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Abstract

We further continually develop the theory of a generalized fuzzy set with
contradictory, opposite and medium negation (GFScom) . The general-
ized properties (including convexity and concavity) of GFScom are dis-
cussed. By introducing GFScom to Mamdani fuzzy systems, we propose
new constructive approaches from any (infinite) input-output data pairs
to approximate any continuous function on a compact set to a desired
degree of accuracy, and investigate the approximation error bounds for
the classes of the constructed fuzzy systems. Furthermore, the new better
sufficient conditions for this class of fuzzy systems to be universal approx-
imators are provided. For Mamdani fuzzy systems, the novel conditions
require a smaller number of known fuzzy sets than all previously pub-
lished classical conditions. Finally, we illustrate several cases and com-
pare the new results to published error bounds through numerical cases.

Keywords: negation, generalized fuzzy sets GFScom, design of fuzzy
systems, universal approximator
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1 Introduction

Negative information plays an essential role in knowledge representation and
commonsense inference(see Torres-Blanc et al (2019); Jiang et al (2021);
Bustince et al (2022); Fernandez-Peralta et al (2022) and references therein).
However, the notion of negation is often considered as a poorer form of mean-
ing than affirmation Kassner et al (2020). In the past decades, some researchers
suggested that uncertain information processing requires different forms of
negations in various fields. Xiao and Zhu (1988); Zhu and Xiao (1988c,b)
developed Medium Logics (ML) with the contradictory, opposite and fuzzy
negation under the view of medium principle (i.e., the principle uncondition-
ally recognizes that for any predicate P and object x it is not always true
that either there exists P (x) or the opposite side of P (x), cf. Zhu and Xiao
(1988a)), which has very sound, complete syntax and semantics Zou (1988,
1989). The medium algebra, which may be viewed as a generalization of the
well-known De Morgan algebra, developed by Pan and Wu Pan and Wu (1990)
is the algebraic abstract of Medium Propositional (MP) logic system in ML,
i.e., the medium algebra can be viewed as the algebraic structure of MP. Wag-
ner (2003); Analyti et al (2008) pointed out that there are (at least) two types
of negation: a weak negation representing non-truth (e.g. “he does not like
cat”) and a strong negation denoting explicit falsity (e.g. “he dislikes cat”).
Esteva et al (2000); Cintula et al (2010) extended the Strict Basic Logic (SBL;
an extension of the well-known basic logic) with a unary connective ∼. The
semantics of ∼ is any decreasing involution, i.e., the function n : [0, 1] → [0, 1]
such that n(n(x)) = x and n(x) ≤ n(y) whenever x ≥ y. The SBL with an
involutive negation is only the fuzzy logic with both negations (the other nega-
tion is the negation in Basic Logic (BL) proposed by Hájek (1998), namely,
¬x = x → 0). Kaneiwa (2007) developed the description logic with classi-
cal and strong negations, where the classical negation expresses the negation
of a statement, while the other is used to depict explicit negative informa-
tion (or negative facts). Ferré (2006) proposed an epistemic extension of the
concept of negation in Logical Concept Analysis, i.e., the extensional nega-
tion is the classical negation, such as “old/not old” and “pretty/not pretty”,
and the intentional negation can be interpreted as opposition, such as “big/s-
mall” and “fat/thin”. Pan (2010, 2012, 2013) argued that there are three types
of negations, namely, contradictory negation, opposite negation and medium
negation, in fuzzy knowledge and its negative relationships, subsequently built
up a novel fuzzy set referred to as the fuzzy sets with contradictory negation,
opposite negation and medium negation (FScom). In order to provide one logic
calculus tool for FScom, Pan (2013) and Zhang (2014) proposed fuzzy logic
with three kinds of negations from the axiomatization and natural calculus
reasoning points of view, respectively. Murinová and Novák (2014) studied the
formal theory of generalized Aristotelian square of opposition with intermedi-
ate quantifiers(expressions such as most, many, a lot of, a few, large part of,
small part of ), and gave the formal definitions of contradictories, contraries
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and subcontraries. A first comprehensive research focusing on commonsense
implications of negation and contradiction is presented in Jiang et al (2021).

In Novák (2001) and Novák (2008), Novák proposed a formal theory of the
trichotomous evaluative expressions which are a subclass of evaluative expres-
sions (expressions such as “very small”,“quite big”,“more or less medium”,
etc.) containing evaluative trichotomy of the type “small-medium-big”. On
the basis of fuzzy type logic (a higher order fuzzy logic, cf. Novák (2005)),
Novák presented formal representation of fundamental evaluative trichotomy,
i.e., the form of “small-medium-big”. In the design procedure of fuzzy sys-
tems, on the one hand, the fuzzy distribution needs to be provided which
covers the input and output spaces, i.e, the membership function of each fuzzy
set must be constructed appropriately. However, in Novák (2001) and Novák
(2008), this concrete constructive approach is not provided. On the other hand,
the linguistic variables of the forms are commonly used, such as “positive
big”, “positive medium”, “positive small”, “zero”, “negative small”, “negative
medium”, “negative big” and so on, to represent the fuzzy sets in the input
and output spaces. For such fuzzy sets, the method of how to determine their
membership functions is not provided in Novák (2001) and Novák (2008). As
we stated below, from the logical negations point of view, big and small are
regarded as a pair of opposite negations, while medium may be viewed as the
medium negation of small (or big). In general, we are willing to establish the
membership function of small (or big) in a certain context and afterwards infer
reasonably membership functions of the others.

Zhang and Li (2017) proposed the notion of generalized fuzzy sets GFS-
com, and applied it to the table look-up scheme. Although we have given the
notion of GFScom, there are still many important issues that have not been
addressed. The first issue is to explore the generalized properties of GFScom.
Considering the generalized triangular norm operations, namely t-norms and
s-norms, what are the prominent properties of GFScom? What is the convex-
ity of GFScom with respect to opposite negative operator, medium negative
operator and contradictory negative operator? The second issue is to design
the fuzzy systems from any (infinite) input-output data pairs that can approx-
imate continuous function in some optimal fashion based on GFScom. The
third issue is to check whether the designed fuzzy system is a universal approx-
imator and what is the approximation bound for the above constructed fuzzy
system. The fourth issue is to compare the novel conditions requiring the num-
ber of known fuzzy sets with all previously published classical conditions for
Mamdani fuzzy systems constructed in this paper. We will give complete study
to the above four issues in this paper.

The remainder of this paper is organized as follows. In Section 2, the notion
of generalized fuzzy sets GFScom and its relative algebraic operations are
given. In Section 3, we further investigate some interesting generalized prop-
erties (including convexity and concavity) of GFScom. In Section 4, on the
basis of GFScom, we propose the design methods of the fuzzy system that
can approximate a certain continuous function g(x) in some optimal fashion.
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In Section 5, we build up the approximation bounds for the classes of fuzzy
systems constructed by this paper and give approximation accuracy analysis.
The demonstrations and comparisons are given to illustrate the methods in
Section 6 and conclusion and future work end in Section 7.

2 The Notion of GFScom

On the necessity of extending fuzzy sets. Fuzzy sets are very applicable
for coping with vague and inaccurate phenomena. As we have stated above,
from the philosophical point of view, we need to distinguish strictly the notions
of contradictory, opposite and medium negation. However, in fuzzy sets, only
one negation is considered, i.e., contradictory negation, usually defined by
¬x = 1 − x for all x ∈ [0, 1]. Naturally, in order to deal with three types of
negations, we need to extend fuzzy sets by introducing the notions of opposite
negation and medium negation.

The problem of symmetry. The idea of contradictory negation and
opposite negation is, somehow, symmetric. In other words, given two concepts
A and B in a certain context, if A is the contradictory negative concept w.r.t.
B, in general, we would like to expect that B is the contradictory negative
concept w.r.t. A too. The requirement for the opposite negation is identical.
However, for the notion of medium negation, such requirement is not necessary
since the medium negation only depicts a medium concept (state) negating
two opposite sides.

Moreover, further requirement for the opposite negation is as follows: given
a pair of opposite negative concepts A and B over the universe of discourse
U , we hope the possibility distribution of A looks like the “mirror image” of
that of B. For example, we consider a pair of opposite negative concepts “tall
stature” and “short stature” in a concrete district. If some person x was viewed
as “having tall stature”, then there should exist another y with short stature
in this district, and vice versa.

In Zhang and Li (2017), the authors proposed the concept of GFScom,
and applied it to construct the table look-up scheme. In what follows, for the
integrity and ease of discussion, the notion of GFScom is represented, and
F(U) denotes a set of all the fuzzy subsets in U .

Definition 1 Given any universal discourse U and finite numerical district D,
namely, it has the following forms:[a, b], (a, b], [a, b), (a, b), or {a = x1 < x2 < <
xn = b}, where a, b ∈ R, called the left and right end of D, respectively, we call the
mapping f : U → D as (one dimensional) finite quantized district mapping.

Definition 2 Suppose thatA belongs to F(U), a, b are the left and right end of U ,
respectively, ∀u ∈ U , ⊗ be a t-norm, and n be a complement.

(1) If a mapping A¬ : U −→ [0, 1] satisfying A¬(u) = n(A(u)), the fuzzy subset
determined by A¬(u) is said to be an n contradictory negative set of A. Particularly,
the fuzzy subset determined by A¬(u) = n(A(u)) = 1 − A(u) is referred to as a
contradictory negative set of A when n is the linear complement.
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(2) If a mapping A` : U −→ [0, 1] satisfying A`(u) = A(a+ b− u) and A`(u) +
A(u) ≤ 1, the fuzzy subset determined by A` is referred to as an opposite negative
set of A.

(3) If a mapping A∼ : U −→ [0, 1] satifying A∼(u) = A¬(u) ⊗ (A`)¬(u) =
n(A(u))⊗n(A`(u)) = n(A(u))⊗n(A(a+b−u)), we call the fuzzy subset determined
by A∼ a ⊗-n medium negative set of A. Particularly, if t-norm ⊗ is a min-operator
and n a linear complement, the fuzzy subset satisfying A∼(u) = min{1− A(u), 1−
A(a+ b− u)} is referred to as a medium negative set of A.

The above defined fuzzy sets are called Generalized Fuzzy Set with Contradictory,
Opposite and Medium negation, written as GFScom for short.

Definition 3 In GFScom, the operations such as containment, equivalency, union
and intersection between a pair of arbitrary fuzzy subsets are identical to the
counterparts in Zadeh fuzzy sets.

3 Properties of GFScom

3.1 Generalized Properties of GFScom

In this subsection, the generalized properties of GFScom will be explored.

Definition 4 Klement et al (2000); Klir and Yuan (1995) Given a universe of
discourse U , A,B,C ∈ F(U). Let ⊗,⊕ be a t-norm, s-norm, respectively, then

(1) If C(x) = A(x) ⊕ B(x), ∀x ∈ U , denoted by C = A
⋃

⊕ B, C is called the
module union of A and B;

(2) If C(x) = A(x) ⊗ B(x), ∀x ∈ U , written as C = A
⋂

⊗ B, C is called the
module intersection of A and B.

Theorem 1 Let ⊗,⊕, n be a t-norm, s-norm and complement, respectively. For any
universal discourse U with the left end a and the right end b, A,B and C are any
GFScom on U , we have

(1) (i) A¬¬ = A (law of double contradictory), (ii) A`` = A (law of double
opposition), (iii) A∼ = A`∼;

(2) (i) A
⋃

⊕ B = B
⋃

⊕ A, (ii) A
⋂

⊕ B = B
⋂

⊕ A;
(3) (i) (A

⋃

⊕ B)
⋃

⊕ C = A
⋃

⊕(B
⋃

⊕ C),
(ii) (A

⋂

⊗ B)
⋂

⊗ C = A
⋂

⊗(B
⋂

⊗ C);
(4) If A ⊆ B, then ∀C ∈ F(U), A

⋃

⊕ C ⊆ B
⋃

⊕ C, A
⋂

⊗ C ⊆ B
⋂

⊗ C;
(5) A

⋃

⊕ ∅ = A, A
⋂

⊗ ∅ = ∅, A
⋃

⊕ U = U , A
⋂

⊗ U = A;

(6) If ⊗,⊕ are dual with respect to the complement n, and (A
⋃

⊕ B)` and

(A
⋂

⊗ B)` are defined, i.e., ∀u ∈ U , (A
⋃

⊕ B)`(u) + (A
⋃

⊕ B)(u) ≤ 1,

(A
⋂

⊗ B)`(u) + (A
⋂

⊗ B)(u) ≤ 1, then we have
(i) (A

⋃

⊕ B)¬ = A¬ ⋂

⊗ B¬, (A
⋂

⊗ B)¬ = A¬ ⋃

⊕ B¬,

(ii) (A
⋃

⊕ B)` = A`
⋃

⊕ B`, (A
⋂

⊗ B)` = A`
⋂

⊗ B`,

(iii) A∼ = A¬ ⋂

⊗ A`¬, (A
⋃

⊕ B)∼ = A∼ ⋂

⊗ B∼;
(7) A

⋂

⊗ B ⊆ A
⋂

B ⊆ A
⋃

B ⊆ A
⋃

⊕ B;
(8) (i) A

⋃

⊕(
⋃n

k=1 Ak) =
⋃n

k=1(A
⋃

⊕ Ak),
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(ii) A
⋂

⊗(
⋃n

k=1 Ak) =
⋃n

k=1(A
⋂

⊗ Ak),
(iii) A

⋃

⊕(
⋂n

k=1 Ak) =
⋂n

k=1(A
⋃

⊕ Ak),
(iv) A

⋂

⊗(
⋂n

k=1 Ak) =
⋂n

k=1(A
⋂

⊗ Ak);
(9) If both ⊗ and ⊕ are continuous, for any index set T , we have

(i) A
⋃

⊕(
⋃

t∈T At) =
⋃

t∈T (A
⋃

⊕ At),
(ii) A

⋂

⊗(
⋃

t∈T At) =
⋃

t∈T (A
⋂

⊗ At),
(iii) A

⋃

⊕(
⋂

t∈T At) =
⋂

t∈T (A
⋃

⊕ At),
(iv) A

⋂

⊗(
⋂

t∈T At) =
⋂

t∈T (A
⋂

⊗ At).

Proof. We only prove (1),(6) and (9), while others are analogous.
(1)(i)For arbitrary u in U , by Definition 2, one can see A¬¬(u) =

n(n(A(u))) = A(u). Hence A¬¬ = A follows.
(ii) For arbitrary u in U , by Definition 2, we have A``(u) = A`(a+b−u) =

A(a+ b− (a+ b−u)) = A(u), where a, b is, respectively, the left and right end
of U . Consequently, A`` = A holds.

(iii) ∀u ∈ u, A`∼(u) = A`¬(u) ⊗ A``¬(u) = A¬(u) ⊗ A`¬(u) = A∼(u)
follows from Definition 2 and (1)(ii). Hence, A∼ = A`∼ holds.

(6)(i) For any u in U , since ⊗ and ⊕ are mutually dual with respect
to n, one can see that (A

⋃

⊕ B)¬(u) = n((A
⋃

⊕ B)(u)) = n(⊕(A(u), B(u)))
= n(n(⊗(n(A(u)), n(B(u))))) = ⊗(n(A(u)), n(B(u))) = A¬(u)

⋂

⊗ B¬(u) by
Definitions 2 and 3. Analogously, we can prove the other.

(ii) For any u in U , by Definition 2 we get (A
⋃

⊕ B)`(u) = (A
⋃

⊕ B)(a+

b−u) = ⊗(A(a+ b−u), B(a+ b−u)) = A`(u)
⋃

⊕ B`(u). Hence, the equality
holds. The verification of the other equality is similar.

(iii) The first equality is trivial. Subsequently, we need only to prove the
second equality, i.e., (A

⋃

⊕ B)∼ = A∼
⋂

⊗ B∼.
By the above proved outcomes, we have

(A
⋃

⊕ B)∼ = (A
⋃

⊕ B)¬
⋂

⊗(A
⋃

⊕ B)`¬

= (A¬ ⋂

⊗ B¬)
⋂

⊗(A`
⋃

⊕ B`)¬

= (A¬ ⋂

⊗ B¬)
⋂

⊗(A`¬ ⋂

⊗ B`¬)

= (A¬ ⋂

⊗ A`¬)
⋂

⊗(B¬ ⋂

⊗ B`¬)

= A∼ ⋂

⊗ B∼.

(9) (i) For any u in U , thanks to Definitions 2 and 3 and continuity of ⊕,
we can get (A

⋃

⊕(
⋃

t∈T At))(u) = A(u) ⊕ (∨t∈TAt(u)) = ∨t∈TA(u) ⊕ At(u)
= (

⋃

t∈T (A
⋃

⊕ At))(u). Consequently, the equality follows. The proof for the
rest is analogous and omitted.

3.2 Convexity and Concavity of GFScom

It is well known that convexity is an important concept for the quantitative
and qualitative analysis in operation research which helps to optimize the
solution of problems. The notion of convexity also forms one of the pillars of
nonclassical analysis which is a novel branch of fuzzy mathematics. So, many
scholars studied some properties of convex fuzzy sets (e.g., see Nourouzi and
Aghajani (2008) and references therein). Therefore, in the design procedure of
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fuzzy systems, it is useful for us to analyze the constructed fuzzy system if the
convex (or concave) fuzzy sets are used to construct the desired fuzzy system.

In this subsection, we suppose for concreteness that U is a n-dimensional
Cartesian product Dn, where D is an interval of the form: [a, b], (a, b], [a, b),
(a, b) such that a, b ∈ R.

Definition 5 convexity (up convexity). Let A be any GFScom on U . A is convex if
and only if

A(λx1 + (1− λ)x2) ≥ A(x1) ∧A(x2) = min{A(x1), A(x2)} (1)

for all x1 and x2 in U and all λ in [0, 1].

In contrast to convexity, one can readily get the following notion.

Definition 6 concavity (down convexity). Let A be any GFScom on U . A is concave
if and only if

A(λx1 + (1− λ)x2) ≤ A(x1) ∨A(x2) = max{A(x1), A(x2)} (2)

for all x1 and x2 in U and all λ in [0, 1]. Specially, we call A strongly concave if
A(λx1 + (1 − λ)x2) ≤ A(x1) ∧ A(x2) = min{A(x1), A(x2)} holds for all x1 and x2
in U and all λ in [0, 1].

Clearly, it is not hard to see that if A is strongly concave, then it is concave;
conversely, the result does not follow.

A basic property of convex (strongly-concave) GFScom is expressed by

Theorem 2 Let A and B be any GFScom on U , ⊗, ⊕ a t-norm, s-norm, respectively.
Then we have

(1) If A and B are strongly concave, so are their module intersection A ∩⊗

B and module union A ∪⊕ B;
(2) If A and B are convex, so is their intersection A ∩B.

Proof. We only prove (1), (2) is similar.
(1) Let C = A ∩⊗ B be strongly concave. Then

C(λx1 + (1− λ)x2) = A(λx1 + (1− λ)x2) ∩⊗ B(λx1 + (1− λ)x2).

Now, since A and B are strongly concave, the following inequalities

A(λx1 + (1− λ)x2) ≤ A(x1) ∧A(x2)

B(λx1 + (1− λ)x2) ≤ B(x1) ∧B(x2)

hold, and hence

C(λx1 + (1− λ)x2) ≤ (A(x1) ∧A(x2)) ∩⊗ (B(x1) ∧B(x2))
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follows from the monotonicity of t-norms. For the right-hand side of the above
inequality, one can get

(A(x1) ∧A(x2)) ∩⊗ (B(x1) ∧B(x2))

= [(A(x1) ∧A(x2)) ∩⊗ B(x1)] ∧ [(A(x1)

∧A(x2)) ∩⊗ B(x2)]

= (A(x1) ∩⊗ B(x1)) ∧ (A(x2) ∩⊗ B(x1))

∧ (A(x1) ∩⊗ B(x2)) ∧ (A(x2) ∩⊗ B(x2))

≤ (A(x1) ∩⊗ B(x1)) ∧ (A(x2) ∩⊗ B(x2))

= (A ∩⊗ B)(x1) ∧ (A ∩⊗ B)(x2)

from Definition 6 and Theorem 1(8). Hence,

C(λx1 + (1− λ)x2) ≤ (A ∩⊗ B)(x1) ∧ (A ∩⊗ B)(x2)

follows. Thus, C(λx1+(1−λ)x2) ≤ C(x1)∧C(x2) holds. That is to say, A∩⊗B
is strongly concave. The proof of the other is analogous.

(2) It is immediate from Lemma 1 in Nourouzi and Aghajani (2008). The
proof is finished.

In the following, we present the convex-concave connections of a fuzzy set
and its three types of negative sets.

Theorem 3 Let A be any GFScom on U . Then we have
(1) If A is convex, then its opposite negative set A` is also convex, and vice versa.
(2) If A is concave, then its opposite negative set A` is also concave, and vice

versa.

Proof. We only prove (1). The proof of (2) is analogous. If A is convex, i.e.,
the inequality (1) follows, we then have A(λx1 +(1−λ)x2) ≥ (A(x1)∧A(x2))
for all x1 and x2 in U and all λ in [0, 1] . In the special case of a + b − x1 ,
a+ b− x2 in U , the above inequality follows, too, that is,

A(λ(a+ b− x1) + (1− λ)(a+ b− x2)) ≥ A(a+ b− x1) ∧A(a+ b− x2)

or equivalently

A(a+ b− (λx1 + (1− λ)x2)) ≥ A(a+ b− x1) ∧A(a+ b− x2)

and therefore A`(λx1 + (1− λ)x2) ≥ A`(x1) ∧A`(x2).
Conversely, assume that A` is convex. By the just above-proven procedure,

one can readily see A`` is convex. Furthermore, obviously, A`` = A holds by
the aforementioned Theorem 1(1). Hence, A is convex. The proof is completed.

Theorem 4 Let A be any GFScom on U , n any complement. Then we have
(1) If A is concave, then its n contradictory negative set A¬ is convex, and vice

versa.
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Proof. (1) If A is concave, by inequality (2), we get

A(λx1 + (1− λ)x2) ≤ A(x1) ∨A(x2)

for all x1 and x2 in U and all λ in [0, 1]. Furthermore, the following inequality

n(A(λx1 + (1− λ)x2)) ≥ n(A(x1) ∨A(x2))

holds, where n is any complement, and therefore,

A¬(λx1 + (1− λ)x2) ≥ A¬(x1) ∧A¬(x2).

Consequently, A¬ is convex.
Conversely, the n contradictory negative set A¬ is convex, by inequality

(1), we have
A¬(λx1 + (1− λ)x2) ≥ A¬(x1) ∧A¬(x2)

for all x1 and x2 in U and all λ in [0, 1]. Moreover, the inequality

n(A¬(λx1 + (1− λ)x2)) ≤ n(A¬(x1) ∧A¬(x2))

follows, where n is any complement. The equivalent inequality

n(n(A(λx1 + (1− λ)x2))) ≤ n(n(A(x1))) ∨ n(n(A(x2)))

holds. Thus,
A(λx1 + (1− λ)x2) ≤ A(x1) ∨A(x2).

Therefore, A is concave.
(2) It is analogous to the proof of Theorem 4(1).

Theorem 5 Let A be any GFScom on U . If A is concave, then its medium negative
set A∼ is convex.

Proof. If A is concave, then A¬ is convex by Theorem 4(1) and A` is
concave by Theorem 3(2). Moreover, it is immediate that A`¬ is convex from
Theorem 4(1). According to Theorems 2(1) and 1(6), one can easily see that
A∼ = A¬ ∩A`¬ is convex.

Note that the only case is considered in Theorem 5 but two cases in
Theorems 3 and 4, the reason is that, in generally, we can not obtain the
convex-concave property of intersection of fuzzy sets A and B when A and
B are concave. Thus, when A is convex, the convex-concave property of ⊗-n
medium negative set of A can not been determined according to Definition 6.

 

(2) If A is convex, then its n contradictory negative set A¬ is concave, and vice 
versa. 
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However, the special case of ⊗-n medium negative set, i.e., the t-norm ⊗ is a
min-operator and n a linear complement, is convex whenever A is concave.

4 Design of fuzzy systems based on GFScom

In this section, we assume that the analytic formula of nonlinear function:
g(x) : U ⊂ R

n → R is unknown. But we can determine the input-output pairs
(x; g(x)) for any x ∈ U . Based on the above GFScom, our task is to design a
fuzzy system that can approximate g(x) in an optimal manner.

4.1 Preliminary Concepts and Notations

Definition 7 Wang (1997); Zeng and Singh (1996) Pseudo-Trapezoid-Shaped Mem-
bership Functions (PTS). Let [a, d] ⊆ U ⊂ R and a ≤ d. A continuous function
A(x) = A(x; a, b, c, d,H) with a ≤ b ≤ c ≤ d is a PTS function given by

A(x; a, b, c, d,H) =



















I(x), when x ∈ [a, b)

H, when x ∈ [b, c]

D(x), when x ∈ (c, d]

0, when x ∈ U − [a, d]

, (3)

where 0 < H ≤ 1, 0 ≤ I(x) ≤ 1 is strictly monotone increasing in [a, b) and 0 ≤
D(x) ≤ 1 is strictly monotone decreasing in (c, d]. When H = 1, it is simply denoted
by A(x) = A(x; a, b, c, d).

Remark 1 Pseudo-trapezoid membership functions of the form Eq.(3) contain a num-
ber of commonly-employed membership functions as special cases. For instance, if
we choose

I(x) =
x− a

b− a
and D(x) =

x− d

c− d
, (4)

then the pseudo-trapezoid-shaped membership functions change into the trapezoid
membership functions. If b = c, and I(x) and D(x) are defined as in Eq.(4), we
can obtain the triangular membership functions. For normal triangular membership
functions, we often denote them by the simpler notation △(x; a, b, d).

4.2 Design of Fuzzy System with First-Order

Approximation Accuracy

Now, based on the above defined GFScom, we are ready to design a particular
type of fuzzy systems that have some nice properties. We first specify the
problem as follows.

The Problem: Let g(x) be a function on the compact set U = [α1, β1]×
[α2, β2]× · · · × [αn, βn] ⊂ R

n and the analytic expression of g(x) be unknown.
Assume that for any x ∈ U , we can determine g(x). Our task is to design a
fuzzy system that approximates g(x) to any degree of accuracy using GFScom
developed by this paper.

We now design such a fuzzy system step-by-step as follows.
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Step 1. Define ⌈Ni

2 ⌉ (i = 1, 2, 3, . . . , n; ⌈x⌉ denotes the smallest integer

which is not less than x) fuzzy sets Ai
1, A

i
2, . . . , A

i

⌈
Ni
2

⌉
in [αi,

αi+βi

2 ] which are

normal, consistent and complete.
Specially, we may, for example, take those fuzzy sets with PTS functions

Ai
1(x; a

1
i , b

1
i , c

1
i , d

1
i ), . . . , A

i

⌈
Ni
2

⌉
(x; a

⌈
Ni
2

⌉
i , b

⌈
Ni
2

⌉
i , c

⌈
Ni
2

⌉
i , d

⌈
Ni
2

⌉
i ), and Ai

1 < Ai
2 <

· · · < Ai

⌈
Ni
2

⌉
with a1i = b1i = αi, and the arguments of Ai

⌈
Ni
2

⌉
on the domain

Ui = [αi, βi] satisfy the following conditions: c
⌈
Ni
2

⌉
i = d

⌈
Ni
2

⌉
i = αi+βi

2 whenever

Ni is odd; otherwise, c
⌈
Ni
2

⌉
i = αi + βi − d

⌈
Ni
2

⌉
i < d

⌈
Ni
2

⌉
i ≤ αi + βi − c

⌈
Ni
2

⌉
i and

Ai

⌈
Ni
2

⌉
(αi+βi

2 ) ≤ 0.5.

Step 2. By Definition 6, 1) compute (Ai
ji
)`(ji = 1, 2, . . . , ⌈Ni

2 ⌉, i =
1, 2, . . . , n) on Ui = [αi, βi] when Ni is even; 2) when Ni is odd, calculate
(Ai

ji
)`(ji = 1, 2, . . . , ⌈Ni

2 ⌉ − 1, i = 1, 2, . . . , n) on Ui = [αi, βi], and Ai′

⌈
Ni
2

⌉
(x) =

Ai

⌈
Ni
2

⌉
(αi + βi − x) for any x ∈ Ui.

Specifically, whenever Ni is even, let Ai
Ni

(x; aNi

i , bNi

i , cNi

i , dNi

i ) = (Ai
1)

`,

. . ., Ai

⌈
Ni
2

⌉+1
(x; a

⌈
Ni
2

⌉+1
i , b

⌈
Ni
2

⌉+1
i , c

⌈
Ni
2

⌉+1
i , d

⌈
Ni
2

⌉+1
i ) = (Ai

⌈
Ni
2

⌉
)`, where

aNi

i = αi + βi − d1i , bNi

i = αi + βi − c1i , cNi

i = αi + βi − b1i , dNi

i =

αi + βi − a1i ; . . .; a
⌈
Ni
2

⌉+1
i = αi + βi − d

⌈
Ni
2

⌉
i , b

⌈
Ni
2

⌉+1
i = αi + βi − c

⌈
Ni
2

⌉
i ,

c
⌈
Ni
2

⌉+1
i = αi + βi − b

⌈
Ni
2

⌉
i , d

⌈
Ni
2

⌉+1
i = αi + βi − a

⌈
Ni
2

⌉
i . Whenever Ni is odd,

let Ai
Ni

= (Ai
1)

`, . . . , Ai

⌈
Ni
2

⌉+1
= (Ai

⌈
Ni
2

⌉−1
)`, Ai

⌈
Ni
2

⌉
= Ai

⌈
Ni
2

⌉

⋃

Ai′

⌈
Ni
2

⌉
(Here

Ai

⌈
Ni
2

⌉

⋃

Ai′

⌈
Ni
2

⌉
is a new fuzzy set, also written as Ai

⌈
Ni
2

⌉
for the sake of

simplicity), where
⋃

represents fuzzy union, i.e., max operator.
From Theorem 6 and the above two steps , one can see that Ai

1, A
i
2, . . . , A

i
Ni

are normal, consistent and complete GFScom on Ui = [αi, βi], and Ai
1 < Ai

2 <
. . . < Ai

Ni
.

Step 3. Define e1j = αj , e
Nj

j = βj and e
ij
j ∈ [b

ij
j , c

ij
j ] (e.g. e

ij
j = 1

2 (b
ij
j +c

ij
j ))

for ij = 2, . . . , Nj − 1; j = 1, 2, . . . , n.
Step 4. Construct m = N1×N2×· · ·Nn =

∏n

i=1 Ni fuzzy IF-THEN rules
in the following form:

Ri1i2...in : IF x1 is A1
i1

and · · · and xn is An
in
,

THEN y is Ci1i2...in

where i1 = 1, . . . , N1, . . ., in = 1, . . . , Nn and the point in R at which the fuzzy
set Ci1i2...in achieves its maximum value, denoted as ȳi1i2...in (when Ci1i2...in

is a normal fuzzy set, Ci1i2...in(ȳi1i2...in) = 1; in this paper, we always assume
that Ci1i2...in is a normal fuzzy set), is chosen as

ȳi1i2...in = g(ei11 , ei22 , . . . , einn ). (5)
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Step 5. Construct the fuzzy system f(x) from the i=1 Ni generated by
Step 4 using singleton fuzzifier Wang (1997); Zeng and Singh (1996), prod-
uct inference engine Wang (1997); Zeng and Singh (1996), center average
defuzzifier Wang (1997); Zeng and Singh (1996), i.e., taking “and” as product
operator, fuzzy implication as Mamdani product implication (i.e., a → b =
ab, ∀a, b ∈ [0, 1]) as follows:

y = f(x) =

∑Nn

in=1 · · ·
∑N1

i1=1 Ai1i2...in(x)ȳi1i2...in
∑Nn

in=1 · · ·
∑N1

i1=1 Ai1i2...in(x)

=

Nn
∑

in=1

· · ·

N1
∑

i1=1

Bi1i2...in(x)ȳi1i2...in

, (6)

where the crisp input value x = (x1, x2, . . . , xn) ∈ U , Ai1i2...in(x) =
A1

i1
(x1)A

2
i2
(x2) · · ·A

n
in
(xn), and

Bi1i2...in(x) =
Ai1i2...in(x)

∑Nn

in=1 · · ·
∑N1

i1=1 Ai1i2...in(x)

=
A1

i1
(x1)A

2
i2
(x2) · · ·A

n
in
(xn)

∑Nn

in=1 · · ·
∑N1

i1=1 A
1
i1
(x1)A2

i2
(x2) · · ·An

in
(xn)

.

Since the fuzzy sets Ai
1, A

i
2, . . . , A

i
Ni

are complete GFScom on Ui =
[αi, βi], at every point x ∈ U there exists i1, i2, . . . , in such that
A1

i1
(x1)A

2
i2
(x2) · · ·A

n
in
(xn) 6= 0. Therefore, the fuzzy system (6) is well defined,

that is, its denominator is always nonzero.
In the above procedure, we only consider the case of the membership

function distribution over [αi,
αi+βi

2 ]. However, if the membership function

distribution on [αi+βi

2 , βi] can be determined, then we may carry out the
same work as in Steps 1 through 5 of the above design procedure in terms of
Definition 2.

4.3 Design of Fuzzy System with Second-Order Accuracy

The design problem is the same as in Section 4.2. Next, on the basis of GFS-
com, we design the fuzzy system with second-order accuracy in a step-by-step
manner.

Step 1. Define ⌈
Nj

2 ⌉ (j = 1, 2, 3, . . . , n) fuzzy sets Aj
1, A

j
2, . . . , A

j

⌈
Nj

2
⌉
in

[αj ,
αj+βj

2 ] which are normal, consistent and complete with the triangular
membership functions

Aj
ij
(xj) = △j

ij
(xj ; e

j
ij−1, e

j
ij
, ejij+1)
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Step 2. When Nj is even, calculate (Aj
ij
)` (ij = 1, 2, . . . , ⌈

Nj

for ij = 1, 2, . . . , ⌈ 
N

2 ⌉, where ej0 = ej1 = αj , ej1 < ej2 < · · · < ej
⌈
 N

2

 

⌉j
j

 

≤ ej
⌈
 N

2

 

⌉+1j
 , 

and ej
⌈ 
N

2 ⌉
j 

= ej
⌈ 
N

2 ⌉+1j 
= 

αj +
2 
βj whenever Nj is odd. Otherwise, ej

⌈ 
N

2 ⌉
j 

< 
αj +

2 
βj

, ej
⌈ 
N

2 ⌉
j 

+ ej
⌈ 
N

2 ⌉+1j 
= αj + βj and Aj

⌈ 
N

2 ⌉
j 
( 
αj +

2 
βj ) ≤ 0.5. 

2 ⌉) in Uj =

[αj , βj ]. When Nj is odd, calculate (Aj
ij
)` (ij = 1, 2, . . . , ⌈

Nj

2 ⌉ − 1) in Uj =

[αj , βj ] and Aj′

⌈
Nj

2
⌉
(x) = Aj

⌈
Nj

2
⌉
(αj + βj − x) for all x ∈ Uj . Specially, for

j = 1, 2, . . . , n, we distinguish one case from the other as follows:
a) When Nj is even, let Aj

Nj
(xj) = △j

Nj
(xj ; ej

⌈
Nj

2
⌉−1

, ej
⌈
Nj

2
⌉
, ej

⌈
Nj

2
⌉+1

) =

(Aj
1)

`, . . ., Aj

⌈
Nj

2
⌉+1

(xj) = △j

⌈
Nj

2
⌉+1

(xj ; e
j

⌈
Nj

2
⌉
, ej

⌈
Nj

2
⌉+1

, ej
⌈
Nj

2
⌉+2

) = (Aj

⌈
Nj

2
⌉
)`,

where ejNj
= ejNj+1 = βj , e

j
Nj−1 = αj + βj − ej2; . . .; e

j

⌈
Nj

2
⌉
= ej

⌈
Nj

2
⌉
, ej

⌈
Nj

2
⌉+1

=

ej
⌈
Nj

2
⌉+1

, ej
⌈
Nj

2
⌉+2

= αj + βj − ej
⌈
Nj

2
⌉−1

.

b) When Nj is odd, A
j
Nj

, Aj
Nj−1, . . . , A

j

⌈
Nj

2
⌉+1

are the same as the above a),

and let Aj

⌈
Nj

2
⌉
= Aj

⌈
Nj

2
⌉

⋃

Aj′

⌈
Nj

2
⌉
(Notice that Aj

⌈
Nj

2
⌉

⋃

Aj′

⌈
Nj

2
⌉
is a novel fuzzy

set, still denoted as Aj

⌈
Nj

2
⌉
for the sake of simplicity), where

⋃

denotes fuzzy

union, i.e., max operator.
Step 3 and Step 4. The same as Steps 4 and 5 of the design procedure

in Section 4.2. That is, the constructed fuzzy system is given by Eq.(6), where
ȳi1i2...in is given by Eq.(5).

In the sequel, we make a few remarks on this above procedure of designing
fuzzy systems.

Remark 2 A fundamental difference between the designed fuzzy systems in Sections
4.2 and 4.3 is the former usually requires a large number of rules to approximate
some simple functions. However, using the fuzzy system with second-order accuracy,
we may use fewer rules to approximate the same function with the same accuracy.
In summary, the difference between the constructed fuzzy systems in this paper is
the same as for that between the traditional fuzzy system with first-order accuracy
and fuzzy system with second-order accuracy (see Wang (1997) for more details).

Remark 3 Although the opposite negative operator ` is only considered in the con-
structed fuzzy systems in Sections 4.2 and 4.3, the opposite negative operator ` is
not enough for a practical Mamdani fuzzy system, such as Mamdani fuzzy controller.
Firstly, for an applied fuzzy system, the classical negative operator “not” (called the
contradictory negative operator in this paper) is usually needed to be considered.
This is the reason why we use the classical complement to define the proposed contra-
dictory negative operator in this paper. Secondly, for each variable in the input space,
if the designed fuzzy system consists of the evaluative trichotomy of the form “big-
medium-small” (sometimes, the contradictory negative operator ¬, i.e., the classical
negative operator “not”, is needed), thus, we only need to obtain the membership
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function of each fuzzy set “big” (“small”) over the domain U ⊂ R
n, we can then

design the desired fuzzy system by using the proposed methods of this paper (e.g.,
see Case 3 below). Consequently, considering the design of an actual Mamdani fuzzy
system, it is necessary to introduce the other two negations ¬ and ∼.

5 Approximation Accuracy Analysis of the
Fuzzy System Designed Based on GFScom

In this section, we build up the approximation bounds for the two classes of
fuzzy systems constructed in Section 4.

We consider the case where the unknown function g(x) is a continuous
function on U = [α1, β1]×[α2, β2]×· · · [αn, βn] ⊆ R

n. Before giving the approx-
imation bounds, we first introduce some formal notations and results as follows
Zeng and Singh (1996):

Define the infinite norm for a bounded function g in U to be ‖g‖∞ =
supx∈U |g(x)| and the modulus of continuity of g in U to be

ω(g, h, U) = sup{|g(x)− g(y)|||xi − yi| ≤ hi, i = 1, 2, . . . , n},

and let
Ui1i2···in = [ei11 , ei1+1

1 ]× · · · × [einn , ein+1
n ],

where h = (h1, h2, . . . , hn) (hi ≥ 0 for all 1 ≤ i ≤ n), e1j = αj , e
Nj

j = βj ,

and e
ij
j ∈ [b

ij
j , c

ij
j ] (ij = 2, . . . , Nj − 1; j = 1, 2, . . . , n).

Theorem 6 Zhang and Li (2016) Let A1, A2, . . . , AN be any GFScom in U = [α, β].
A1, A2, . . . , AN are complete, consistent and normal fuzzy subsets with PTS func-
tions on U1 = [α, α+β

2 ] if and only if A`
1 , A

`
2 , · · · , A

`

N are complete, consistent and

normal fuzzy subsets with PTS functions on U2 = [α+β
2 , β]. Further, if A1 < A2 <

· · · < AN , then we have A1 < A2 < · · · < AN < A`

N < · · · < A`
2 < A`

1 .

Theorem 7 Let f(x) be the fuzzy system in (6) and g(x) be the unknown function
in (5). Then

max{|g(x)− f(x)||x ∈ Ui1i2···in} ≤ ω(g, hi1i2···in , Ui1i2···in)

i1i2 · · · in ∈ Î , (7)

‖g − f‖∞ ≤ ω(g, h, U), (8)

where Î = {i1i2 · · · in|ij = 1, . . . , Nj − 1; j = 1, 2, . . . , n}, hi1i2···in = (h1i1 , h2i2 ,

. . . , hnin), h
j
ij

= e
ij+1
j −e

ij
j , h = (h1, h2, . . . , hn) and hj = max{hjij |ij = 1, 2, . . . , Nj−

1}.
Further, if g is continuously differentiable on U , then

‖g − f‖∞ ≤
n
∑

j=1

∥

∥

∥

∂g
∂xj

∥

∥

∥

∞
hj ≤ h

n
∑

j=1

∥

∥

∥

∂g
∂xj

∥

∥

∥

∞
(9)

where h = max{hj |j = 1, 2, . . . , n}.
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Proof. By assumptions, we can verify the following results:
(a) U =

⋃

i1i2···in∈Î Ui1i2···in . In fact, since [αi, βi] = [e1i , e
2
i ]∪ [e2i , e

3
i ]∪ · · · ∪

[eNi−1
i , eNi

i ], i = 1, 2, . . . , n, we have

U = [α1, β1]× [α2, β2]× · · · [αn, βn]

=

N1−1
⋃

i1=1

· · ·

Nn−1
⋃

in=1

Ui1i2···in =
⋃

i1i2···in

Ui1i2···in

which means that for all x ∈ U , there exists Ui1i2···in such that x ∈ Ui1i2···in .
(b) For any x ∈ Ui1i2···in , we have

f(x) =
∑

k1k2···kn∈I2n

Bi1+k1 i2+k2 ··· in+kn
(x)ȳi1+k1 ··· in+kn

(10)

where I2n = {k1k2 · · · kn|kj = 0, 1; j = 1, 2, . . . , n}. In fact, suppose x ∈
Ui1i2···in , that is x1 ∈ [ei11 , ei1+1

1 ], x2 ∈ [ei22 , ei2+1
2 ], . . ., xn ∈ [einn , ein+1

n ]. By

Theorem 6 one can see the fuzzy sets A
(j)
1 , A

(j)
2 , . . . , A

(j)
Nj

are normal, consis-

tent and complete on [αj , βj ] for j = 1, 2, . . . , n, at least one and at most

two A
(j)
ij

(xj) are nonzero for ij = 1, 2, . . . , Nj . By the definition of e
ij
j (ij =

1, 2, . . . , Nj−1), these two possible nonzero are A
(j)
ij

(xj) and A
(j)
ij+1(xj). Hence,

the fuzzy system f(x) in (6) is simplified to the equality (10).
Noting that

∑

k1k2···kn∈I2n
Bi1+k1 i2+k2 ··· in+kn

(x) = 1 and the equality
(10), for any x ∈ Ui1i2···in , we can obtain

|g(x)− f(x)|

≤
∑

k1k2···kn∈I2n

Bi1+k1 ··· in+kn
|g(x)− ȳi1+k1 ··· in+kn

|

≤ max{|g(x)− ȳi1+k1 ··· in+kn
||k1k2 · · · kn ∈ I2n}.

(11)

Noting that ȳi1+k1 i2+k2 ··· in+kn
= g(ei1+k1

1 , ei2+k2

2 , . . . , ein+kn
n ) and (ei1+k1

1 ,

ei2+k2

2 , . . ., ein+kn
n ) ∈ Ui1i2...in (k1k2 · · · kn ∈ I2n), we have |xj − e

ij+kj

j | ≤

e
ij+1
j − e

ij
j (kj = 0, 1; j = 1, 2, . . . , n). Hence, for any x ∈ Ui1i2...in , the

following inequality

|g(x)− ȳi1+k1 i2+k2 ··· in+kn
| ≤ ω(g, hi1i2...in , Ui1i2...in)

(k1k2 · · · kn ∈ I2n)
(12)

holds. From (11) and (12), we can obtain the inequalities (7) and (8).
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Further, if g is continuously differentiable on U , using the Mean Value
Theorem, we have

ω(g, h, U) = sup{|g(x)− g(y)|||xj − yj | ≤ hj ; j = 1, . . . , n}

≤

n
∑

j=1

∥

∥

∥

∂g
∂xj

∥

∥

∥

∞
hj ≤ h

n
∑

j=1

∥

∥

∥

∂g
∂xj

∥

∥

∥

∞

(13)

which implies immediately the inequality (9). The proof is complete.

Remark 4 From the proof of Theorem 7 we see that if we change A1
i1
(x1)A

2
i2
(x2) · · ·

An
in
(xn) to min{A1

i1
(x1), A

2
i2
(x2), · · · , A

n
in
(xn)}, the proof is still valid. Therefore,

if we use minimum inference engine (i.e., take “and” as min operator, implication
as Mamdani min implication operator) in the design procedure and keep the oth-
ers unchange, the designed fuzzy system still has the approximation capability in
Theorem 7.

Theorem 8 Let f(x) be the fuzzy system designed through the above four Steps in

Section 4.3, that is, the membership functions of fuzzy sets Aj
ij

are the triangular-

shaped functions Aj
ij
(xj) = △j

ij
(xj ; ejij−1, e

j
ij
, ejij+1) (ij = 1, 2, . . . , Nj ; j =

1, 2, . . . , n) with ej0 = ej1 = αj , e
j
Nj

= ejNj+1 = βj and ej1 < ej2 < · · · < ejNj
, and the

fuzzy system constructed by using singleton fuzzifier, product inference engine and
center average defuzzifier. Then

(1) ∀x ∈ U , we have

f(x) =
∑

i1i2···in∈I

[
n
∏

j=1

Aj
ij
(xj)]ȳi1i2...in , (14)

where I = {i1i2 · · · in|ij = 1, 2, . . . , Nj ; j = 1, 2, . . . , n}.
(2) If g is a continuously differentiable function on U , then

‖g − f‖∞ ≤
n
∑

j=1

1

2
hj

∥

∥

∥

∂g
∂xj

∥

∥

∥

∞
≤

1

2
h

n
∑

j=1

∥

∥

∥

∂g
∂xj

∥

∥

∥

∞
, (15)

where hjij = ejij+1 − ejij , hj = max{hjij |ij = 1, 2, . . . , Nj − 1; j = 1, 2, . . . , n},

h = max{hj |j = 1, 2, . . . , n}.
(3) If g is a twice continuously differentiable function on U , then

‖g − f‖∞ ≤
n
∑

j=1

1

8
(hj)

2
∥

∥

∥

∂2g
∂(xj)2

∥

∥

∥

∞
≤

1

8
h2

n
∑

j=1

∥

∥

∥

∂2g
∂(xj)2

∥

∥

∥

∞
, (16)

where hjij = ejij+1 − ejij , hj = max{hjij |ij = 1, 2, . . . , Nj − 1; j = 1, 2, . . . , n},

h = max{hj |j = 1, 2, . . . , n}.

Proof. (1) By Theorem 6, we see that Aj
1, Aj

2, . . ., Aj
Nj

are normal,

complete and consistent fuzzy sets on Uj = [αj , βj ], and Aj
1 < Aj

2 <
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(2) By Theorem 6 and the constructed procedure of f(x), i.e., Steps 1
through 4 in Section 4.3, we can see the fuzzy sets Aj

1, Aj
2, . . ., Aj

n (j =
1, 2, . . . , n) are consistent, complete and normal on Uj = [αj , βj ]. For consistent
and complete fuzzy sets, we have

f(x) =

1
∑

k1=0

1
∑

k2=0

· · ·

1
∑

kn=0

ȳi1+k1 i2+k2 ··· in+kn

n
∏

j=1

Aj
ij+kj

(xj)

=

n
∑

j=1

1
∑

kj=0

ȳi1+k1 ··· in+kn
Aj

ij+kj
(xj)

n
∏

m=1,m 6=j

Am
im+km

(xm)

where ȳi1+k1 i2+k2 ··· in+kn
= g(e1i1+k1

, e2i2+k2
, . . . , enin+kn

) for ij =
1, 2, . . . , Nj − 1; j = 1, 2, . . . , n.

Hence,

|g(x) − f(x)| ≤

n
∑

j=1

1
∑

kj=0

(

|g(x) − ȳi1+k1 ··· in+kn |A
j

ij+kj
(xj)

)

×
n
∏

m=1,m 6=j

A
m
im+km

(xm).

For the normal fuzzy sets,

|g(x) − f(x)| ≤
n

∑

j=1

1
∑

kj=0

|g(x) − ȳi1+k1 i2+k2 ··· in+kn |A
j

ij+kj
(xj).

Using the Mean Value Theorem, then

|g(x)− f(x)| ≤

n
∑

j=1

1
∑

kj=0

∣

∣

∣

∂g(x)

· · · < Aj
Nj

 . Moreover, the membership function of fuzzy set Aj
ij

 (ij 

= 
1, 2, . . . 

∑

, Nj
N

;
j 

j = 1, 2, . . . , n) is a triangular-shaped function. Therefore, we can 
obtain

∑ ij =1 A
∏

(xj

n

j
ij 

) = 1 for any xj ∈ [αj , βj ]. Hence, it is not difficult to

see
∏n 

i1i2···in∈I j=1 A
j
ij 
(xj ) = 1. As a result, it follows that Bi1i2···in 

(x) = 

j=1 A
j
ij 
(xj ) which implies that the equality (14) from (6). 

∂xj

∣

∣

∣

x=ξ
|xj − ejij+kj

|Aj
ij+kj

(xj).

Let g
′

xj
(xj) =

∨

xi∈[αj ,βj ],i 6=j

∣

∣

∣

∂g
∂xj

∣

∣

∣
. Noting that Aj

ij
(xj) + Aj

ij+1(xj) = 1 for

any xj ∈ [ejij , e
j
ij+1] (j = 1, 2, . . . , n) and Aj

ij
is a triangular-shaped function,

we have

|g(x)− f(x)|

≤

n
∑

j=1

max
e
j

ij
≤xj≤e

j

ij+1

|g
′

xj
(xj)|

2(ejij+1 − xj)(xj − ejij )

hj
ij

,
(17)

where hj
ij
= ejij+1 − ejij .
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Furthermore, it is easy to verify the identity

max
e
j

ij
≤xj≤e

j

ij+1

{|xj − ejij ||xj − ejij+1|} =
(hj

ij
)2

4
(18)

follows. Substituting (18) into (17), we obtain

|g(x)− f(x)| ≤
1

2

n
∑

j=1

hj
ij
(max

e
j

ij
≤xj≤e

j

ij+1

|g
′

xj
(xj)|).

Therefore, we have

∥

∥g(x)− f(x)
∥

∥

∞
≤

1

2

n
∑

j=1

hj

∥

∥

∥

∂g
∂xj

∥

∥

∥

∞
≤

1

2
h

n
∑

j=1

∥

∥

∥

∂g
∂xj

∥

∥

∥

∞
,

where hj = max{hj
ij
|ij = 1, 2, . . . , Nj − 1}, h = max{hj |j = 1, 2, . . . , n}. That

is, the inequality (15) follows.
(3) Clearly, f(x) is equal to g(x) at points x∗ = (e1i1+k1

, e2i2+k2
, . . . , enin+kn

),
where ij = 1, 2, . . . , Nj−1, kj = 0, 1 for j = 1, 2, . . . , n, namely g(x∗)−f(x∗) =
0. Let x 6= x∗ be fixed, and without loss of generality, the approximation error
can be expressed as

g(x)− f(x) = [(xj − ejij )(xj − ejij+1)]
T
j P (x). (19)

Consider the following function of s, where s = (s1, s2, . . . , sn):

W (s) = g(s)− f(s)− [(xj − ejij )(xj − ejij+1)]
T
j P (x).

Obviously, the above constructed function W (s) = 0 at points s = (e1i1+k1
,

e2i2+k2
, . . ., enin+kn

) with kj = 0, 1, and at the additional s = x. As a result,
according to the well known generalized Rolle’s Theorem Davis (1963), the

function ∂2W (s)
∂s2

i

for i = 1, 2, . . . , n must vanish at points including ξ =

(ξ1, ξ2, . . . , ξn). The vector of second-order derivatives of W (s) is attained as









∂2W (s)
∂s2

1

...
∂2W (s)
∂s2n









=









∂2g(s)
∂s2

1

...
∂2g(s)
∂s2n









− 2P (x).

Therefore, at arbitrary fixed point x, we have

P (x) =
1

2

[

∂2g(ξ)
∂x2

1

, · · · , ∂2g(ξ)
∂x2

n

]T

. (20)
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Substituting (20) into (19), we can obtain

g(x)− f(x) =
1

2

n
∑

j=1

(xj − ejij )(xj − ejij+1)
∂2g(ξ)

∂x2
j

.

So the following inequality

∥

∥g(x)− f(x)
∥

∥

∞

≤
1

2

n
∑

j=1

∨
e
j

ij
≤xj≤e

j

ij+1

|xj − ejij ||xj − ejij+1|
∥

∥

∥

∂2g(x)
∂x2

j

∥

∥

∥

∞

holds. Therefore, we have

∥

∥g(x)− f(x)
∥

∥

∞
≤

1

8

n
∑

j=1

h2
j

∥

∥

∥

∂2g(x)
∂x2

j

∥

∥

∥

∞
≤

1

8
h2

n
∑

j=1

∥

∥

∥

∂2g(x)
∂x2

j

∥

∥

∥

∞

by using (18), where hj = max{hj
ij
|ij = 1, 2, . . . , Nj − 1}, h = max{hj |j =

1, 2, . . . , n}. That is, the inequality (16) holds. The proof is completed.
Theorem 8 implies immediately the following corollary which shows the

fuzzy systems constructed by Section 4.3 can duplicate any linear (or affine)
function and multilinear (or mutliaffine) function.

Corollary 1 Suppose that the following two conditions holds:
1) g1(x) is any affine function on U = [α1, β1]× [α2, β2]×· · ·× [αn, βn] given by

g1(x1, x2, . . . , xn) = a0 + a1x1 + a2x2 + · · ·+ anxn

and g2(x) is any multiaffine function on U defined by

g2(x1, x2, . . . , xn)

= a0 +
∑

(k1,k2,...,kn)∈K

ai1i2···in(x1)
k1(x2)

k2 · · · (xn)
kn ,

where K = {(k1, k2, . . . , kn)|kj = 0, 1; j = 1, 2, . . . , n and
∑n

j=1 kj > 0},
i1i2 · · · in ∈ I = {i1i2 · · · in|ij = 1, 2, . . . , Nj ; j = 1, 2, . . . , n};

2) fuzzy system f(x) is constructed by Section 4.3.
For a given k ∈ K, thus, we have f(x) = gk(x) for any x ∈ U , i.e., f ≡ gk on U .

Remark 5 If we consider the error bound of Theorem 2 in Zeng and Singh (1996)
for a second-order approximator, we can see that the error bounds of Theorem 8
uses the identical number of membership functions with those of Zeng and Singh
(1996) for the same approximation accuracy degree. However, providing only fewer
membership functions than those of Zeng and Singh (1996), we can construct the
desired fuzzy system by using the developed approach in this paper.
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In Section 4.3, if ⌈
Nj

2 ⌉ (j = 1, 2, 3, . . . , n) fuzzy sets Aj
1, A

j
2, . . . , A

j

⌈
Nj

2
⌉
in

the interval [αj ,
αj+βj

2 ] are determined by the proposed approach in Sonbol
et al (2012), we can obtain the new better claim as follows.

Firstly, we start with some notations. If a function is continuous, with all of
its partial derivatives up to the lth-order continuity, we say that the function is
Cl. Let the function g(x) be Cl−1 on U = [α1, β1]× [α2, β2]×· · · [αn, βn] ⊆ R

n

and define
g(l)xj

(xj) = maxxi∈[αi,βi]
i=1,2,...,n

i 6=j

∣

∣

∣

∂lg(x)

∂xl
j

∣

∣

∣
,

αj = ej1 < ej2 < · · · < ejNj
= βj ,

and
εjij ,l = min

e
j

ij
≤a

j

ij
≤e

j

ij+1

max
e
j

ij
≤xj≤e

j

ij+1

∣

∣

∣g
(l)
xj (xj)− g

(l)
xj (a

j
ij
)
∣

∣

∣
,

where Nj is odd, ej
⌈
Nj

2
⌉
=

αj+βj

2 , j = 1, 2, . . . , n, ij = 1, 2, . . . , Nj − 1, and

ajij ∈ [ejij , e
j
ij+1].

In addition, we refer to U ′ = [u1, v1]×· · ·× [un, vn], where ui ∈ {αi,
αi+βi

2 },

vi ∈ {αi+βi

2 , βi}, ui 6= vi for all i = 1, 2, . . . , n, as the half-input space of U .
Now, we give the another claim as follows.

Theorem 9 Let U ′ be a half-input space of U , Nj odd for every j = 1, 2, . . . , n.

If the ⌈
Nj

2 ⌉ fuzzy sets over U ′ are obtained by means of the proposed approach in
Sonbol et al (2012), then the constructed fuzzy system f(x) built from Sec.4.3 has the
following:

(1) If g is a continuously differentiable function on U , then

‖g − f‖∞ ≤
1

2

n
∑

j=1

h
ij
j

(
∣

∣

∣g
(1)
xj

(ajij )
∣

∣

∣
+ εjij ,1

)

, (21)

where hjij = ejij+1 − ejij and ajij ∈ [ejij , e
j
ij+1].

(2) If g is a twice continuously differentiable function on U , then

‖g − f‖∞ ≤
1

8

n
∑

j=1

(

h
ij
j

)2 (∣
∣

∣
g
(2)
xj

(ajij )
∣

∣

∣
+ εjij ,2

)

, (22)

where hjij = ejij+1 − ejij and ajij ∈ [ejij , e
j
ij+1].

Proof. It follows from Lemma 1 of Sonbol et al (2012) and Theorem 6.
Also, we refer the reader to the proof of the above Theorem 8, since the proving
methods of both these claims are similar. The proof is completed.

Furthermore, compared with the Theorems 1 and 2 in Sonbol et al (2012),
we have the following corollary.

Corollary 2 The fuzzy system f(x) constructed from Theorem 9 requires a smaller
number of known membership functions than the counterparts of Sonbol et al (2012)
for the same guaranteed error bound.
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Proof. From Theorem 9, we only verify that it follows whenever Nj is even
for some j ∈ {1, 2, . . . , n}. Indeed, when Nj is even for some j ∈ {1, 2, . . . , n},

it is trivial that Nj ≥
⌈

Nj+1
2

⌉

.

Remark 6 From Sonbol et al (2012), the constructed Mamdani fuzzy system requires
a smaller number of membership functions than all previously published fuzzy sys-
tems. By Corollary 2, we can get that the sufficient conditions in Theorem 9 require
a smaller number of known membership functions than all previously published con-
ditions. Furthermore, the computation cost of the developed approach in this paper
is smaller than that of the Mamdani fuzzy systems developed in Sonbol et al (2012)
for the same guaranteed error bound.

6 Illustrative Cases

Case 1 Zeng and Singh (1996); Sonbol et al (2012). Based on GFScom, design a
fuzzy system f(x) to approximate the continuous function g(x) = sin(x)/x defined
on U = [−3, 3] with a given accuracy of ǫ = 0.2.

First, we use the error bound of Eq.(16) and obtain 9 fuzzy sets to
approximate the function g(x) = sin(x)/x with the desired degree. So it is suf-
ficient that the membership functions of only ⌈ 9

2⌉ = 5 fuzzy sets are defined
appropriately in the interval [−3, 0] (or [0, 3]).

Next, we use the error bound of Eq.(21) and obtain the results in the
interval [−3, 0] listed in Table 1.

Table 1 Approximation results over the interval [−3, 0] for Case 1 using the error bound
of Eq.(21)

i1 1 2 3

hi11 0.918 0.918 1.164

Finally, since g(x) = sin(x)/x is a second-order differential function, we
can use the error bound of Eq.(22) and obtain the results in the interval [−3, 0]
listed in Table 2. Although in this case fewer known fuzzy sets are required
when using the bound of Eq.(22) than the bound of Eq.(21), in general, this
is not true.

Table 2 Approximation results over the interval [−3, 0] for Case 1 using the error bound
of Eq.(22)

i1 1 2

hi11 2.305 0.695

Table 3 compares our results with the results in Sonbol et al (2012), Zeng
and Singh (1996) and Ying (1994) for approximation accuracy ǫ = 0.2.
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Table 3 Comparison of the number of known fuzzy sets needed to achieve the error
bound ǫ = 0.2

Method No. of Known Fuzzy Sets for Input Variable
(3) of Theorem 8 5
(1) of Theorem 9 4
(2) of Theorem 9 3

Theorem 1 of Sonbol et al (2012) 7
Theorem 2 of Sonbol et al (2012) 4
(Second order approximation)

Theorem 2 of Zeng and Singh (1996) 9
(Second order approximation)
Theorem 3.4 of Ying (1994) 207

Case 2 Assume g(x1, x2) = ex1+x2 (unknown) is defined on U = [−0.5, 0.5]2. If two
of membership functions of fuzzy sets in the designed fuzzy system f(x1, x2) with a
desired degree of accuracy ǫ = 0.2 to approximate g(x1, x2) is, respectively, given by

A1
1(x1) =

{

−2x1, x1 ∈ [−0.5, 0]

0, x1 ∈ [0, 0.5]
(23)

and

A2
1(x2) =

{

−2x2, x2 ∈ [−0.5, 0]

0, x2 ∈ [0, 0.5]
(24)

thus, how can we design a fuzzy system to roughly approximate g(x1, x2)?

Obviously, in terms of the traditional design methods of fuzzy systems(see
Wang (1997) and therein references for more details), it is not feasible to
construct the fuzzy system under the above conditions. However, using the
method developed in this paper, i.e., the design procedure in Section 4.3, we
can do it.

First, from the Eq.(23) and Definition 2, we can compute the opposite
negative set A1`

1 and medium negative set A1∼
1 of A1

1 as follows:

A1
3(x1) = A1`

1 (x1) =

{

2x1, x1 ∈ [0, 0.5]

0, x1 ∈ [−0.5, 0]
and

A1
2(x1) = A1∼

1 (x1) =











2x1 + 1, x1 ∈ [−0.5, 0)

1, x1 = 0

1− 2x1, x1 ∈ (0, 0.5]

By symmetry and the Eq.(24), the same applies to the opposite negative
set A2

3 = A2`
1 and medium negative set A2

2 = A2∼
1 of A2

1.
If we choose t11 = t21 = −0.5, t12 = t22 = 0, t13 = t23 = 0.5, then we can

construct the following fuzzy system:

f(x1, x2) =

3
∑

i1=1

3
∑

i2=1

A1
i1
(x1)A

2
i2
(x2)e

t1i1
+t2i2
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which approximates g(x1, x2) with the accuracy degree ǫ = 0.2. The figure
of system function f(x1, x2) is depicted as follows (Fig.1). A comparison of
the figure of g(x1, x2) and the figure of the errors of the system function (or
approximation function) and the origin function g(x1, x2) are also described
in Figs. 2 and 3.

Fig. 1 The system function y = f(x1, x2) of the fuzzy system in Case 2

Fig. 2 The origin function y = g(x1, x2) in Case 2

For Case 2, Table 4 compares our result with the results in Sonbol et al
(2012), Zeng et al (2000) and Ying (1994) for approximation accuracy ǫ = 0.2.

Case 3 Consider a simple two-input-single-output liquid level control problem: in
some liquid level control system, the fluid mass in the container often changes ran-
domly. By adjusting the opening degree of the valve, we can control the liquid level
in the container such that the level keeps the steady state error small. Both input
variables, named level (denoted l) and rate (denoted r), represents the liquid level
and the flow input rate, respectively. The output variable, named valve (denoted
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Fig. 3 The errors of the system function y = f(x1, x2) and the origin function y = g(x1, x2)
in Case 2

Table 4 Comparison of the number of known fuzzy sets needed to achieve the error
bound ǫ = 0.2

Method No. of Known Fuzzy Sets for Each Input Variable
GFScom 1

Theorem 2 of Sonbol et al (2012) 4
Theorem 2 of Zeng et al (2000) 6
Theorem 3.4 of Ying (1994) 309

v), denotes the opening degree of the valve. Suppose that the range of the level be
[−1, 1], rate be [−0.1, 0.1] and valve be [−1, 1].

By inquiring skilled experts in the field, we get that the range of the input
variable l is covered by 3 fuzzy sets, named High, Okay and Low, and the
membership function of High is expressed as follows:

High(l) = exp

(

−
(l + 1)2

2 · (0.3)2

)

where l ∈ [−1, 1].
Also, the range of the other input r is covered by 3 fuzzy sets, termed

Negative, Zero and Positive, and the membership function of Negative is
defined as follows

Negative(r) = exp

(

−
(r + 0.1)2

2 · (0.03)2

)

where r ∈ [−0.1, 0.1].
In the sequel, we simulate the above liquid level control procedure by using

the well-known sltank in Matlab 7.10.0(R2010a).
First, for simplicity, we use the square wave with amplitude 0.5 and

frequency 0.1 rad/s to imitate change of the liquid level in the container. More-
over, the mathematical model of the controlled object in sltank is directly used
as that in our system.
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Considering the definition of GFScom and the above simulation condi-
tions, we design the following five fuzzy sets (named close fast, close slow,
no change, open slow and open fast) over the output interval [−1, 1], shown
in Fig.4

Fig. 4 The distribution of membership functions over the output space in Case 3

Next, from previous operating experiences, we conclude the following con-
trol rules listed in Table 5. Note that the fuzzy rule base is small and
incomplete, but these fuzzy rules are sufficient for our simulation.

Table 5 Fuzzy rule base for the liquid level control problem in Case 3

l r

None Negative Zero Positive
None
High close fast
Okay no change open slow close slow
Low open fast

Finally, by using the proposed method in this paper, we can obtain the
results shown in Figs.5 and 6. From the resulting simulation, one can see that
the constructed fuzzy controller in this paper successfully resolves the liquid
level control problem in Example 4. Note that the model of the controlled
plant in sltank is nonlinear, so this demonstration illustrates that the proposed
fuzzy controller in this paper can implement the control of nonlinear systems
effectively.

7 Conclusion and Future Work

In this paper, we have continually developed the theory of GFScom intro-
duced in Zhang and Li (2017). By considering triangular norm operations, we

Fig. 5 The change of liquid level in Case 3
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Fig. 6 Comparison of the square wave (yellow) and its response curve (red) in Case 3

exploited the generalized properties of GFScom. On the basis of GFScom, the
constructive approaches of the Mamdani-type fuzzy system that can approxi-
mate any continuous function on a compact set to a given degree of accuracy
have been presented. We established the approximation bounds for the classes
of the constructed fuzzy systems. Illustrative cases and numerical compar-
isons are provided to show the effectiveness and advantage of the developed
approaches. At last, we need further to point out that the developed model in
this paper can not give the one-to-one relationship of fuzzy sets between the
input and output variables.

This is the first step of GFScom. There are many issues that can be done
in the future. We list several suggestions as follows.

• What is the detailed structure of GFScom? For example, what are the rela-
tions of opposite negative operator, medium negative operator and other
connectives such as conjunction, disjunction, implication? How should they
be depicted in fuzzy logic? Although our work is based upon the medium
logic ML system, we think ML is not very suitable for acting as the struc-
ture of GFScom. Therefore, how to construct the logic structure of GFScom
should be studied.

• How can we design other types of fuzzy systems, such as T-S type fuzzy
systems and Boolean type fuzzy systems by using GFScom.

• In Fernandez-Peralta et al (2022), when N is a continuous function the
characterization of (S,N)-implications is explored, and also a first charac-
terization of this family of implications is illustrated. Analogously, when the
contradictory, opposite and medium negation in fuzzy logic and reasoning
are distinguished, what is the characterization of (S,N)-implications? This
is interesting and next work.

We will address these issues in subsequent papers.
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