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Abstract

Person Search aims to simultaneously localize and rec-
ognize a target person from realistic and uncropped gallery
images. One major challenge of person search comes from
the contradictory goals of the two sub-tasks, i.e., person de-
tection focuses on finding the commonness of all persons so
as to distinguish persons from the background, while person
re-identification (re-ID) focuses on the differences among
different persons. In this paper, we propose a novel Se-
quential Transformer (SeqTR) for end-to-end person search
to deal with this challenge. Our SeqTR contains a detec-
tion transformer and a novel re-ID transformer that se-
quentially addresses detection and re-ID tasks. The re-
ID transformer comprises the self-attention layer that uti-
lizes contextual information and the cross-attention layer
that learns local fine-grained discriminative features of the
human body. Moreover, the re-ID transformer is shared
and supervised by multi-scale features to improve the ro-
bustness of learned person representations. Extensive ex-
periments on two widely-used person search benchmarks,
CUHK-SYSU and PRW, show that our proposed SeqTR not
only outperforms all existing person search methods with a
59.3% mAP on PRW but also achieves comparable perfor-
mance to the state-of-the-art results with an mAP of 94.8%
on CUHK-SYSU.

1. Introduction
Practical applications of person search, such as search-

ing for suspects and missing people in intelligent surveil-
lance, require separating people from complex background
and discriminating target identities (IDs) from other IDs.
It involves two fundamental tasks in computer vision, i.e.,
pedestrian detection and person re-identification (re-ID).
Pedestrian detection aims at detecting the bounding boxes
(Bboxes) of all candidates in the image. Person re-ID
aims at retrieving a person of interest across multiple non-
overlapping cameras. Person search has recently attracted
tremendous interest of researchers in the computer vision
community for its importance in building smart cities. How-
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Figure 1. Comparison of person search frameworks. (a) The two-
step framework. (b) The one-step framework. (c) Our proposed
SeqTR adopts the sequential framework to perform detection and
re-ID in order.

ever, it remains a difficult task that suffers from many chal-
lenges, such as jointly optimizing contradictory objectives
of two sub-tasks in a unified framework, scale/pose varia-
tions, background clutter and occlusions and so on.

According to training manners, existing person search
methods can be generally grouped into two categories: two-
step frameworks and one-step frameworks. Two-step meth-
ods typically perform detection and re-ID with two separate
independent models. As shown in Fig. 1(a), pedestrians
are first detected by an off-the-shelf detection model. Af-
ter non-maximum suppression (NMS), the person patches
are cropped and resized (C&R) into a fixed size. Then
the person re-ID model is applied to produce ID feature
embeddings, which will be used to calculate the similar-
ity between the query persons and the candidates. The
two-step frameworks can achieve satisfactory performance
since each step focuses on one task and no contradictory
is involved. However, this pipeline is time-consuming and
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resource-consuming. In contrast, one-step methods simul-
taneously optimize two sub-tasks in a joint framework (Fig.
1(b)). The two sub-tasks first share a common backbone for
features extraction and then detection head and re-ID head
are applied in parallel.

In terms of architecture, the sequential framework com-
bines the merits of two-step and one-step frameworks. It
not only inherits the better performance of two-stage frame-
works via providing accurate bounding boxes (Bboxes) for
the re-ID stage but also preserves the efficiency of the end-
to-end training manner of one-step frameworks. However,
as Li et al. [13] has pointed out, the performance bottle-
neck of this architecture lies in the design of the re-ID sub-
network. In addition, we find that NMS, commonly used in
the detection models, primarily hinders the inference speed
of this architecture, especially in crowded scenes.

As transformers [17] become popular in vision tasks,
transformers-based person search frameworks [1, 24] also
show advantages over CNN-based models, such as no NMS
needed and powerful capability of learning fine-grained fea-
tures.

Motivated by the above observations, we propose a
novel Sequential transformer (SeqTR) for end-to-end Per-
son Search (Fig. 1(c)). It is a sequential framework, in
which two transformers are integrated seamlessly to address
the detection and re-ID tasks. Meanwhile, the two trans-
formers are decoupled with different features for the two
contradictory tasks.

In summary, we make the following contributions:

• We propose a novel Sequential Transformer (SeqTR)
model for end-to-end person search, which utilizes two
transformers to sequentially perform pedestrian detec-
tion and re-ID without NMS post-processing.

• We propose a novel re-ID transformer to generate dis-
criminative re-ID feature embeddings. To make full
use of context information, we introduce the self-
attention mechanism in our re-ID transformer. Mean-
while, we employ multiple cross-attention layers to
learn local fine-grained features. To obtain scale-
invariant person representations, our re-ID transformer
is shared by multi-scale features.

• We achieve a state-of-the-art result on two datasets.
Comprehensive experiments show the merits of our
proposed modules. Furthermore, with PVTv2-B2 [19]
backbone, SeqTR achieves 59.3% mAP that outper-
forms all existing person search models on PRW [25].

2. Related Work
2.1. CNN-based Person Search

Person search has attracted a lot of attention from the
computer vision community. A large number of meth-

ods have been proposed and achieved remarkable results.
According to the training manner, existing person search
frameworks can be divided into two-step and one-step
methods. Two-step person search models first perform
pedestrian detection and subsequently crop the detected
people for re-ID. Zheng et al. [25] first exhaustively evalu-
ate the combinations of different detectors and re-ID mod-
els. Chen et al. [4] propose a mask-guided two-stream
network to obtain enhanced feature representation. Lan
et al. [12] analyze the multi-scale misalignment caused
by the detector and exploit knowledge distillation to ad-
dress it. Wang et al. [18] utilize an identity-guided query
detector to extract the query-like proposals and employ a
detection-adapted model for re-ID. One-step person search
models integrate detection and re-ID into a joint framework,
which enables end-to-end training of two sub-tasks. Xiao et
al. [21] propose the first one-step person search model by
introducing a re-ID branch and Online Instance Matching
(OIM) loss in the Faster R-CNN detector. Liu et al. [14] and
Chang et al. [3] discard the proposal generation operation
and search the query person directly on the uncropped im-
ages by sequential decision making or reinforcement learn-
ing. Xiao et al. [20] use Center Loss to enhance feature
discrimination. Yan et al. [23] enrich the features with sur-
rounding persons. Munjal et al. [15] build the relationship
between the query image and gallery image by integrating
a query-guided Siamese squeeze-and-excitation block into
the backbone. Han et al. [8] develop an RoI transform layer
that enables gradient flow from the re-identifier to the de-
tector for localization refinement. Chen et al. [5] propose
a norm-aware embedding (NAE) to improve re-ID perfor-
mance. Dong et al. [6] employ a Siamese network that takes
both the entire image and cropped persons to better guide
the feature learning of the person. Yan et al. [22] intro-
duce the first anchor-free approach for person search. Li et
al. [13] propose a Sequential End-to-end Network (SeqNet)
to obtain accurate Bboxes for the re-ID stage, in which de-
tection and re-ID are considered as a progressive process
and tackled with two sub-networks sequentially. SeqNet in-
herits the sequential process of two-stage methods and the
end-to-end training fashion and efficiency of the one-step
methods. Our work is inspired by SeqNet, and we use the
sequential framework and replace the CNN sub-networks
for detection and re-ID with two transformers. Employ-
ing the structure advantage of the transformer, no NMS
is needed during training and inference, and the two sub-
networks are integrated with deformable attention seam-
lessly rather than the ROI-align in SeqNet.

2.2. Transformer-based Person Search

Recently, transformers-based person search frameworks
[1, 24] have been also proposed. The COAT model [24] is
a cascaded one-step method, in which an occluded atten-
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Figure 2. Architecture of our proposed SeqTR, which comprises a backbone, a detection transformer and a re-ID transformer.

tion transformer is used for feature enhancement before the
parallel detection head and re-ID head. In PSTR [1], a de-
tection decoder and a re-ID decoder are designed for the two
tasks. The output features of the detection decoder are fed
into the re-ID decoder, therefore the two decoders with con-
tradictory goals are coupled. Considering the advantages of
the transformer, we aim to utilize the transformer to design
a robust re-ID sub-network to alleviate the performance bot-
tleneck of the sequential framework.

3. Method
In this section, we introduce our proposed SeqTR in de-

tail. Firstly, we give an overview architecture of SeqTR in
Sec. 3.1. Secondly, the details of our designed re-ID trans-
former are elaborated in Sec. 3.2. Finally, we introduce the
training and inference process in Sec. 3.3.

3.1. SeqTR Architecture

The overall architecture of our SeqTR is depicted in Fig.
2. It contains three main components: a backbone to ex-
tract multi-scale feature maps of the input image, a detec-
tion transformer to predict Bboxes, and a novel re-ID trans-
former to learn robust person feature embeddings.

Backbone. Starting from the initial image ximg ∈
R3×H0×W0 (with 3 color channels). The backbone extracts
original multi-scale feature maps {xl}3l=1 from stages P2

through P4 in PVTv2-B2 [19] (or from stages C3 through
C5 in RestNet [10]). The resolution of xl is 2l+2 lower than
the input image.

Detection Transformer. We introduce the transformer-
based detector, deformable DETR [27], into our framework
to predict the pedestrian bounding boxes. However, The
difference with the original deformable DETR is the input
features. First, the channel dimensions of all feature maps
{xl}3l=1 from the backbone are mapped to a smaller dimen-
sion d = 256 by 1×1 convolution. Then, a 3×3 deformable
convolution is used to generate more accurate feature maps.
Finally, {Fbi ∈ Rd×H×W }4i=2 are transfomed from original
feature maps {xl}3l=1 by the above two steps and fed into a
standard deformable DETR.

re-ID Transformer. Our re-ID transformer aims to
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Figure 3. Architecture of our proposed re-ID transformer.

adaptively learn discriminative re-ID features around the
human body center. Motivated by object queries in DETR
[2], we set a fixed number of learnable re-ID queries Qr to
reconcile the relationship between detection and re-ID and
obtain re-ID feature embeddings.

3.2. re-ID transformer

The architecture of the re-ID transformer is shown in
Fig. 3. Each re-ID transformer layer is composed of a
self-attention layer and K cross-attention layers. The self-
attention layer comprises a multi-head attention module and
a layer normalization. The cross-attention layer contains
a deformable attention module and a layer normalization.
Suppose that the detection transformer decodes N objects
in each image. The re-ID query number is also set as N .
Taking the enhanced backbone features Fbi, i ∈ [2, 4], N
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reference points Pq from the detection transformer and N
re-ID queries Qr as input, the re-ID transformer outputs
N instance-level re-ID embeddings Fri that have the same
dimension as the pixel features. These instance-level re-
ID feature embeddings are highly associated with pedes-
trian locations. Furthermore, to aggregate multi-scale fea-
tures, multi-scale feature maps {Fbi}4i=2 are used to gen-
erate multi-scale re-ID embeddings {Fri ∈ Rd×H×W }4i=2

by the re-ID transformer. During inference, all multi-scale
re-ID embeddings {Fri}4i=2 are concatenated to perform
matching.

Re-ID Queries. To mitigate the objective contradictory
problem, we set re-ID queries Qr, like object queries, to
obtain re-ID features. Specifically, re-ID queries guarantees
that the final re-ID embeddings {Fri}4i=2 are instance-level
fine-grained features learned from the augmented multi-
scale backbone features {Fbi}4i=2. Through this design, the
final learned re-ID feature embeddings are highly correlated
with the detected pedestrian locations, but not affected by
the detection features. This is different from the re-ID de-
coder in PSTR [1], in which the re-ID queries come from
the output features of the detection decoder.

Self-Attention Layer. To produce discriminative re-ID
feature embeddings, we introduce the self-attention layer
into the re-ID transformer to learn contextual information.
This is different from the re-ID decoder in PSTR [1], in
which no self-attention layer is used. From the ablation
study (Table 3) in experiments, the performance is improved
with the self-attention layer. Specifically, we adopt a stan-
dard multi-head self-attention (with H heads) in the Trans-
former [17]. We denote the input of the self-attention layer
as Yq . The initial input Yq = Qr. Yq are transformed into
query vectors Q ∈ RN×dk , key vectors K ∈ RN×dk and
value vectors V ∈ RN×dv by three different linear projec-
tions. The output embeddings then are generated by per-
forming the multi-head self-attention module.

headi = Attention(QWQ
i ,KW

K
i , V WV

i ), (1)

where WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk , WV
i ∈ Rd×dv ,

dk = dv = d/H . The self-attention module use Scaled
Dot-Product Attention in each head:

Attention(Q,K, V ) = softmax

(
QK>√
dk

)
V. (2)

The embeddings from all heads are concatenated and pro-
jected to yield d-demensional embeddings:

MultiHead(Q,K, V ) = Concat(head1, ...,headH)WO,
(3)

where WO ∈ RHdk×d. At last, we use a layer normaliza-
tion to get the final embeddings Ŷq .

Ŷq = layernorm(Yq + dropout(MultiHead(Q,K, V )).
(4)

The self-attention layer in the first re-ID transformer
layer can be skipped. After passing through the first re-
ID transformer layer, the output features are correlated with
reference points. N feature embeddings correspond to N
locations respectively. These embeddings interact with each
other for learning spatial relationship by the self-attention
layer in the mth (m ∈ [2,M ]) re-ID transformer layer, re-
sulting to enhance feature embeddings by instances in the
same scene.

Cross-Attention Layer. Different from the previous
works that use the RoI-Align layer on detection features,
we employ and stack several cross-attention layers to ad-
dress the region misalignment. In the cross-attention layer,
there is a deformable attention module and a layer normal-
ization. The deformable attention module proposed by de-
formable DETR [27], only attends to a small set of key
sampling points around a reference point. It is useful for
learning fine-grained features. Given an input feature map
Fbi ∈ RC×H×W , a set of detected bounding boxes, i.e.,
reference points (denoted Pq), and query features (denoted
Zq), the output feature embeddings Ẑq can be calculated:

Ẑq =

layernorm(Zq + dropout(DeformAttn(Zq, Pq, Fbi)),

(5)

DeformAttn(Zq, Pq, Fbi) =

H∑
h=1

Wh

[
S∑

s=1

Ahs ·W ′hFbi(Pq + ∆Phs)

]
(6)

where H is the total attention heads, S is the total sampled
key number. Ahs and ∆Phs denote attention weight of the
sth sampling point in the hth attention head and the sam-
pling offset, respectively. Both are obtained via linear pro-
jection over the query feature Zq , respectively. In this way,
each query feature corresponds to one detected bounding
boxes and integrates the features of the surround sampling
points. In PSTR [1], features at sampling points are aver-
aged rather than using the attention weight Ahs as in Eq. 6
because it was observed that the attention weights from the
query struggle to effectively capture the features of a person
instance. We think it may be caused by the coupling of the
two decoders since the re-ID queries in PSTR [1] are from
the detection decoder.

Schemes of Employing Multi-scale Features. Much
previous work has demonstrated that employing multi-scale
feature maps is useful for addressing scale variation in per-
son search. To obtain scale-invariant re-ID features, we
propose several schemes of employing multi-scale features.
First, A straightforward way is to concatenate the aug-
mented backbone features {Fbi}4i=2 and feed to the re-ID
transformer to produce Frm ∈ RN×d, as shown in Fig.
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Figure 4. Comparison of different re-ID transformer schemes. (a)
Multi-scale re-ID transformer. {Fbi}4i=2 are concatenated as in-
put features. (b) Parallel re-ID transformer. Each independent
re-ID transformer is responsible for a single-scale input feature.
(c) Shared re-ID transformer. {Fbi}4i=2 respectively go through a
common shared re-ID transformer.

4(a). To align the dimension of the final matching embed-
dings with other schemes in Fig. 4, we also design ”Multi-
scale re-ID transformer-3d”, whose deformable attention
modules are replaced by multi-scale deformable attention
modules [27]. Correspondingly, the re-ID queries are ad-
justed to Qr ∈ RN×3d, resulting in Frm ∈ RN×3d. We
also build three independent re-ID transformers for three-
level features {Fbi}4i=2 to obtain three-level re-ID feature
embeddings {Fri ∈ RN×d}4i=2, respectively. we call it par-
allel re-ID transformer (Fig. 4(b)). As opposed to parallel
re-ID transformer, the shared re-ID transformer (Fig. 4(c))
means that three-scale input features are respectively fed to
a common re-ID transformer to generate re-ID feature em-
beddings. The following ablation studies (Table 4) verify
that the shared re-ID transformer achieves the best perfor-
mance.

3.3. Training and Inference

For each image, our SeqTR predicts N classification
scores, bounding boxes and re-ID feature embeddings

{Fri}4i=2. In the training phase, {Fri}4i=2 are supervised
separately. They are concatenated during inference.

During training, our SeqTR is trained end-to-end for
detection and re-ID. Specifically, detection transformer is
supervised with loss functions of deformable DETR [27]
for classification (Lcls), bounding-box IoU loss (Liou),
bounding-box Smooth-L1 loss (Lcls). While the re-ID
transformer is supervised by the Focal OIM loss (Loim)
[22].

The overall loss is given by:

L = λ1Lcls + λ2Liou + λ3Ll1 + λ4Loim (7)

where λ1,λ2,λ3,λ4, responsible for the relative loss impor-
tance, are set as 2.0, 5.0, 2.0, 0.5, respectively.

During inference, our SeqTR predicts Bboxes and corre-
sponding re-ID feature embeddings for gallery images. For
the query person, we get predictions of the query image in
the same way and then choose the one that has maximum
overlap with its annotated bounding box.

4. Experiments
In this section, we conduct experiments on two widely

utilized person search datasets. We first introduce two large
datasets and evaluation metrics. Then we describe some im-
plementation details. Afterwards, we compare the overall
performance of our methods with state-of-the-art methods.
Finally, we perform ablation studies to validate the effec-
tiveness of our methods on the PRW [25] dataset.

4.1. Datasets and Settings

CUHK-SYSU. Scene images in the CUHK-SYSU [21]
are collected from real street snaps and movies. There are a
total of 18,184 realistic and uncropped images, 96,143 an-
notated bounding boxes and 8,432 different identities. The
dataset is partitioned into two parts without overlap. The
training set includes 11,206 images, 55,272 pedestrians, and
5,532 identities. The test set contains 6,978 images, 40,871
pedestrians, and 2,900 identities. During inference, for each
query, the dataset defines a gallery set with different sizes
from 50 to 4,000 to evaluate the performance scalability of
models. Following the previous works, we report the results
with the gallery size of 100 if not specified.

PRW. Images in the PRW [25] dataset are collected by
6 static cameras at Tsinghua university. There are 11,816
video frames and 43,110 annotated bounding boxes. 34,304
of these boxes are annotated with 932 labelled identities
and the rest are marked as unknown identities. It is also
divided into two groups. The training set contains 5,704
images, 18,048 pedestrians, and 482 identities. The test set
has 6,112 images and 2,057 query persons with 450 iden-
tities. During inference, for each query person, the gallery
set is the whole test set, i.e., the gallery size is 6,112.
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Evaluation Metrics. Following the previous works [21],
we employ Mean Average Precision (mAP) and Cumulative
Matching Characteristics (CMC top-K) to evaluate the per-
formance of the person search.

4.2. Implementation Details

We adopt ResNet50 [10] and transformer-based PVTv2-
B2 [19] that are pre-trained on ImageNet [16] as backbone.
To train our model, we adopt the AdamW optimizer with a
weight decay rate of 0.0001. The initial learning rate is set
to 0.0001 that is warmed up during the first epoch and de-
creased by a factor of 10 at 19th and 23th epoch, with a total
of 24 epochs. For CUHK-SYSU/PRW, the circular queue
size of OIM is set to 5000/500. During training, we employ
a multi-scale training strategy, where the longer side of the
image is randomly resized from 400 to 1666. For inference,
we rescale the test images to a fixed size of 1500× 900 pix-
els. For our SeqTR with ResNet50 [10] backbone, we use
one NVIDIA GeForce RTX 3090 to run all experiments and
batch size set to 2. Our SeqTR with PVTv2-B2 [19] back-
bone is trained on two RTX 3090 GPUs with batch size set
to 1 because of the limitation of GPU memory.

4.3. Comparison to the State-of-the-arts

We compare our SeqTR with the state-of-the-arts, in-
cluding both two-step models [4, 7, 8, 12, 18] and one-step
models [1, 3, 5, 6, 9, 11, 13–15, 20–24, 26], on two datasets.

Results on CUHK-SYSU. As shown in Table 1, our Se-
qTR outperforms most one-step methods and achieves com-
parable performance to two-step methods on the CUHK-
SYSU test set [21].

The best two-step method TCTS [18] achieves mAP
scores of 93.9%. Among one-step methods with the
ResNet50 [10], COAT [24] achieves the best mAP score
of 94.2%. Our SeqTR with the same ResNet50 backbone,
which achieves comparable 93.4% mAP and 94.1% top-
1 accuracy, outperforms AlignPS [22] by 0.3% and 0.7%
in mAP and top-1 accuracy, respectively. Our results are
slightly worse than the transformer-based COAT [24] and
PSTR [1].

Then, based on PVTv2-B2 [19] backbone, the perfor-
mance of our SeqTR is significantly improved to 94.8%
mAP and 95.5% top-1 accuracy. For a fair comparison,
we reproduce the performance of PSTR [1] with the same
PVTv2-B2 [19] backbone (named PSTR*) to eliminate the
effects of different training strategies, i.e., single-GPU train-
ing and distributed training. Specifically, we set batch size
from 2 to 1 and use two RTX 3090 GPUs for distributed
training three times. The average of the three reproduced re-
sults is then calculated and reported in Table 1. Our method
outperforms the reproduced results of PSTR by 0.2% in
mAP. Moreover, the post-processing strategy Context Bi-
partite Graph Matching(CBGM) [13] is widely used to im-

Method Backbone CUHK-SYSU PRW
mAP(%) Top-1(%) mAP(%) Top-1(%)

Two-step methods
MGTS [4] VGG16 83.0 83.7 32.6 72.1
CLSA [12] ResNet50 87.2 88.5 38.7 65.0
RDLR [8] ResNet50 93.0 94.2 42.9 70.2
IGPN [7] ResNet50 90.3 91.4 47.2 87.0

TCTS [18] ResNet50 93.9 95.1 46.8 87.5
One-step methods with CNNs

OIM [21] ResNet50 75.5 78.7 21.3 49.4
NPSM [14] ResNet50 77.9 81.2 24.2 53.1
RCAA [3] ResNet50 79.3 81.3 - -
IAN [20] ResNet50 76.3 80.1 23.0 61.9

CTXGraph [23] ResNet50 84.1 86.5 33.4 73.6
QEEPS [15] ResNet50 88.9 89.1 37.1 76.7
BI-Net [6] ResNet50 90.0 90.7 45.3 81.7
APNet [26] ResNet50 88.9 89.3 41.9 81.4

NAE [5] ResNet50 91.5 92.4 43.3 80.9
NAE+ [5] ResNet50 92.1 92.9 44.0 81.1

PGSFL [11] ResNet50 90.2 91.8 42.5 83.5
SeqNet [13] ResNet50 93.8 94.6 46.7 83.4
DMRN [9] ResNet50 93.2 94.2 46.9 83.3

AlignPS [22] ResNet50 93.1 93.4 45.9 81.9
One-step methods with transformers

COAT [24] ResNet50 94.2 94.7 53.3 87.4
PSTR [1] ResNet50 93.5 95.0 49.5 87.8

SeqTR(Ours) ResNet50 93.4 94.1 52.0 86.5
PSTR [1] PVTv2-B2 95.2 96.2 56.5 89.7
PSTR* [1] PVTv2-B2 94.6 95.6 57.6 90.1

SeqTR(Ours) PVTv2-B2 94.8 95.5 59.3 89.4
COAT [24]+CBGM ResNet50 94.8 95.2 54.0 89.1
PSTR [1]+CBGM PVTv2-B2 95.8 96.8 58.1 92.0

PSTR* [1]+CBGM PVTv2-B2 95.2 96.1 58.2 91.5
SeqTR(Ours)+CBGM PVTv2-B2 95.4 96.3 59.8 90.6

Table 1. Comparison with the state-of-the-art methods on CUHK-
SYSU and PRW test sets. * denotes our reproduced result. The
highest scores in each group are highlighted in bold.

prove mAP and top-1 accuracy. By employing CBGM, our
SeqTR achieves 95.4% mAP and 96.3% top-1 accuracy,
which outperforms the reproduced results of PSTR* with
CBGM.

We also evaluate the performance scalability of these
models with different gallery sizes. Fig. 5 shows that the
mAP of all methods decreases monotonically as the gallery
size increases, which illustrates the fact that more distract-
ing persons introduced in the larger gallery make searching
much more difficult. As shown in Fig. 5, our SeqTR out-
performs most models.

Results on PRW. The PRW dataset [25] is more chal-
lenging than the CUHK-SYSU dataset [21] for less training
data and larger gallery size. Furthermore, there is a large
number of people wearing similar uniforms and there are
more scale variations, pose/viewpoint changes and occlu-
sions. Nevertheless, as can be observed from Table 1, our
method achieves strong performance.

With ResNet50 [10] backbone, our SeqTR achieves
52.0% mAP and 86.5% top-1 accuracy, outperforming all
two-step methods and with a significant gain of 2.5% mAP
than PSTR [1] with the same backbone. The performance
of our method is slightly lower than COAT [24] by 1.3%
mAP and 0.9% top-1 accuracy.

With PVTv2-B2 backbone [19], our SeqTR achieves
59.3% mAP and 89.4% top-1 accuracy, outperforming all
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Figure 5. Comparison with (a) two-step models and (b) one-step
models on CUHK-SYSU with different gallery sizes.

Transformer layers Cross-attention mAP(%) Top-1(%)
M layers K

2
2 50.8 86.5
3 50.4 86.0
4 49.9 85.5

3
2 50.4 86.7
3 52.0 86.5
4 50.7 86.8

4
2 50.5 86.7
3 50.3 86.1
4 50.6 86.7

Table 2. Ablation study for different shared re-ID transformer
structures on PRW dataset.

existing methods with a clear margin on mAP. We attribute
it to our designed re-ID transformer which alleviates some
challenges, such as recognizing the query person from co-
travellers wearing the same uniform. Finally, our SeqTR
is improved to the best 59.8% mAP and comparable 90.6%
top-1 accuracy with CBGM.

4.4. Ablation Study

We perform a series of ablation studies on the PRW [25]
dataset to analyze our design decisions. Limited by the
memory of the RTX 3090 GPU, we choose the ResNet50
[10] backbone to void the impact of the distributed training.

Re-ID Transformer Structure. Setting the number of
the self-attention layer in each transformer layer to 1, we
evaluate the impact of the number of transformer layers M
and the number of cross-attention layers K. As shown in
Table 2, when the number of transformer layers is greater
than 2, different combinations of M and K have a slight
impact on performance. Among these configurations, when
M = 3 and K = 3, our SeqTR achieves the best perfor-
mance of 52.0% mAP and 86.5% top-1 accuracy.

Method mAP(%) Top-1(%)
re-ID transformer 52.0 86.5

re-ID transformer w/o self-attention layers 49.6 85.5

Table 3. Comparative results of adding and removing self-
attention layer on PRW dataset.

Re-ID transformer scheme mAP(%) Top-1(%)
Multi-scale re-ID transformer-d 44.1 80.9

Multi-scale re-ID transformer-3d 44.1 83.1
Parallel re-ID transformer 51.1 85.2
Shared re-ID transformer 52.0 86.5

Table 4. Comparative results with different variants of the re-ID
transformer on PRW dataset.

Input feature E Fb4 Fb3 Fb2 mAP(%) Top-1(%)

Single-scale feature

X 26.5 66.4
X 41.6 79.5

X 45.6 82.9
X 41.7 82.6

Multi-scale feature
X 41.6 79.5
X X 47.8 82.7
X X X 52.0 86.5

Table 5. Comparative results by employing different input features
on PRW dataset. ”X” means using the corresponding feature. ”E”
denotes the output feature of the encoder in the detection trans-
former.

Importance of Self-Attention Layer. We also evaluate
the importance of the self-attention layer. In Table 3, we
find that adding self-attention layers yields improvements
of 2.4% on mAP and 1% on top-1 accuracy respectively.

Schemes of Employing Multi-scale Features. To eval-
uate the effect of different re-ID transformer schemes, we
design three different variants as illustrated in Fig. 4 and
report the results in Table 4. First, For a multi-scale re-
ID transformer-d, it outputs d dimensional re-ID feature
embeddings for matching. We obtain 44.1% on mAP and
80.9% on top-1 accuracy. To align with the 3d dimensional
matching embeddings of other schemes (Fig. 4(b) and Fig.
4(c)), we also design a multi-scale re-ID transformer-3d.
However, it has no improvement on mAP. Compared to the
multi-scale re-ID transformer-3d, the parallel re-ID trans-
former (Fig. 4(b)) has absolute gains of 7.0% on mAP and
2.1% on top-1 accuracy. Then, the shared re-ID transformer
(Fig. 4(c)) achieves the best performance with 52.0% on
mAP and 86.5% on top-1 accuracy.

Choices of Input Features to re-ID transformer. We
conduct experiments on employing different input features
to the shared re-ID transformer, including single-level and
multi-scale features. The results are reported in Table 5.
Specifically, we first evaluate the single-level feature re-
spectively. Among these single-level features, the output
feature of the encoder in the detection transformer provides
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Figure 6. Qualitative comparison with PSTR [1]. The yellow bounding boxes denote the queries, while the green and red bounding boxes
denote correct and incorrect top-1 matches, respectively. Row (a) are two cases to illustrate the strength of the sequential framework. Row
(b) are two cases to show the importance of self-attention layers in our re-ID transformer. Row (c) are two cases to show the advantages of
cross-attention layers in our re-ID transformer.

Method Backbone GPU Time(ms) mAP(%) Top-1(%)
NAE [5] ResNet50 RTX 3090 80 43.3 80.9

SeqNet [13] ResNet50 RTX 3090 106 46.7 83.4
AlignPS [22] ResNet50 RTX 3090 44 45.9 81.9
COAT [24] ResNet50 RTX 3090 130 53.3 87.4
PSTR [1] ResNet50 RTX 3090 52 49.5 87.8

SeqTR(Ours) ResNet50 RTX 3090 86 52.0 86.5
PSTR [1] PVTv2-B2 RTX 3090 88 56.5 89.7

SeqTR(Ours) PVTv2-B2 RTX 3090 130 59.3 89.4

Table 6. Comparative results of person search efficiency on the
PRW dataset.

less information for the re-ID task and is discarded in later
experiments. Relatively, C4 yields the best performance.
Furthermore, we also show the performance of utilizing
multi-scale features. As can be observed, the best perfor-
mance is achieved by using three-level features.

Efficiency Comparison. Generally, there are more
pedestrians in every scene image in the PRW [25] dataset.
To evaluate our contributions in the sequential frame-
work, we conduct runtime efficiency analysis on PRW [25]
dataset. As shown in Table 6, our SeqTR with ResNet50
[10] backbone takes 86 milliseconds to process an image,
which is faster than SeqNet [13] and COAT [24]. It is at-
tributed to the design without requiring an NMS. For using
PVTv2-B2 backbone [19], our SeqTR is slower than PSTR
[1], but achieves an absolute of 2.8% mAP over PSTR [1].
Our SeqTR with PVTv2-B2 backbone has the same speed
of 130 milliseconds with COAT [24] with ResNet50 back-
bone, however our method achieves +6.0% and +2.0% gains
of mAP and top-1 accuracy respectively.

Qualitative Results. To demonstrate the performance of
our SeqTR, we show some qualitative comparisons between
our SeqTR with PSTR [1] on PRW [25] dataset. As shown
in Fig. 6(a), our SeqTR achieves more accurate pedes-
trian localizations in both examples, because the sequential
framework produces high-quality detection results first that
then benefit for the re-ID stage. In both cases of Fig. 6(b),
compared to PSTR [1], our SeqTR accurately identifies the
query persons, whose co-travellers wear similar uniforms.
It is attributed to the self-attention layer that employs con-
textual information. In addition, the cross-attention layers
in our re-ID transformer contribute to focusing on meaning-
ful regions, although occlusions occur in the given query
person in Fig. 6(c). The above examples also illustrate that
our SeqTR further alleviates some challenges, such as oc-
clusions and distinguishing similar appearances.

5. Conclusion
In this paper, we propose a novel Sequential Transformer

(SeqTR) for end-to-end person search. Within our SeqTR,
a detection transformer and a re-ID transformer are inte-
grated to solve the two contradictory tasks sequentially. We
design a re-ID transformer that contains self-attention lay-
ers and cross-attention layers to generate discriminative re-
ID feature embeddings. Furthermore, our re-ID transformer
adopts a share strategy for employing multi-scale features.
Extensive experiments demonstrate the performance of our
proposed framework, which achieves state-of-the-art results
on PRW [25] dataset.
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