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Abstract. Logs are widely used in the development and maintenance
of software systems. Logs can help engineers understand the runtime be-
havior of systems and diagnose system failures. For anomaly diagnosis,
existing methods generally use log event data extracted from historical
logs to build diagnostic models. However, we find that existing methods
do not make full use of two types of features, (1) statistical features: some
inherent statistical features in log data, such as word frequency and ab-
normal label distribution, are not well exploited. Compared with log raw
data, statistical features are deterministic and naturally compatible with
corresponding tasks. (2) semantic features: Logs contain the execution
logic behind software systems, thus log statements share deep semantic
relationships. How to effectively combine statistical features and seman-
tic features in log data to improve the performance of log anomaly diag-
nosis is the key point of this paper. In this paper, we propose an adaptive
semantic gate networks (ASGNet) that combines statistical features and
semantic features to selectively use statistical features to consolidate log
text semantic representation. Specifically, ASGNet encodes statistical
features via a variational encoding module and fuses useful information
through a well-designed adaptive semantic threshold mechanism. The
threshold mechanism introduces the information flow into the classifier
based on the confidence of the semantic features in the decision, which
is conducive to training a robust classifier and can solve the overfitting
problem caused by the use of statistical features. The experimental re-
sults on the real data set show that our method proposed is superior to
all baseline methods in terms of various performance indicators.

Keywords: Anomaly Diagnosis - Semantic features - Statistical Fea-
tures - Diagnose System Failures.

1 Introduction

With the rapid development and evolution of information technology, During
the past few years, we witness that large-scale distributed systems and cloud
computing systems gradually become critical technical support of the IT indus-
try [I]. Anomaly detection and diagnosis play an important role in the event
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management of large-scale systems[2[3], which aims to detect abnormal behav-
ior of the system in time. Timely anomaly detection enables system developers
(or engineers) to pinpoint problems the first time and resolve them immediately,
thereby reducing system downtime [dJ5/6]. However, as the scale of modern soft-
ware become larger and more complex, the traditional log anomaly detection
and diagnosis approaches based on specialized domain knowledge or manually
constructed and maintained rules become less and less inefficient [7U89IT0]. Ben-
efiting from the development of deep learning technology, a number of effec-
tive log anomaly detection and diagnosis methods emerge in recent years, but
these methods ignore two issues[TTJT2], (1) Statistical features: some inherent
statistical features in log data, such as word frequency and abnormality label
distribution, is not well utilized by deep learning based methods. Statistical
features[I314] consist of statistical characteristics deterministic compared with
log raw data, which is naturally compatible with the corresponding task. (2)
Semantic features: Logs contain the execution logic behind the software system,
thus log statements share deep semantic relationships. Hence, this paper focuses
on how to effectively combine statistical features and semantic features in log
data to improve the performance of log anomaly diagnosis. In order to demon-
strate the problems that we raised in log data, we list different examples in Table

and Figure

Table 1. Statistics on the number of occurrences of words in the seven log datasets

Dataset BGL BGP Tbird Spirit HDFS Liberty Zokeeper
Dataset size 1.207GB 1.04GB 27.367GB 30.289GB 1.58GB 29.5GB  10.4M
total number of distinct words 5632912 4491076 23330854 12793353 3585666 14682493 53094
5173492 4330501 7789598 3861462 2576220 2020068 28954
(91.8%) (96.4%) (33.4%) (30.2%) (71.8%) (13.8%) (54.5%)
5298053 4424922 16863767 9914926 2853030 6656253 51443
(94.05%) (98.5%) (72.3%) (77.5%) (79.6%) (45.3%) (96.9%)
5403556 4463325 19948834 10815055 2885414 9882010 52686
(95.9%) (99.4%) (85.5%) (84.5%) (80.5%) (67.3%) (99.23%)
5465876 4472566 21112093 11311509 3353119 11425515 52797
(97.03%) (99.6%) (90.5%) (88.4%) (93.5%) (77.8%) (99.4%)
3825 1299 79063 137224 1998 10052 564
0.068%) (0.029%) (0.34%) (1.07%) (0.056%) (0.068%) (1.06%)
573 316 6243 2663 258 5365 172
(0.01%) (0.007%) (0.027%) (0.021%) (0.007%) (0.037%) (0.32%)

appear only once

appear less than 5 times

appear less than 10 times

appear less than 20 times

appear at least once per 10000 lines (

appear at least once per 1000 lines

From Table |1} we can see that most of the words are infrequent, and most
of these infrequent words appear only once. For example, in the BGP dataset,
96.4% of words appear only one time. In the Liberty dataset, 77.8% of the words
have a frequency lower than 20. In the BGP and Zookeeper datasets, the number
of words with a frequency lower than 20 accounts for more than 99%. At the
same time, only a small fraction of words are frequent, i.e. they occur at least
once in every 10000 or 1000 lines of logs. We can observe that most of the logs
generated during the system operation are normal, and the abnormal logs are
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limited. Based on this, we infer that the abnormal words are not frequent, further
we conclude that statistical features in logs are necessary for anomaly diagnosis.

// Two sample logging statements from a source code snippet in Python
Logoer.debug(f “SessionlD={session_id}, initialized by {agent name}. version ({v_id}).” )
Logger.info(f “Starting data reading process {PID} from {source_dir}, status: {data_state}.” )

Log Generation

12021-09-28 04:31:30 DEBUG SessionID=30546173, initialized by OSAgent, version (1.0.0).
22021-09-28 04:31:11 DEBUG SessionID=3054611, initialized by perfCounter, version (1.0.0).
32021-09-28 04:33:43 INFO Starting data reading process 592 from /etc/data/, status: success.
42021-09-28 04:32:29 DEBUG SessionlD=30546001, initialized by NetAgent, version (1.0.0).
52021-09-28 04:33:11 INFO Starting data reading process 1612 from /etc/data/, status: success.
62021-09-28 04:34:27 INFO Starting data reading process 660 from /etc/data/, status: success.

Fig. 1. The process from initialization to sending data.

From Figure[T] we can see that the first log to the sixth log shows the complete
process from initialization to sending data, demonstrating the complete program
execution logic. Therefore, log sequence contains the execution logic behind the
program and has rich semantic information. We can see from Table|l|and Figure
that the statistical features and text semantic features used in this paper are
widely present in log data.

To deal with the two above-mentioned issues, this paper designs an Adaptive
Semantic Gate Networks (ASGNet) which consists of three parts, log statistics
information representation(V-Net),log deep demantic representation(S-Net) and
adaptive semantic threshold mechanism(G-Net). Specifically, V-Net leverages an
unsupervised autoencoder[I5] to learn a global representation of each statistical
feature vector, where we note that employing variational inference can further
improve model performance compared to vanilla autoencoders. S-Net extracts
latent semantic representations from text input by pre-trained RoBERTa[L6].
G-Net aligns information from two sources, then adjusts the information flow.

The main contributions of this paper are summarized as follows:

(1) We attempt to explicitly leverage statistical features of system log data
for anomaly diagnosis in a deep learning architecture. We also demonstrate that
our proposed approach is very effective based on various experiments.

(2) To fuse statistical features into low-confidence semantic features, we pro-
pose a novel adaptive semantic threshold mechanism to retrieve necessary and
useful global information. The experimental results prove that the threshold
mechanism is very effective for the log-based anomaly diagnosis task.

(3) We conduct extensive experiments on 7 datasets of different scales and
subjects. Results show that our proposed model yields a significant improvement
over the baseline models.
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2 Related Work

The main purpose of anomaly diagnosis is to help O&M engineers analyse the
cause of anomalies and understand the operational status of the system or net-
work. A number of excellent methods have emerged in recent years.

Yu et al.[17] utilized log templates to build workflows offline. Such models can
provide contextual log messages of problems and diagnose problems buried deep
within log sequences, which can provide the correct log sequence and tell engi-
neers what is happening. Jia et al.[I8] proposed a black-box diagnostic method
TCFG (Timed-weight Control Flow Graph) for control flow graphs with tempo-
ral weights, which does not require prior domain knowledge and any assumptions
and achieves better performance on relevant datasets.

Fu et al.[I9] proposed the use of a Finite Automata Machine (FSA) to sim-
ulate the execution behaviour of a log-based system model. The model first
clusters logs to generate log templates and removes all parameters based on reg-
ular expressions. Each log is then labelled by its log template type to construct
sequences from which the FSA is learned to capture the system’s normal work
flow, achieving better performance on relevant datasets. Beschastnikh et al.[20]
generated finite state machines from the execution trace of a concurrent system
to infer a concise and accurate model of that system’s behaviour. Engineers can
use the inferred finite state machine model of communication to understand com-
plex behaviour and detect anomalies for developers. Lou et al.[2I] proposed an
automaton model and a corresponding mining algorithm for reconstructing con-
current workflows. The algorithm can automatically discover program workflows
and can construct concurrent workflows based on traces of interleaved events.

Although these methods have achieved better performance, none of these ex-
plored statistical feature and semantic feature of log sequence. Our study breaks
the conventional thinking of treating logs as general objects of time series and
introduces novel ideas in natural language processing to anomaly detection and
diagnosis, investigating log sequences as text sequences with semantic informa-
tion.

3 The Proposed Model

In this section, we present our proposed log-based anomaly diagnosis ASGNet
model. Model structure is depicted in Figure

3.1 Task description

In this research, the log-based anomaly diagnosis task can be described as a
tuple of three elements (S,I,y), where S = [s!,s% ..., s9] represents the log
sequence whose length is g. I denotes the current log message task ID and y € Y
conveys the anomaly diagnosis specific labels for logging exceptions, currently
diagnosable exceptions are Stream exception, Connection broken, Redundant

request, Unexpected error, etc.
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Fig. 2. Overview of our proposed ASGNet model.

3.2 Definition of terms

In this section, we first give the formal definition of the log statistics vector,
which is defined as follows. Given a word w in a log message and a set of log
exception labels C' = {c1, ¢a,- - , ¢y, }, the statistical information vector of w is:

Ew:[elael7"'7en] (]—)

where e; represents the count of word w on label ¢;. Given a log message L =
{w;}™,, the word statistics matrix in the log message is as follows:

EL = [Ev Ev2 ... EY™] (2)

The statistical information vector captures the global distribution of log
anomaly labels as a feature of the words in the log.

These statistical features are primitive but can be used for feature selection by
determining word-relatedness. Intuitively, if a word w has very high or very low
frequency across all labels, then we can assume that w has a limited contribution
to the anomaly diagnosis task. In contrast, if a word appears more frequently
in specific label class, we assume this word is discriminative. Here, the term
statistical label vector dictionary E is only obtained from the training set.

3.3 Log Statistics information Representation

Inspired by the text classification [I3],Log Statistics information Representation
(V-Net) aims to convert statistical features into an efficient representation. Log
statistics vectors contain integer counts of words, thus initially incompatible
with semantic features in both dimension and scale. Therefore, V-Net employs
an autoencoder to map discrete vectors of log statistics into a latent continuous
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space to obtain a global representation of the statistics. In this work, we employ
a variational autoencoder(VAE)[I5] to encode log statistics vectors.

We generate log statistics vectors for all log messages in the data set to obtain
S = {E(Ig)}ﬁvzl, which consists of N discrete log statistics Vector composition.
We assume that all log statistics vectors are generated by a stochastic process
pd(E|S) involving a latent variable S sampled from a prior distribution pf(S).
Since the posterior pd(S|E) is intractable, we cannot directly learn the generative
model parameters 6. Next, we employ a variational approximation g¢(S|E) to
jointly learn the variational parameters ¢ and 6. Therefore, we can optimize the
model by maximizing the marginal likelihood that is composed of a sum over
the marginal likelihoods of individual E:

logape(E) = Drcr(qs(S|E)|lpe(S#E)) + L(0, ¢; E) (3)

Because the K L divergence term is non-negative, we can derive the likelihood
term L(6, ¢; E') to obtain a variational lower bound on the marginal likelihood,
i.e.:

L(0,¢; E) = =Dk (s (S#E)||po(S)) + E(qe(S|E))[logape (E#S)])  (4)

where the KL term is the closed solution, and the expected term is the recon-
struction error. We employ a reparameterization approach to adapt the varia-
tional framework to an autoencoder. We use two encoders to generate two sets
of 4 and o as the mean and standard deviation of the prior distributions, re-
spectively. Since our approximate prior is a multivariate Gaussian distribution,
we represent the variational posterior with a diagonal covariance structure:

logqs(S|E) = logaN (S; p1, 0% 1) (5)

By training an unsupervised VAE model, we can obtain latent variables E*
through a probabilistic encoder, which would be a global representation of sta-
tistical features. The training of V-Net is independent of the main classifier, and
the representation E° is generated in the preprocessing stage and is fed to the
classifier through the adaptive semantic threshold mechanism.

3.4 Log Deep Semantic Representation

Log Deep Semantic Representation (S-Net) extracts semantic features from log
message input and projects the semantic features into the information space for
confidence evaluation. The input of S-Net is a log message W = [w;, wa, - -+ , W, |
with fixed length m.

In this paper, we use the pre-training model to obtain the semantic repre-
sentation of the log. Specifically, we use the pre-trained RoOBERTa[I6] to extract
the feature map of the input log text:

C = RoBERTa(W) (6)
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Then, we map the semantic feature map C into the information space through
dense layers. We use the sigmoid to activate values in the representation.

HC =W .C+v¢ (7)

where H'C = ¢®HC ¥, where o(+) is the sigmoid function, are used to evaluate
the confidence of the corresponding semantic features in the decision-making
process.

3.5 Adaptive Semantic threshold mechanism

As described in Section 2.3, the semantic representation of log statistics features
E?® is obtained offline. To flexibly utilize statistical features, we apply dense
layers to project E* into the information space shared with semantic features:

HP =WF¥ o (E%) +b° (8)
The valve component is fused with H¢ and H?, and the semantic feature

map H enhanced by statistical information is output through the AdaSemGate
function,

HO = AdaSemGatea(H® ,H®, H” ¢) = ReLUa(H®) + Gatea(H ©,¢) ® HF

(9)
where ReLU() is the activation function, and O represents element-wise point
multiplication. The values in H ¢ are in probabilistic form, and the Gate function
is designed to recover less confident entries (probability close to 0.5) to match
elements in H¢. Specifically, for each unit a € H ©,

o, “if’05—e>a<05+e¢

. (10)
0, “otherwise”

Gatea(a, €) = {
where € is a vulnerable hyperparameter for tuning the confidence threshold.
Specifically, if ¢ = 0, all statistics are rejected, and if ¢ = 0.5, statistics are
accepted. Therefore, the Gatea(a, €) function uses element-wise multiplication
as a filter to extract only the necessary information.

We employ global attention to combine the consolidated semantic represen-
tation HO with the original feature map C:

Global Attention(H?, C) = softmax(H°CT)C (11)

Note that if we reject all statistical information (i.e., e = 0),Eqn.(11) will
become self-attention[22] as HC = C.

After passing through fully-connected layers and a softmax layer, feature
vectors are mapped to the label space for label prediction and loss calculation.
To maximize the probability of the correct label Y7, we deploy an optimizer
tominimize cross-entropy loss L.

L = CrossEntropy(Y1rue, Ypred.) (12)
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4 Experimental Setup

4.1 Dataset and Hyper-parameters

We evaluate our model ASGNet on seven public datasets. The statistics of these
seven datasets are listed in Table 2

Table 2. The statistics of the seven datasets

Datasets Size #of logs #of anomalies #of anomalies
types

BGL 1.207GB 4,747,963 949,024 5

BGP 1.04GB 11,428,282 1,276,742 11

Third 27.367GB 211,212,192 43,087,287 7

Spirit 30.289GB 272,298,969 78,360,273 8

HDFS 1.58GB 11,175,629 362,793 6

Liberty 29.5GB 266,991,013 191,839,098 17

Zookeeper 10.4M 74,380 49,124 10

4.2 Training and hyperparameters

We fix all the hyper-parameters applied to our model. Specifically, We use the
basic version of RoBERTa as the pre-trained embeddings in our experiments.
The € set to 0.2, which empirically shows the best performance. The algorithm
we choose for optimization is Adam Optimizer with the first momentum coeffi-
cient S1= 0.9 and the second momentum coefficient 5,=0.999. We use the best
parameters on development sets and evaluate the performance of our model on
test sets.

5 Experimental Results

In this section, we elaborate the experimental setup and analyze the experimental
results, aiming to answer:

RQ1: Can ASGNet achieve better log-based anomaly diagnosis performance
than the state-of-the-art methods for log-based anomaly diagnosis task?

RQ2: How do the key model components and information types used in
ASGNet contribute to the overall performance?

RQ3: How does the size of these parameters, specifically, hidden state di-
mension of global attention and the gate function e, affect the performance of
the entire model?
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Fig. 3. Overall perform of our proposed ASGNet model.

5.1 Model Comparisons (RQ1)

To analyze the effectiveness of our model, we take some of the most advanced
methods as baselines on the above-mentioned seven datasets, to validate the
performance of our ASGNet model. The results are demonstrated as follows.

As shown in Figure NeuralLog [23] , LogRobust [9] and LogAnomaly
[24] are strongest baseline models of the Log-Based Anomaly Detection task. The
experiment results show that our model ASGNet achieves best performance on
seven datasets. For instance, on the BGL dataset, our model outperforms base-
line model NeuralLog [23] by 2.17% in F1-Score (p < 0.05 on student t-test).
LogRobust [9] by 1.3% in F1-Score (p < 0.05 on student t-test). LogAnomaly
[24] by 4.37% in F1-Score (p < 0.05 on student t-test). It also showed good per-
formance compared to the comparison method on the other six datasets.

The reason is our proposed model takes into account not only the semantic
features behind the log execution logic but also the statistical features of the log
text in the log exception diagnosis task. In order to better fit the two features, we
propose well-designed threshold mechanism which effectively selects the statis-
tical features to consolidate the semantic features, instead of using all statistical
features. The threshold mechanism introduces the information flow into the clas-
sifier based on the confidence of the semantic feature in the decision, which is
conducive to training a robust classifier and can solve the overfitting problem
caused by the use of statistical features.Therefore the final experimental results
demonstrate that our method achieves remarkable performance in the log-based
anomaly diagnosis task.
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5.2 Ablation Study (RQ2)

To thoroughly figure out the effect of each key model component, we carry out a
series of ablation study to decompose the whole model into three derived models.

m only use log statistics information representation @only use log deep semantic representation

w without adaptive semantic gate networks mASGNet(Our)
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Fig. 4. Ablation study on seven datasets

Model (1): only use log statistics information representation — The
entire model only uses the statistics information Representation of the log se-
quence.

Model (2): only use log deep semantic representation — The entire
model only uses the log deep semantic representation of the log sequence.

Model (3): without adaptive semantic gate networks — The entire
model excludes the adaptive semantic gate networks.

As shown in Figure [l we can see that in our model, the log deep seman-
tic representation module contributes more to task log-based anomaly diagnosis
than the log statistics information representation module, mainly because the
semantic information of the text of the logs can better express the deep logical
semantic information of the logs, while the statistical features can only express
the high and low frequency distribution of words, so log deep semantic repre-
sentation module shows more advantages. In addition, it can be seen that the
adaptive semantic gate module is indispensable in the whole component of our
model, and removing the adaptive semantic gate module will affect the overall
performance of the text proposed model.

5.3 Parameter Sensitivity (RQ3)

As shown in Figure[5] firstly, we can see that on two datasets the fl-score of our
model shows an upward trend when the dimension size is less than 300, especially
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Fig. 5. Performance of model ASGNet influenced by different hidden state dimension
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achieving highest when the dimension size is exactly 300, which indicates that
a large dimension size could contribute to model performance. However, when
the dimension size is larger than 300, the F1-Score of the model drops on both
HDFS and BGL Dataset, possibly due to insufficient training data.

Secondly, we compare the performance of our model using the gate function
€ on two datasets. As illustrated in Figure [5] our model achieves best fl-score
with the ¢ = 0.2 thus demonstrating that not all statistical features are useful
for the model.

6 Conclusion

Anomaly detection and diagnosis play an important role in the event manage-
ment of large-scale systems, which aims to detect abnormal behavior of the
system in time. Timely anomaly detection enables system developers (or en-
gineers) to pinpoint problems the first time and resolve them immediately,
thereby reducing system downtime. In this paper we design an Adaptive Se-
mantic Gate Networks (ASGNet) which consists of three parts, log statistics
information representation(V-Net),log deep semantic representation(S-Net) and
adaptive semantic threshold mechanism(G-Net). Specifically, V-Net leverages an
unsupervised autoencoder to learn a global representation of each statistical fea-
ture vector. S-Net extracts latent semantic representations from text input by
pre-trained RoBERTa. G-Net aligns information from two sources, then adjusts
the information flow.The final experimental results demonstrate that our method
achieves remarkable performance in the log-based anomaly diagnosis task.
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