynomial. Since CS is al-
lowed to merge the last ciphertext with a newly come one, DP organizes the first δ−ind
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Algorithm 2 Secure distance computation
Input: An encrypted database {ct0, · · · , cts−1}, where each cti is the ciphertext of a δ×d matrix
A = {a0,a1, · · · ,aδ−1} ∈ Zδ×d with m = sδ; A queried face vector b ∈ Zd from verifier.
Parameter: δ = ⌈N−d

d
⌉ where N is the plaintext polynomial degree.

Output: CS gets the secret share dA
0 and the verifier gets the secret share dA

1 where d = dA
0 +dA

1

is an m-length vector of computed distances.
1: The verifier sends a “setup” signal to KG. Then KG generates a key-switching key ksw ←

SwKeyGen(sk, skv) and sends it to CS.
2: The verifier encodes and encrypts b as ct← Encrypt(pk, π(b)) and sends ct to CS.
3: CS and the verifier generate two empty vectors dA

0 and dA
1 , respectively.

4: for i ∈ [0, s− 1] do
5: CS computes ct′i ← Eval.Mul(ct, cti).
6: CS randomly generates a plaintext polynomial ri = r0X

0 + · · ·+ rN−1X
N−1.

7: CS extracts its the (kd − 1)-th coefficients from ri and sets dA
0 [iδ + k − 1] ← −rkd−1

where k ∈ [1, δ].
8: CS computes ct′′i ← Eval.Add(ri, ct′i).
9: CS performs c′i ←Switching(ksw, ct′′i ).

10: end for
11: CS sends {c′0, · · · , c′s−1} to the verifier and keeps dA

0 [i] where i ∈ [0,m− 1].
12: for i ∈ [0, s− 1] do
13: The verifier performs pi ←Decrypt(skv, ct′i) for each i ∈ [0, s−1], where pi = a0X

0+
· · ·+ aN−1X

N−1.
14: The verifier extracts the (kd − 1)-th coefficients a(kd−1) from polynomial pi and sets

dA
1 [iδ + k − 1]← akd−1 where k ∈ [1, δ].

15: end for

vectors into a matrix A0 ∈ Zδ×d by padding ind zero vectors before these real samples.
This matrix is encrypted as ct0. When CS receives ct0, it can merge it to its last stored
ciphertext ctla by simply performing a homomorphic addition Eval.Add(ctla, ct0). The
second part contains eδ vectors, and the last part contains f vectors where f < δ and
nu = δ− ind+ eδ+ f . DP encrypts matrices A1, · · · ,Ae in the second part separately
using BFV and sends them to CS. Unlike the first part, for the last part, DP first pads
δ−f zero vectors to the remaining vectors, then encrypts it as cte+1 and sends it to CS.
In the last, DP updates the indicator ind = δ − f and sends it to CS for further use.

4.3 Evaluation Process

The evaluation process happens between a verifier and a CS. Specifically, as shown in
Algorithm 2, given a face vector, the verifier first encodes it into a polynomial. Then
the verifier encrypts the polynomial using the public key pk and sends it to CS. CS
gets a key-switching key ksw from KG after KG receives a “setup” signal from the
verifier. After receiving the encrypted query ct from the verifier, CS first runs local
homomorphic multiplication between each ciphertext cti stored in CS and ct, where
i ∈ [0, s − 1]. Rather than directly sending the computed results to the verifier, CS
masks each of them using a randomly selected plaintext polynomial ri. CS can easily
extract the (kd − 1)-th coefficients rkd−1 from ri where k ∈ [1, δ] and keeps its addi-
tive inverse into dA

0 [iδ+ k− 1], which is one of the secret parts of computed distances.



CryptoMask: Privacy-preserving Face Recognition 11

Algorithm 3 Secure result-revealing
Input: The secret share of distance vector dA

0 from CS; The secret share of distance vector dA
1

and a threshold ts from verifier.
Output: The verifier learns whether its face image exists in the database.
1: for i ∈ [0,m− 1] do
2: The verifier updates dA

1 [i]← ts− dA
1 [i].

3: CS and verifier jointly run (bB0 [i], b
B
1 [i])← SClt(d

A
1 [i],d

A
0 [i]).

4: CS and verifier jointly perform (bA0 [i], b
A
1 [i])← B2A(bB0 [i], b

B
1 [i]).

5: end for
6: CS computes b0 =

∑m−1
i=0 bA0 [i] and verifier computes b1 =

∑m−1
i=0 bA1 [i].

7: CS and verifier jointly perform (µ0, µ1)← SClt(−b0, b1).
8: CS sends µ0 to the verifier. The verifier computes µ← µ0 ⊕ µ1 and learns its face image is

in the database by µ = 1. Otherwise, it learns its face image is not in the database by µ = 0.

To enable the verifier to perform decryption by itself, CS transfers each ciphertext en-
crypted by pk to pkv by a key-switching technique before sending them to the verifier.
With the masked distances, CS does not require performing RLWE to LWE extraction
function, a key design in [17]. The extraction function is considered time-consuming as
it is performed over homomorphic ciphertext [5]. In our design, the verifier can extract
the coefficients by itself after decrypting the RLWE ciphertext. Doing this saves the
homomorphic extraction overhead on the CS side. Besides, we also reduce the required
communication for ⌈N−d

d ⌉ face vectors from ⌈N−d
d ⌉(N +1)q to 2Nq where q denotes

the ciphertext coefficients modulo. After decrypting all the received ciphertext, the ver-
ifier similarly extracts coefficients from obtained polynomial and saves them into dA

1 ,
which is another part of secret-shared computed distances.

Then CS runs a secure result-revealing protocol with the verifier as shown in Algo-
rithm 3. For each shared distance, CS and the verifier jointly run a secure comparison to
compute dA

1 [i] < dA
0 [i], where dA

1 [i]← ts−dA
1 [i] is from the verifier and dA

0 [i] is from
CS. Clearly, the result represents the less than comparison between the given threshold
ts and the distance d[i]. However, the comparison result is in binary format, so we
cannot directly aggregate all results. Thus, we need a B2A conversion (bA0 [i], b

A
1 [i])←

B2A(bB0 [i], b
B
1 [i]). After that, CS can compute b0 =

∑m−1
i=0 bA0 [i] and the verifier com-

putes b1 =
∑m−1

i=0 bA1 [i]. To obtain the queried result, CS and verifier jointly perform
(µ0, µ1)← SClt(−b0, b1) and CS sends µ0 to the verifier. In the end, the verifier learns
whether the queried face image exists in the database by computing µ← µ0 ⊕ µ1.

4.4 Security Analysis

The security of CryptoMask follows from the semantic security of HE and the security
of MPC. The complexity and security analysis can be found in Appendix A.

4.5 Optimizations

We present some optimizations to improve the efficiency of CryptoMask.



12 J. Bai et al.

Reducing Computation Overhead. In Algorithm 2, CS should run a key-switching
before sending the masked distance ciphertext to the verifier, which is time-consuming.
We can put this key-switching when the verifier first sets up. Rather than sending the
face vector encrypted by pk, the verifier encrypts it using its public key pkv . Then all
computations in CS are over the encrypted data over pkv . However, this is a trade-off
since it will save computation overhead but increase CS’s storage.
Reducing Communication Overhead. We employ the ciphertext compression tech-
nique from SEAL library [30], compressing the original ciphertext into around two-
thirds of the original size. Notably, this ciphertext compression can only be used for
data to be decrypted because it will cause a decryption error if the data is computed over
compressed ciphertext. Clearly, CryptoMask can benefit from the compression tech-
nique. Another ciphertext size reduction of CryptoMask is gained from Cheetah [17].
The observation is that CS only needs to send high-end bits of two parts of ciphertext to
the verifier. In this way, we save around 16% − 25% communication with a negligible
decryption failing chance (i.e., < 2−38). For a more detailed analysis, see [17].

5 Performance Evaluation

We implemented a prototype of CryptoMask on top of Cheetah [17] and evaluated its
performance with different datasets. In this section, we present our experimental results.
Experimental Setup. The experiment runs on a laptop running Centos 7.9 equipped
with Xeon(R) Gold 6240 2.6GHZ CPU with 32 GB RAM. The network setting is LAN
with RTT 0.1 ms and bandwidth 1 Gbps. We run all the experiments in a single-threaded
environment. We set the BFV parameter N as 4096, t as 20 bits, and q as 60 + 49 bits.
The security level λ is set as 128 bits. We also evaluated the performance of the existing
works [3] and [9] in the same environment with the same values for parameters. We
compared their results with CryptoMask. The time we report is averaged over ten trials.
Datasets. Similar to [3] and [9], we evaluate the performance of CryptoMask with
datasets that have different numbers of face images and dimensions. To show how
the accuracy is influenced by precision scaling, as done in [3], we use a real dataset
LFW [15] for the evaluation, which can be obtained from [16]. Specifically, LFW con-
sists of 13,233 face images of 5,749 subjects. As done in [3] and [9], We utilize the
state-of-the-art face representation FaceNet [29] to extract face vectors.

5.1 Efficiency

Following the same dataset construction from [9], we evaluate CryptoMask on four
representations at different dimensions (32-D, 64-D, 128-D, and 512-D). Fig. 2 and
Fig. 3 separately report the concrete computation and communication overhead with
dataset sizes varying from 1 to 100 million. In the following, for simplicity, we use
SFM to name the work in [3] and use HERS to name the work in [9].
Computation overhead. We report two computation overhead lines of CryptoMask in
Fig. 2 where CryptoMask-W denotes we fully implement CryptoMask while CryptoMask-
WO represents the version without the secure result-revealing protocol. In particular,
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(c) 128-D Representation

100 101 102 103 104 105 106

10−2

10−1

100

101

102

103

104

105

Database Size

R
un

ni
ng

Ti
m

e
(s

)

SFM
HERS

CryptoMask-W
CryptoMask-WO

(d) 512-D Representation

Fig. 2: Performance of evaluation process.

CryptoMask-WO, SFM, and HERS have comparable information leakage, where they
all leak the computed similarity to the verifier.

From Fig. 2 we can see both CryptoMask-W and CryptoMask-WO outperform SFM
in the four dimensions settings. The reason is the primary computation overhead in se-
cure face recognition is caused by the homomorphic multiplication, which is m times
in [3] while it is ⌈ m

N−d⌉d times in CryptoMask. Compared with HERS, CryptoMask-
WO shows the same tendency but enjoys less computation overhead. The main rea-
son is we provide optimizations for computation. As for CryptoMask-W, the required
computation overhead is near to HERS but achieves better security by concealing the
similarity between face vectors from the verifier. CryptoMask is sensitive to the fea-
ture dimension, and the running time gap between SFM and CryptoMask-W drops with
the increase of the dimension. For example, when working on 32-D, CryptoMask-W
outperforms SFM by 283× against a gallery of 100 million. When working on 512-D,
CryptoMask-W only saves around 132× computation than SFM, yet CryptoMask still
shows its high efficiency for the large-scale dataset. Even when compared with similar
work HERS, CryptoMask-W lies between CryptoMask-WO and HERS, indicating that
it enjoys a better computation overhead while ensuring database security.

Communication. Fig. 3 details the communication consumption of CryptoMask-W,
SFM and HERS. It shows that CryptoMask-W requires the least communication re-
source than the other two. The main reason comes from the given communication opti-
mizations mentioned in Section 4.5.
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(c) 128-D Representation
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Fig. 3: Communication overhead comparison of our protocol with SFM and HERS.

6 Conclusion

We introduce CryptoMask, a practical privacy-preserving face recognition protocol that
leverages homomorphic encryption and secure multi-party computation techniques.
Our encoding strategy facilitates an efficient enrollment process, enabling DP to add
more face vectors to CS. We construct an efficient matrix computation for distance
calculation, based on our encoding method. Unlike existing state-of-the-art techniques
that reveal the computed distance to the verifier, we protect intermediate results using a
secure result-revealing protocol. Our experiments show that CryptoMask outperforms
existing approaches in both computation and communication.
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A Complexity and Security Analysis

We first provide a theoretical complexity analysis to show the efficiency of CryptoMask.
Then we show that CryptoMask is secure against a semi-honest adversary while assum-
ing KG is fully trusted.
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A.1 Complexity Analysis

In CryptoMask, communication overhead mainly comes from two parts. One is from
CS, who sends all the encrypted distances to the verifier, which contains O(Nm/d)
communication cost. Another one is the result of the secure revealing process, which
requires O(ml) communication. We can obtain the overall communication complexity
as O(Nm/d + ml). The computation overhead is more complex. We set the compu-
tation for data encryption using HE as Cen, for homomorphic multiplication as Cmul,
for homomorphic addition as Cadd, for key switching as Csw, for secure comparison as
Ccom and for secure B2A as Ccov . The overall computation overhead for the CS side
is O((Nm/d)(Ccom + Cadd + Csw) + m(Ccom + Ccov)) and for the verifier side is
O(Cen +m(Ccom + Ccov)).

A.2 Security Analysis

Privacy of Face Vector Matrix. In CryptoMask, all face vectors are encrypted by HE,
and only the KG knows the secret key. Due to the semantic security of HE, neither CS
nor the verifier learns sensitive information about the underlying encrypted face vector;
thus, the privacy of the face vector is always maintained.

Now we show CryptoMask only reveals a face recognition result to the verifier and
nothing else to either party. This is argued as regards to a corrupted CS and a corrupted
verifier, respectively. Note we only provide the security of the HE-based part as the
simulation of the comparison/B2A protocols can be implemented in the existing ways.

Corrupted CS. We first demonstrate the security against a semi-honest CS. Intu-
itively, the security against a semi-honest CS comes from the fact that the CS’s view
of the execution includes only ciphertext, thus reducing the argument to the semantic
security of HE. We now give the formal argument.

Let A be the semi-honest CS in the real protocol. We construct a simulator S in the
ideal world as follows:

1. At the beginning of the protocol execution, S receives the input A from the environ-
ment E and also receives the public key pk and the vector length d. The simulator
sends A to the trusted party.

2. Start running A on input A. Next, S computes and sends a ciphertext ct, which
encrypts a d dimensional vector 0 to the CS under the public key pk.

3. Output whatever A outputs.

We argue the above simulated view is indistinguishable from real protocol execution.
Using the fact that A is semi-honest, at the end of the protocol in the real world, the
verifier obtains the encryption of A · b where b is the verifier’s queried face image.
Since S is semi-honest, this also holds in the ideal world. Since A · b is a deterministic
function, the joint distribution of the verifier’s output and the adversary’s output decom-
poses. Thus, it is sufficient to show that the simulated view from S is computationally
indistinguishable from the real view from A.

The view ofA in the real world contains one part: the encrypted face image ct from
the verifier. When interacting with the simulator S, adversary A sees an encryption of
0. Security follows immediately by the semantic security of the BFV scheme.
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Corrupted Verifier. We now prove the security against a semi-honest verifier. We
construct a simulator S in the ideal world as follows:

1. At the beginning of the execution, S receives the input b from the environment E
and also receives the BFV key pairs (pk, sk) and the matrix size m, d. The simula-
tor sends b to the trusted party.

2. Start runningA on input b. Next, S computes and sends ciphertexts ci which is the
encryption of an m × d matrix filled by some random values to the verifier under
the public key pkv .

3. Output whatever A outputs.

At the end of face recognition, CS has no output. Thus, to show the security against a
semi-honest verifier, it suffices to show that the output of S is computationally indistin-
guishable from the output of the adversaryA. Now we show the view of simulator S in
the ideal world is computationally indistinguishable from the view of the adversary A
in the real world.

The view of A in the real world contains one part: the encrypted face database
{c1, · · · , cn} from CS. When interacting with the simulator S, adversary A sees the
encryption of random values. Security follows immediately by the semantic security of
the BFV scheme.

B Accuracy

We report the results of face recognition on dataset LFW for state-of-the-art face repre-
sentation FaceNet in Table 2. We only test face templates of 128-D. For more results on
different representations, we refer to [3], which is also constructed on BFV. Same as [3],
we report true acceptance rate (TAR) at three different operating points of 0.01%, 0.1%
and 1.0% false accept rates (FARs). We first report the performance of the unencrypted
face images. We treat these outputs as a baseline to compare. To evaluate encrypted
face images, we consider four different quantization for each element in facial features.
Specifically, we employ precision of 0.1, 0.01, 0.0025 and 0.0001. It shows that the per-
formance of most given precision is competitive with the performance conducted from
the raw data. We conclude that CryptoMask working over HE and MPC can perform as
well as the one working over raw data.

Table 2: Face recognition accuracy for LWF dataset (TAR @ FAR in %)

Method 128-D FaceNet (Accuracy)
0.01% 0.1% 1%

No FHE 98.70 98.70 98.70
FHE(1.0× 10−4) 98.70 98.70 98.70
FHE(2.5× 10−3) 98.70 98.70 98.70
FHE(1.0× 10−2) 98.76 98.76 98.76
FHE(1.0× 10−1) 98.50 98.50 98.50
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