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Abstract. Exploratory data analysis (EDA) is a vital procedure for
data science projects. In this work, we introduce a stable equilibrium
point (SEP) - based framework for improving the efficiency and solution
quality of EDA. By exploiting the SEPs to be the representative points,
our approach aims to generate high-quality clustering and data visual-
ization for large-scale data sets. A very unique property of the proposed
method is that the SEPs will directly encode the clustering properties of
data sets. Compared with prior state-of-the-art clustering and data visu-
alization methods, the proposed methods allow substantially improving
computing efficiency and solution quality for large-scale data analysis
tasks.
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1 Introduction

Exploratory data analysis (EDA) is the procedure of analyzing data sets to gain
insights of their characteristics. It is usually the first step for big data analysis.
Clustering and data visualization are two main pillars of EDA.

Clustering aims to assign similar data samples into same cluster while assign-
ing dissimilar data samples into different clusters. Spectral clustering is one of
the most popular clustering methods. It has superior capability in detecting non-
convex and linearly non-separable patterns. However, the computational cost of
spectral clustering is very high. Its eigen-decomposition step has a O(N?) time
complexity, where N is the number of data points. So its applicability to truly
large scale data analysis is very limited. To solve this problem, substantial ef-
fort has been devoted and numerous methods have been proposed: [I] proposed
to reduce the problem size of eigen-decomposition by performing a coarse-level
clustering with k-means. [2] attempted to find approximate solution via sam-
pling. Inspired by sparse coding, [3] proposed to perform spectral embedding via
landmark points. However, the existing methods either do not scale, or result in
a significant degradation of clustering accuracy.

*These authors contributed equally and are co-first authors: Yuxuan Song and
Yongyu Wang
®Corresponding author: Yongyu Wang; Correspondence to: wangyongyul@jd.com



2 Yuxuan Song* and Yongyu Wang**

For the data visualization tasks, t-distributed stochastic neighbor embedding
(t-SNE) [6] is the most widely used tool for visualizing high-dimensional data.
It aims to learn an embedding from the high-dimensional space to two or three
dimensional space in such a way that similar samples are modeled by nearby
points in low-dimensional space and dissimilar samples are modeled by distant
points so that people can directly view the structure of data sets. However,
its involved Stochastic Neighbor Embedding (SNE) process requires to perform
gradient descent to minimize the Kullback-Leibler (KL) cost function for every
sample which is a very time-consuming process and impractical for large-scale
data sets.

To solve the above problems, in this paper, we propose a stable equilib-
rium point (SEP)-based framework for improving the performance of the above
two main EDA tasks. Compared with the existing methods, our method has
a nearly-linear time complexity and the SEP-based representative points have
strong capability of representing the cluster properties of the original data set.
Experimental results show that the proposed method improve the performance
of main EDA tasks for a large margin.

2 Preliminary

2.1 Spectral Clustering Algorithms

Spectral clustering can often outperform traditional clustering algorithms, such
as k-means algorithms[4]. Typical spectral clustering algorithms can be divided
into three steps: 1) construct a similarity matrix according to the entire data
set, 2) embed all data points into k-dimensional space using eigenvectors of k
bottom nonzero eigenvalues of the graph Laplacian, and 3) perform k-means
algorithm to partition the embedded data points into k clusters. Even though
these algorithms are rather easy to implement, they are not suitable for handling
large-scale data sets since computing eigenvectors of the original graph Laplacian
are usually very costly.

2.2 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) [6] maps data points from
high-dimensional space to two or three dimension in such a way that similar data
points are located in nearby places while dissimilar points are located in distant
places. It includes the following main steps:

1) Convert the euclidean distances into conditional probabilities as follows:
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where o; denotes the variance of the Gaussian distribution that is centered
at x;. Then, the joint probability is defined as follows:

Bjii + Pijj

2N

where N is the number of data points in the data set.

2) Assume that y; and y; are two points in the low-dimensional space corre-
sponding to z; and x;, respectively. The similarity between y; and y; is defined
as follows:
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3) t-SNE uses the sum of Kullback-Leibler divergence over all pairs of data
points as the cost function of the dimensionality reduction:

(4)
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For each point, its corresponding point in low-dimensional space is deter-
mined by performing gradient descent associated with the above cost function.
For a data set with N points, the time complexity of t-SNE is O(N?).

3 Methods

Inspired by the support vector approach, we first map the data from the original
space into a high-dimensional space with a nonlinear transformation @ to find
a sphere with the smallest radius that can enclose all data points in the feature
space by solving the following problem:

12(x;) —al* < B? +¢, (7)
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where K (x;,x;) = e~ alxi—x; |
multipliers.

When the hyper-sphere is mapped back to data space, it forms a set of
contours which enclose similar data points. However, these contours cannot be
explicitly discovered. But its has been demonstrated that by performing the
following gradient descent process associated with f(x), data points that belong
to same contour will converge to the same point [7].

is the Mercer kernel, 3; and /3; are Lagrangian
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These convergence points are called stable equilibrium points (SEPs). Obvi-
ously, SEPs has strong capability of representing a set of similar data points. So,
in this paper, we adopt SEPs as the representative points for the data sets.

However, calculating SEPs requires to perform the time consuming gradient
descent on every point, which is impractical for large-scale data set. To reduce to
computational cost, in this paper, we adopt a novel spectrum-preserving node
aggregation-based SEP searching method [§]. Specifically, a k-NN graph G is
constructed to capture the global manifold of the data set. Then, the structural
correlation of two nodes p and ¢ can be calculated as follows [I0] :
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where X := (x(M,...,x¥)) is the approximate solution of the bottom K non-

trivial eignevectors of the Laplacian matrix Lg corresponding to the graph G.
It is obtained by applying Gauss-Seidel relaxation solve Lgx() = 0 for i =
1,..., K, starting with K random vectors. By aggregating the nodes with high
structural correlation, a compressed data set can be formed. We search the SEPs
from the compressed data set to reduce the computational cost.

Then, we apply standard spectral clustering on the SEPs to divide them
into k clusters. Then, the cluster labels are mapped back from the SEPs to the
original data points. Note that here are two levels of mapping. First, we assign
the cluster label of each SEP to all of its associated compressed data points.
Then, the cluster label of each compressed data point is assigned to all of its
associated original data points.The complete algorithm flow has been shown in
Algorithm ?7.

Input: A data set D with N samples z1,...,zxy € R?, number of clusters k.
Output: Clusters C1,...,Cy.

Map the data from the original space into a high-dimensional space to find
the minimal enclosing hyper-sphere.

Calculate the squared radial distance f(x) of data point x from the hyper-
sphere center

Search for SEPs by performing gradient descent associated with f(x)
Perform spectral clustering to divide SEPs into k clusters ;

Search SEP points from the compressed data set;

Map the cluster-memberships of SEPs back to obtain clustering result of the
original data set.

This framework can also be applied for achieving fast t-SNE. Recent research
[27] shows that the dimensionality reduction process in t-SNE is closely related to
the bottom non-trivial eigenvectors of the graph Laplacian matrix corresponding
to the data graph. According to the spectral graph theory, the manifold of the



Title Suppressed Due to Excessive Length 5

data set is encoded in these eigenvectors. This motivates us to propose a SEP-
based t-SNE algorithm. Due to the special properties of the SEP, visualizing the
representative data set composed of SEPs using the t-SNE will produce similar
visualization result with dramatically improved efficiency.

4 Experiment

The spectral clustering algorithms and t-SNE are performed using MATLAB
running on Laptop. The implementation of the compared methods can be found
on their authors’ website.

4.1 Data sets

We evaluate the proposed method with three real-world large-scale data sets:

1) The USPS data set contains 9,298 16x 16 pixel grayscale images of hand
written digits scanned from envelopes of the U.S. Postal Service ;

2) The MNIST: The Modified National Institute of Standard and Technol-
ogy (MNIST) handwritten digits data set. It contains 70,000 images and each
of them is represented by 784 features;

Covtype contains 581,012 samples from seven clusters for predicting forest
cover type and each sample is represented by 54 attributes.

These three benchmark data set can be downloaded from the UCI machine
learning repository ||

4.2 Compared Methods

We compare the proposed method against both the baseline and the state-of-
the-art fast spectral clustering methods to demonstrate the effectiveness and
efficiency:

(1) Standard spectral clustering algorithm [4],

(2) Nystrom method [2],

(3) Landmark-based spectral clustering (LSC) method using random sam-
pling for landmark selection [3],

(4) KASP method using k-means for coarse-level clustering [1].

https://archive.ics.uci.edu/ml/
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For fair comparison, the parameters are set as in [3] for compared algorithms:
the number of sampled points in Nystrom method ( or the number of landmarks
in LSC, or the number of coarse level cluster centroids in KASP ) is set to 500
as in [9].

Evaluation Metrics. Clustering accuracy (ACC) is used for evaluating the
spectral clustering performance [3,?]. The detailed definition can be found in [5].

4.3 Experimental Results of Spectral Clsutering

Table 1: Spectral clustering accuracy (%)
Data Set |Standard SC|Nystrom|KASP|LSC |Our Method
PenDigits 74.36 71.99 | 71.56 |74.25 76.87

USPS 64.31 69.31 |70.62 |66.28 75.78

Table 2: Runtime (seconds)
Data Set |Standard SC|Nystrom|KASP|LSC|Our Method
PenDigits 0.18 0.19 0.13 |0.10 0.07
USPS 0.72 0.29 0.16 [0.22 0.15

To show the effectiveness of the proposed method, clustering accuracy re-
sults and runtime results are provided in Table 3 and Table 4, respectively. It
can be observed that for all the three data sets, the proposed method generates
significantly better clustering results than the standard spectral clustering. This
is because our method enables to generate a much better pattern for spectral
clustering. Spectral clustering is a graph-based method and it is vert sensitive
to noisy nodes in the graph. For example, if only a few noisy nodes form a
weak connection between two densely connected clusters, spectral clustering al-
gorithm tends to recognize the two clusters and the noisy nodes as one cluster
[?]. Compared with standard spectral clustering, the graph in our method is only
composed of a small set of SEPs, so that noisy node problem can be fundamen-
tally addressed. Compared with the KASP method, our method is much more
efficient. KASP method uses k-means centroids as the representative points. In
constrast with other method that perform k-means on the spectrally-embedded
low-dimensional space, the KASP method performs k-means in the original high-
dimensional data set to generate the representative points.
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4.4 Experimental Results of t-SNE

Figure 5 shows the visualization and runtime results of the standard t-SNE
method and the proposed t-SNE algorithm. It can be seen that we achieve 3
times speedup for USPS data set while displaying clearly cluster structure.

60 -
80 -

Fig. 1: Standard t-SNE for the USPS data set (t-SNE time: 77s) .

5 Conclusion

We propose a novel stable equilibrium point (SEP) - based algorithmic frame-
work for improving the performance of two main tasks (clustering and data
visualization) in exploratory data analysis (EDA). Our method enables to fun-
damentally address the computational challenge of spectral clustering and t-SNE
while improving the solution quality. Experimental results on large scale real-
world data sets demonstrate the effectiveness of the proposed methods.

6 Contributions

Yongyu Wang and Yuxuan Song conceived the idea. Yongyu Wang supervised,
led and guided the entire project. Yongyu Wang and Yuxuan Song designed
and conducted the experiments and wrote the paper. All authors discussed the
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Fig.2: SEP-based t-SNE for the USPS data set (t-SNE time: 25s).
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