2308.06028v1 [cs.SE] 11 Aug 2023

arxXiv

Validation-Driven Development*

Sebastian Stock(, Atif Mashkoor”, and Alexander Egyed

Johannes Kepler University
Altenbergerstr. 69, A-4040 Linz, Austria
{firstname.lastname}@jku.at

Abstract. Formal methods play a fundamental role in asserting the
correctness of requirements specifications. However, historically, formal
method experts have primarily focused on verifying those specifications.
Although equally important, validation of requirements specifications of-
ten takes the back seat. This paper introduces a validation-driven devel-
opment (VDD) process that prioritizes validating requirements in formal
development. The VDD process is built upon problem frames - a require-
ments analysis approach - and validation obligations (VOs) - the concept
of breaking down the overall validation of a specification and linking it to
refinement steps. The effectiveness of the VDD process is demonstrated
through a case study in the aviation industry.

Keywords: Validation-driven development, validation obligations, formal meth-
ods, Event-B

1 Introduction

Formal methods play a crucial role when developing critical systems, allowing a
correct specification of the system behavior. This specification can be checked for
consistency via verification that often takes preeminence in formal development.
Consequently, techniques like model checking, theorem proving, and associated
toolsets such as SPIN [12] or Isabelle [20] are widely used in industry. On the
other hand, the compliance of the specification with desired system behavior can
be ensured via validation. Validation is supported by techniques like animation
and simulation and associated toolsets like AsmetaA [5] or JeB [I§]. Contrary to
verification, using validation techniques and toolsets is less common, especially
in state-based formal methods [16]. Even if used, they are considered a secondary
activity towards the end of the development cycle.

A typical formal requirements specification process starts with a set of (nat-
ural language) requirements. Once specified, requirements undergo a stringent

* The research presented in this paper has been conducted within the IVOIRE project,
which is funded by “Deutsche Forschungsgemeinschaft” (DFG) and the Austrian
Science Fund (FWF) grant # I 4744-N and has been partly financed by the LIT
Secure and Correct Systems Lab sponsored by the province of Upper Austria.


https://orcid.org/0000-0002-2231-8656
https://orcid.org/0000-0003-1210-5953
https://orcid.org/0000-0003-3128-5427

2 Stock et al.

verification process for consistency checking. Then, the validation process fol-
lows. The whole development process is iterative. Verification is often given pre-
eminence over validation because it does not make sense to validate something
inconsistent. However, prioritizing verification over validation may lead to cru-
cial issues, such as keeping the end users out of the loop. While specifiers create,
verify, and validate specifications, the end users only give inputs at the spec-
ification process’s beginning or end. Consequently, late feedback means more
changes, efforts, and costs.

Many techniques have been proposed to overcome this problem. For exam-
ple, Baumeister [4] suggested using test-driven development (TDD) for writing
formal specifications. The author proposes generating run-time assertions from
the specification to check for compliance between specification, code, and tests.
Later, Bonfanti et al. [6] proposed using behavior-driven development (BDD) for
a similar cause. The advantage of BDD over TDD is that it supports early col-
laboration among stakeholders, such as specifiers, developers, quality assurance
experts, and end users, by giving low-level tests a high-level meaning. However,
this reliance on tests comes with a price, and while testing is a valid means of
validation, it is not necessarily exhaustive enough to cover all validation chal-
lenges. BDD restricts itself to a scenario language translated to some test in
the target language (e.g., natural language to LTL formula), which may not be
extensive enough to validate all properties of interest. This translation is often
limited depending on the expressiveness of the target language. Furthermore,
BDD is usually applied to formal specifications late in the process.

This paper proposes a validation-driven development (VDD) process for writ-
ing formal specifications that puts validation at the center of formal development.
The VDD process focuses on creating validatable specifications, allowing end
users to subjugate the formal specification process. Furthermore, VDD suggests
a highly expressive and systematic structuring, elicitation, documentation, trac-
ing, and maintenance process for formal requirements specifications appealing
to all stakeholders.

The VDD process is built upon two well-known concepts: problem frames [13]
and validation obligations (VOs) [I7]. Problem frames help analyze requirements
in a structured and collaborative manner. On the other hand, VOs help check
the compliance of a specification concerning the stakeholders’ requirements and
support incremental specification writing and evolution. Analogous to proof obli-
gations, VOs break down the overall validation of a specification and associate
it with the specification’s refinement steps.

The rest of the paper is structured as follows: Section [2] provides the necessary
background to understand the content of this paper by introducing Event-B and
VOs. However, note that the findings of this paper are language-independent.
Section [3] introduces and exemplifies the VDD process. Section [4] demonstrates
the application of the VDD process through a case study from the aviation do-
main. Section [5] compares the VDD process to other similar approaches. Finally,
Section [6] concludes the paper with some proposed future work.



Validation-Driven Development 3

2 Background

2.1 Event-B

The formal language Event-B [I] is based on first-order predicate logic and set
theory and helps with specification writing, verification, and proving using the
platform Rodin [2]. The behavior of a specification is defined using machines
that contain a set of variables, which are described in the invariant sec-
tion. Events are considered state transitions, with a guard marked with the
when clause that must be true before enabling the event. Context defines the
static part of a specification. The Event-B language supports both vertical and
horizontal refinement styles. While vertical refinement is about concretizing the
abstract data structure, horizontal refinement is about introducing additional
features to the specification.

2.2 Validation obligations

Validation obligations (VOs) are logical formulas associated with the correctness
claims of given validation properties. Each VO represents a requirement showing
evidence of its existence in the specification. Figure [I|shows the internal compo-
nents of a VO and their interplay. A validation expression (VE) is run against the
specification and can consist of one or more validation tasks (VT) connected by
the logical operators V, A, and ;. The semicolon operator represents a validation
expression where the components before and after the semicolon share the same
state space of the specification. Thus, this operator allows for complex valida-
tion expressions where steps depend logically on each other. Typical validation
techniques are animation, simulation, testing, or model checking. VTs have pa-
rameters determined by the requirements and structures of the specification.
VOs help us with traceability, documentation, and maintenance throughout the
specification as they act as tokens documenting how a requirement is realized in
a specification. Further, they indicate when a requirement is no longer satisfied.

Let us consider the following requirement in a lift example where the oper-
ator can choose between multiple floors from 0 to 2. REQO: The floor level will
eventually equal 2. This requirement is implemented in specification MO. Suppose
we choose LTL model checking as a validation technique. In that case, we can
encode the requirement into the following VO, where the parameter is an LTL
formula:

REQO/MO : LTL1 := FG({z = 1}) (1)

3 Validation-driven development

VDD proposes a systematic process for requirements elicitation, documentation,
tracing, and maintenance during formal developments. In the following, we dis-
cuss the workflow of the VDD process, the role of VOs in specification writing,
and the structuring of the specification through problem frames.



4 Stock et al.

Validation Expression

[

determine< Requirement

Validation Task
contribute

Parameter |- J implement

T determi Specifiaction

ontribut

Fig. 1: Internal view of a VO

3.1 Workflow
Figure [2 shows the workflow of the VDD process, which is as follows:

1. Select a requirement.

2. Write a VO that, if successful, would give evidence for correctly implementing
the requirement.

3. Implement the VO in the specification.

4. Verify the specification, e.g., check for internal consistency.

5. Run the VO, e.g., execute the associated validation task.

After satisfying a VO, the specifier can introduce a refactoring session to improve
the existing specification. Overall, the approach is iterative for all requirements,
and if we introduce additional VOs and change the specification, leading to
other VOs failing, we have a hint of inconsistency. The VDD process also helps
to keep things simple, i.e., if we need to introduce more than a handful of vari-
ables, state transitions, and invariants during the VO implementation, we most
likely want too much at once. The VO makes this apparent. Checking multiple
properties of one requirement hints that the requirement may be divided into
sub-requirements.

Ezample. Let us specify REQO from the previous lift example (step 1). For this, we
first create the VO as shown in Equation (1)) (step 2). Now we need to implement
the VO (step 3). We approach this as minimalist as possible. In the LTL formula,
we need a variable floor which is some form of a number. Consequently, we start
with x equaling 1. Then, we check the specification for internal consistency (step
4). If this is successful, we employ the LTL model checking to evaluate the VO
(step 5).

3.2 Specification structuring and refinement

We now focus on problem structuring and refinement planning, two challenging
tasks in formal developments [I1]. The first challenge is to recognize what aspects



Validation-Driven Development 5

Start

1
Select
Requirement

Write VO

No

hange specifcati \
{ No

s 4
Implement Verify Next
Vo Specification vesh| Run vo ves Requirement

Fig.2: VDD workflow

o

of the problem are related to which other elements, i.e., eliciting the structure of
the specification. The second challenge is to derive a valid refinement structure
from this, which supports the verification and validation process. However, both
challenges require experience to master them.

Framing the problem. We adapt the problem frame methodology [13] to struc-
ture specifications. Figure [3| shows the problem frame of the lift example. The
rectangles represent the concerning domains. Each domain represents an aspect
of the physical world that is observable to the stakeholders. Lines between the
domains are interfaces and explain how the domains interact with each other.
The rectangle with the doubled vertical stripe is the machine domain, the speci-
fication we want to write. Rectangles with one stripe are designed domains that
represent the information we are free to express as we desire. This notation is for
complex domains where the design is up to the specifier but where the details
do not concern the global problem. Finally, rectangles with no stripe are given
domains. Given domains are those we need to consider but cannot alter their
appearance. They are usually very abstract for our specification purposes and
require less attention. Our addition to the problem frames is the arrows on the
interfaces indicating an information flow. Either they are uni- or bi-directional.

Ezample. In our running example in Figure we want to specify a lift with
three areas of concern. The Floors we want to navigate to are a given domain
we cannot change. The lift Doors need to be detailed and marked as a designed
domain. Finally, the Buttons is also a designed domain, as we have yet to get
further instructions on how the buttons should look. Going into further detail,
in Figure we can see a sub-problem only concerning the lift’s Doors. This
sub-problem was separated as it would bloat Figure [3] with information only



6 Stock et al.

Floors
f [—readmg—> Floors

[—readlng
open/close—] Lift Outer door

moves:
Doors * 1

{_mt * open/close
choose Lift
; Buttons Inner Door
(a) The main problem (b) The door sub-problem

Fig. 3: Problem frame of the lift problem and the sub-problem concerning Doors

specific to one domain. We can see that we replaced the Doors domain with two
more specific domains related to each other. The Outer Doors are the doors on
each floor. Inner Door is the lift’s door and must read the outer door status
to synchronize accordingly. Furthermore, three domains share the open/close
interface. The arrows at the interfaces show us the dependencies of their inter-
action, mainly the lift specification. In reality, domains are chosen and marked
according to given and extracted information. This can lead to eliciting new
requirements to fill gaps between the desired specification and reality. More-
over, we may involve non-technical stakeholders in the process due to a visual
structure.

Structuring specification. We use the following guidelines to structure the spec-
ification:

1. Domains sharing an interface will need to interact eventually. Therefore, they
should refine each other horizontally (e.g., Doors is dependent on Floors in
our problem frame and should refine it).

2. The first domain to be implemented is the one with the most connecting
incoming interfaces. We then implement the domain with the second-highest
incoming interfaces and proceed iteratively (e.g., specifying Floors before
Doors as Floors has the most incoming interfaces).

3. Whenever we omit details in the main problem frame and create a sub-
problem frame, we are confronted with a choice:

(a) We can introduce the details immediately, substituting the domain with
the domains introduced in the sub-problem (e.g., Doors is immediately
specified as Outer Doors and Inner Door).

(b) We can introduce the details later in a vertical refinement and keep
the abstract domain around (e.g., Doors is refined to Outer Doors and
Inner Door).



Validation-Driven Development 7

4. Whenever multiple domains share an interface without being connected oth-
erwise, they may be related in a vertical refinement relationship.

5. Domains not directly connected to the machine domain are of secondary
concern.

Structuring the specification further and fostering understanding for stakehold-
ers involved, we can annotate domains with corresponding requirements ex-
tracted from the requirements document. This helps later with the elicitation of
VOs. We distinguish between two types of VOs: VOs focusing on the domain
and VOs focusing on the interplay of two domains. Separating both concerns
helps estimate the validation effort, as VOs focusing on the domain will likely
still be valid if we change unrelated domains.

Example continued. Applying these guidelines, we can derive a specification
structure. For example, to specify the lift, we would start with the floors, as
they are referenced most (Guideline 1). Next, we would specify the Doors. Here
we are confronted with a choice. We can keep the Doors abstract for now and
move on to the Buttons (Guideline 3b) or detail the Doors before moving on
(Guideline 3a). The decision for either is dependent on the requirements we want
feedback on. If we keep the Doors abstract (Guideline 3a), we can introduce the
Buttons and gather early feedback on the whole system and the interaction
between domains. On the other hand, if we choose to introduce the details of
the Doors (Guideline 3b), we encounter a special case of two domains sharing
an interface and being connected independently. The dependency structure is
that Outer Doors and Inner Door complement each other as the bidirectional
interface indicates. However, as a sub-problem, they refine the Doors domain.
Consequently, both domains are introduced at the same time. Therefore the
problem frame helped us to evaluate the impact of possible specification struc-
tures.

Validation and refinement. When introducing VOs early and then applying
changes to the specification due to refinement or refactoring, we must tackle
the (re)validation question. We can use the problem frame to indicate where
revalidation might become necessary. For example, in horizontal refinement re-
lationships, if we have an incoming interface, i.e., we consume information from
another domain and change the producing domain, we must revalidate every VO
consuming from this producing domain. Analogous is true for having producing
domain. Adding to the insights proposed by Stock et al. [26] if a VO only con-
cerns a single domain and is not dependent on others, outside changes do not
invalidate it. For vertical refinement, rechecking VOs depends on the specifica-
tion language. If the specification language has a strict notion of refinement, such
as Event-B, where we can show the preservation of safety and liveness properties,
our VOs will stay intact. For specification languages featuring a liberal notion of
refinement, such as ASMs, we might recheck VOs. In some cases, the VO can be
transferred, preserving its insights. For example, the works of Arcaini et al. [3]
and Stock et al. [25] tackle the problem of information transfer, and the insights
can be applied to VOs.



8 Stock et al.

4 Case study

4.1 System description

We exemplify the VDD process on the Arrival Manager (AMAN) case study [19].
The AMAN system focuses on developing a human-machine interface for manag-
ing aircraft arriving at an airport. The particularity lies in continuously schedul-
ing new aircraft to land at the airport while users can interact with the schedule
on a screen in three different. The first interaction to consider is dragging the
aircraft to another landing slot via the mouse. The second is blocking landing
slots and disallowing the computer from scheduling aircraft in this slot. The
third is to put the aircraft on hold, meaning that the countdown till landing is
not reduced for these planes. Furthermore, the user can zoom in and out on the
landing schedule, thus reducing or increasing the presented slots and aircraft,
respectively. Figure [4] shows the working of the AMAN system. In the middle,
one can see the remaining time till landing, and the boxes on the left and right
are planes. Colors indicate different statuses, for example, hold.

WOAOD50
DLH1603

DLHOT7
LGL9301 =

IFE]]
AUA971
DLH403 H

DLH9691
DLHO29

DLHO41 >

FSD141

usai1gz2 H

DLH1801

DLH147 =
DLH2107

DLH463 H

Fig. 4: Screenshot of the AMAN system [15]

4.2 Problem structuring

This subsection demonstrates how the requirements of the AMAN system can
be specified using the VDD process. We use the problem frames approach intro-
duced in Section to understand and define the problem. For brevity, only a
portion of the case study is shown here. For the complete specification, please
consider the work of Gelefius et al. [7].



Validation-Driven Development 9

Defining domains of interest. Consider Figure the AMAN we want to spec-
ify is marked as the centerpiece by the two extra bars inside; this is the goal
of the specification process. Next to the AMAN are designed domains partially
mentioned in the system description. Here, we have the designed domain User,
which encapsulates the user behavior. For example, the AMAN reacts to the
user input. We designated User as a designed domain because we know about
some user behavior, but we are unaware of the details and might want to create
a sub-problem frame. Then there is the designed domain of Schedule, which
encapsulates the process of the AMAN creating a schedule from aircraft and
time slots. We marked Schedule as a designed domain as we are not sure of the
structure and behavior of the schedule and want to investigate further. Finally,
we have the designed domain Display that works as a transmitter as a phys-
ical way of transmitting user inputs to the Schedule. However, the lack of an
interface with the AMAN suggests its secondary role.

Sub-problem structure. Diving deeper into the designed domains, we start with
the sub-problem shown in Figure Focusing on the Schedule itself, we now
consider the Schedule’s two components: Time, which is again a designed do-
main, and Aircraft, a given domain. We decided here that Aircraft is a given
domain as no detail about Aircraft is available. Therefore, we consider it a
rather primitive datatype. On the other hand, Time is complex and might re-
quire much consideration. Both tie into the Schedule domain, which, according
to the proposed guidelines, indicates a refinement. Additionally, both have the
same amount of incoming interfaces. Therefore, we can start specifying with any
of them.

The second sub-problem in Figure[5d covers the topic of user interaction. Here
the domain structure is simple. However, all sub-domains need the Schedule,
and additional domains share the interaction interface, which indicates some in-
terference in the domains. Otherwise, the domains remain very loosely connected.
What could be a consideration is that we define abstract User interaction that
interacts with the Schedule and later refines the User interaction into the three
subdomains. This, again, depends on how we define the scheduling.

Final specification structure. We can use the proposed guidelines discussed
in Section to derive a specification structure from these initial problem
frames. Considering incoming interfaces, starting with the Schedule seems rea-
sonable. We must decide if we detail the Schedule before implementing User
interaction. An argument for this would be that we can validate the most basic
function of the AMAN and get feedback on it. Further, we tackle the difficult
representation of time early. Afterward, we may implement the User interac-
tion. We subjugate the choice of what to implement first to what needs the most
investigation and validation effort, as the individual User interactions only are
loosely connected. Finally, we can conclude with the specification of the Display
properties. The Display has no direct connection to the primary concern of the
AMAN system. Therefore, its specification is a secondary concern.
The final specification structure is as follows:



10 Stock et al.

fcreate— AMAN ’

inputs Aircraft
rmteract—?‘L user

schedule— Schedule
Display Time

(a) Problem frame of the AMAN (b) Sub-problem concerning the Schedule

Schedule

Zoom

Schedule le—interact-@
Hold/
Unhold

Move

(¢) Sub-problem concerning the user in-
teraction

Fig.5: Problem frame of the AMAN and a sub-problem frame concerning the
scheduling

1. Create the Schedule (Guideline 2):
(a) Introduce the Aircraft domain (Guideline 3a)
(b) Vertically refine the created specification by introducing Time (Guideline
3a & 4)

2. Horizontally refine the specification by introducing User interactions (Guide-
line 1 & 3a) and consequently Zoom, Hold/Unhold, and Move in any order
(Guideline 1)

3. Horizontally refine the specification by introducing Display (Guideline 5)

4.3 Specification and validation

We start the specification process with the Schedule sub-problem. In the follow-
ing, we refer to requirements directly derived from the specification as a direct
quote: REQX with X being a number. According to the tactics presented in Sec-
tion we start by selecting a requirement, creating a VO, and then specifying
the requirement. For example, let’s assume we select the requirement of REQ1:



Validation-Driven Development 11

1machine M@ AMAN Update sees MO_AMAN Update Ctx
rl

svariables scheduledAirplanes

4

5 invariants

6 @inve,1 scheduledAirplanes c AIRPLANES
7

8 events

9 event INITIALISATION

1e then

11 @actl,1 scheduledAirplanes = 2

12 end

13

14 event AMAN_Update

15 any newScheduledAirplanes

16 where

17 @grde,1 newScheduledAirplanes c AIRPLANES

18 then

19 @actl,l scheduledAirplanes = newScheduledAirplanes
26 end

Fig. 6: The schedule sub-problem with only aircraft

“Planes can be added to the flight sequence, e.g., planes arriving in close range of
the airport.” This requirement means: a) we have aircraft, b) we have something
to store them, and ¢) we can manipulate this storage by adding planes. Let’s
formulate this as a VO:

REQ1/MO : GF(BA(scheduledAirplanes # scheduledAirplanes$0)) —
GF(BA({3z.(z € scheduledAirplanes A x ¢ scheduledAirplanes$0)}))

The GF (Globally-Finally) operator indicates that the brackets’ expression
will eventually be true. The BA is the before-after operator, comparing the
current version of a variable with the previous version marked with an $0, i.e.,
the difference between scheduledAirplanes in one step and the next step is
observed. The LTL formula will ensure that our scheduled aircraft can contain
an aircraft not previously in the set of scheduled aircraft. This, however, implies
some state transition in our specification, going from an initial state to a state
with one more aircraft that was not previously contained.

Figure [] is an Event-B specification that attempts to satisfy the VO. We
have a variable representing our Schedule, an AIRPLANE datatype, and an event
creating a new schedule, eventually satisfying the VO. We could now generate
more VOs to ensure soundness implementation regarding the amount of added
planes. For now, we are satisfied and proceed.

Taking a look back at Figure [5b] we need to implement the Time domain
to cover the Schedule domain fully. The corresponding requirement we want
to satisfy by introducing the time is REQ5: “The space between two aircraft is
always > 3, with 3 being the time in minutes.” Following is the corresponding
VO.



12 Stock et al.

imachine M1 Landing Sequence refines Mo AMAN Update sees M1 Landing Sequence Ctx

variables landing_sequence

P WY IS N

invariants
@invl,1 landing sequence € AIRPLANES -~ PLANNING_INTERVAL
v13,2 Yal,a2 - al € dom(landing_seguence) A

a ) a2 € dom(landing_sequence) & al # a2 =

10 (DIST(landing sequence(al) = landing sequence(az))
11 = AIRCRAFT_SEPARATION_MIN)

12 @gluel,l scheduledAirplanes = dom(landing_sequence)

13

14 events

15 event INITIALISATION

16 then

7 @actl,l landing_seguence = o

18 end

19

26 event AMAN Update refines AMAN Update

21 any new_landing sequence

22

23 new_landing sequence € AIRPLANES + PLANNING_INTERVAL
24 ) Val,a2 - al € dom(new_landing sequence)

25 a2 € dom(new landing sequence) a al # a2 -

26 (DIST(new_landing_sequence(al) ~ new_landing_sequence(a2))
27 = AIRCRAFT_SEPARATION_MIN)

28

29 newScheduledAirplanes = dom(new landing_sequence)
38

31 landing seguence = new landing sequence

32

33end

Fig. 7: The schedule sub-problem with added time

REQ5/M1 :Val,a2 - al € dom(landing sequence)A
a2 € dom(landing sequence) A al # a2 —
(DIST(landing sequence(al) — landing sequence(a2))
> AIRCRAFT,SEPARATIDN,MIN)

For this VO, we assumed that we upgraded our scheduledAirplanes from
Figure[6]to landing_sequence as shown in Figure[7] which is a mapping from air-
craft to time slots. Consequently, we demand that every aircraft contained in this
mapping has a distance (DIST) to every other aircraft of ATRCRAFT_SEPARATION MIN,
which in our case is 3. Consequently, we must upgrade our scheduledAirplanes
and take care of the proof.

Figure[7]shows the corresponding specification. We introduced the mentioned
landing sequence and further introduced inv13,2 to establish proof. Further-
more, we refined our event to use the upgraded data structure. After discharging
the proof, we establish that our requirement is truly represented in the specifi-
cation.

As previously established, both domains Aircrafts and Time have a con-
nection, and therefore when creating M1, we need to show that REQ1 is still
preserved in the specification. As Rodin only supports a safety-preserving no-
tion of refinement, re-establishing the VO must happen by re-executing the LTL
formula.



Validation-Driven Development 13

After completing the scheduling sub-problem, we move on to the User in-
teraction part. Our VOs concerning the Schedule will not be revalidated when
validating the interaction. We only consume the Schedule’s behavior as laid out
at the end of Section 42

5 Related work

Several approaches have been proposed for the validation of requirements speci-
fications. While some focus on the whole specification process, others focus only
on certain aspects. We briefly introduce and compare some of them with our
proposed process.

5.1 BDD usage in formal requirement specification

BDD [24] is a well-established technique in the area of software development. It
is appealing due to its easy-to-follow procedure and its effectiveness in establish-
ing that requirements are part of the code. First, a scenario is created and run
(with intermediate steps) against the code. If this is successful, the next scenario
is tackled. If it fails, either code or scenario has to be fixed. One strength is the
imposed iterative nature, which comes naturally by adding more satisfied scenar-
ios. Furthermore, tracing and maintaining requirements is massively simplified
as every requirement has one scenario mapped to a group of tests. Naturally,
attempts have been made to use BDD in formal developments.

There are many significant adaptations of the BDD approach for the formal
specification community. For example, Snook et al. [23] proposed an Event-B
targeting version of Cucumber [27] to describe scenarios in the Gherkirﬂlanguage
which is translated into a trace and executed against a specification. The scenario
language FRETISH [9] goes in a similar direction as it can be used to express
requirements which are then converted to an LTL formula with the help of the
FRET [§] tool. This approach orients itself heavily on what Gehrkin does for
programming examples. It provides a basic language to write scenarios, which
can be (automatically) linked to LTL formulas.

While these approaches can be applied successfully, they suffer from two
drawbacks. First, they consider validation after writing specifications, thus los-
ing out on the advantages of validation-centered specifications. Doing validation
last will compromise completeness due to time constraints or the complexity
of the specification. Second, scenario language used in BDD causes problems
of expressiveness and, therefore, suffers from a lack of completeness. Second,
while these approaches work well, they only provide one solution to a validation
problem. We must rely on the correct translation from the scenario language to
the validation technique. Furthermore, there is no way to choose between dif-
ferent validation techniques to translate the scenario. This means a method like
FRETISH can only react to a scenario by producing an LTL formula. However,
model checking may not always be a good solution, e.g., in infinite state spaces.

! nttps://cucumber.io/docs/gherkin/


https://cucumber.io/docs/gherkin/

14 Stock et al.

VDD addresses both concerns while keeping the compact and easy-to-follow
style of BDD. First, it puts validation at the center of the formal development
process. Second, it offers a liberal syntax allowing for expressing and conse-
quently validating different properties of interest with many techniques and tools.

Arcaini et al. [3] showed how BDD-like scenarios targeting ASMs can be
transferred between refinement steps of abstract state machines. While the pre-
viously mentioned disadvantages to using BDD-like scenarios apply, this work
highlights the importance of the transferability of validation results. In the con-
text of VDD, with our approach, we know early when results are transferable or
might be due to revalidation, as pointed out at the end of Section

5.2 Bridging the gap between natural language requirements and
formal specification

Several efforts have been made to narrow the gap between natural language re-
quirements and formal specifications, as it can reduce the mental load placed on
the specifier, and it helps when attempting to involve non-technical stakehold-
ers. The efforts are bidirectional: creating specifications from natural language
requirements and validating natural language requirements in specifications. As
discussed in Section [5.1] BDD for formal specifications caters to the latter con-
cern.

Regarding creating specifications from natural language requirements, Golra
et al. [I0] focus on creating intermediate steps with meta-models for systemat-
ically translating requirements to formal specifications. A second work of Sayer
et al. [21122] uses translation patterns. However, as both approaches introduce
intermediate layers of abstraction, they also introduce additional error sources
where the translation could be wrong. Furthermore, they may suffer from the
same problems discussed in Section 5.1} where the intermediate language might
not be powerful enough to translate the constructs.

VDD does not introduce intermediate layers but changes the standard order
from specification first to validation. Therefore no new error source was intro-
duced. Furthermore, the mental load is reduced as the problem is tackled in
smaller portions. Finally, with VOs, non-technical stakeholders can get a feeling
for the progress the specification made and point to requirements that still need
work.

5.3 Requirements tracing

Another field of interest is systematically tracing the implementation status of
requirements. Exculpatory for these efforts are, for example, the works [TTJI4],
where a sophisticated set-theoretic representation for requirements is proposed,
which is supposed to help with the tracing of requirements. Compared to our ap-
proach, the authors heavily focus on the properties of Event-B and proofing with
proof obligations. Validation is a gap filler for everything that cannot be proven.
While our work also contributes to traceability, it takes a more lightweight ap-
proach inspired by software development strategies and thus is more intuitive.



Validation-Driven Development 15

Furthermore, the focus is on validating and creating validatable specifications,
not fitting a validation solution to an existing specification.

6 Conclusion and future work

This paper presents the validation-driven development process for writing formal
specifications. It offers an iterative approach to formal specifications, strongly
focusing on their validation. The aim is to provide a systematic process to struc-
ture, elicit, document, trace, and maintain formal requirements specifications.
To this end, we employ an adapted version of problem frames complemented by
validation obligations.

In the future, we want to provide tool support that helps automate the
VDD process by keeping track of VOs, the specification structure, and changes.
Especially the steps of VOs elicitation and creation could be fully automated.

References

1. Abrial, J.R.: Modeling in Event-B: system and software engineering. Cambridge
University Press (2010)

2. Abrial, J.R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:
Rodin: an open toolset for modelling and reasoning in Event-B. Int. J. Softw.
Tools Technol. Transf. 12(6), 447-466 (2010)

3. Arcaini, P., Riccobene, E.: Automatic refinement of ASM abstract test cases. In:
2019 IEEE International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW). pp. 1-10 (April 2019)

4. Baumeister, H.: Combining formal specifications with test driven development. In:
Zannier, C., Erdogmus, H., Lindstrom, L. (eds.) Extreme Programming and Agile
Methods - XP/Agile Universe 2004. pp. 1-12. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

5. Bonfanti, S., Gargantini, A., Mashkoor, A.: AsmetaA: Animator for abstract state
machines. In: Proceedings ABZ. pp. 369-373. LNCS 10817 (2018)

6. Bonfanti, S., Gargantini, A., Mashkoor, A.: Generation of behavior-driven develop-
ment C++ tests from abstract state machine scenarios. In: New Trends in Model
and Data Engineering - MEDI 2018 International Workshops. Communications in
Computer and Information Science, vol. 929, pp. 146-152. Springer (2018)

7. GeleBlus, D., Stock, S., Vu, F., Leuschel, M., Mashkoor, A.: Modeling and analysis
of a safety-critical interactive system through validation obligations. In: Glasser, U.,
Creissac Campos, J., Méry, D., Palanque, P. (eds.) Rigorous State-Based Methods.
pp. 284-302. Springer Nature Switzerland, Cham (2023)

8. Giannakopoulou, D., Mavridou, A., Rhein, J., Pressburger, T., Schumann, J., Shi,
N.: Formal requirements elicitation with FRET. In: International Working Con-
ference on Requirements Engineering: Foundation for Software Quality (REFSQ-
2020) (2020)

9. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Generation
of formal requirements from structured natural language. In: Requirements Engi-
neering: Foundation for Software Quality: 26th International Working Conference,
REFSQ 2020, Pisa, Italy, March 24-27, 2020, Proceedings 26. pp. 19-35. Springer
(2020)



16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

Stock et al.

Golra, F.R., Dagnat, F., Souquieres, J., Sayar, 1., Guerin, S.: Bridging the gap be-
tween informal requirements and formal specifications using model federation. In:
Software Engineering and Formal Methods: 16th International Conference, SEFM
2018, Held as Part of STAF 2018, Toulouse, France, June 27-29, 2018, Proceedings
16. pp. 54-69. Springer (2018)

Hallerstede, S., Jastram, M., Ladenberger, L.: A method and tool for tracing re-
quirements into specifications. Science of Computer Programming 82, 2-21 (2014),
special Issue on Automated Verification of Critical Systems (AVoCS’11)
Holzmann, G.J.: The model checker spin. IEEE Transactions on software engineer-
ing 23(5), 279-295 (1997)

Jackson, M.: Problem frames: analysing and structuring software development
problems. Addison-Wesley (2001)

Jastram, M., Hallerstede, S., Leuschel, M., Russo, A.G.: An approach of require-
ments tracing in formal refinement. In: Verified Software: Theories, Tools, Exper-
iments: Third International Conference, VSTTE 2010, Edinburgh, UK, August
16-19, 2010. Proceedings 3. pp. 97-111. Springer (2010)

Martinie, C., Palanque, P., Pasquini, A., Ragosta, M., Rigaud, E., Silvagni, S.:
Using complementary models-based approaches for representing and analysing atm
systems’ variability. In: 2nd International Conference on Application and Theory
of Automation in Command and Control Systems (ATACCS 2012). pp. 146-157.
IRIT Press, Toulouse (2012)

Mashkoor, A., Kossak, F., Egyed, A.: Evaluating the suitability of state-based
formal methods for industrial deployment. Softw. Pract. Exp. 48(12), 2350-2379
2018

1(\/[ashl)<oor, A., Leuschel, M., Egyed, A.: Validation obligations: A novel approach to
check compliance between requirements and their formal specification. In: ICSE’21
NIER. pp. 1-5 (2021)

Mashkoor, A., Yang, F., Jacquot, J.: Refinement-based validation of Event-B spec-
ifications. Softw. Syst. Model. 16(3), 789-808 (2017)

Palanque, P., Campos, J.C.: Aman case study. In: Glasser, U., Creissac Campos,
J., Méry, D., Palanque, P. (eds.) Rigorous State-Based Methods. pp. 265-283.
Springer Nature Switzerland, Cham (2023)

Paulson, L.C.: Isabelle: A generic theorem prover. Springer (1994)

Sayar, 1., Souquieres, J.: Bridging the gap between requirements document and
formal specifications using development patterns. In: 2019 IEEE 27th Interna-
tional Requirements Engineering Conference Workshops (REW). pp. 116-122.
IEEE (2019)

Sayar, 1., Souquieres, J.: Formalization of requirements for correct systems. In:
2020 IEEE Workshop on Formal Requirements (FORMREQ). pp. 28-34. IEEE
2020

(Snoolz, C., Hoang, T.S., Dghyam, D., Butler, M., Fischer, T., Schlick, R., Wang,
K.: Behaviour-driven formal model development. In: Formal Methods and Soft-
ware Engineering: 20th International Conference on Formal Engineering Methods,
ICFEM 2018, Gold Coast, QLD, Australia, November 12-16, 2018, Proceedings 20.
pp. 21-36. Springer (2018)

Solis, C., Wang, X.: A study of the characteristics of behaviour driven development.
In: 2011 37th EUROMICRO Conference on Software Engineering and Advanced
Applications. pp. 383-387 (Aug 2011)

Stock, S., Mashkoor, A., Leuschel, M., Egyed, A.: Trace refinement in B and Event-
B. In: Riesco, A., Zhang, M. (eds.) Formal Methods and Software Engineering. pp.
316-333. Springer International Publishing, Cham (2022)



26.

27.

Validation-Driven Development 17

Stock, S., Vu, F., GeleBus, D., Leuschel, M., Mashkoor, A., Egyed, A.: Validation
by abstraction and refinement. In: Glasser, U., Creissac Campos, J., Méry, D.,
Palanque, P. (eds.) Rigorous State-Based Methods. pp. 160-178. Springer Nature
Switzerland, Cham (2023)

Wynne, M., Hellesoy, A., Tooke, S.: The cucumber book: behaviour-driven devel-
opment for testers and developers. Pragmatic Bookshelf (2017)



	Validation-Driven Development

