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Abstract. Previous studies have revealed that artificial intelligence (AI)
systems are vulnerable to adversarial attacks. Among them, model ex-
traction attacks fool the target model by generating adversarial examples
on a substitute model. The core of such an attack is training a substitute
model as similar to the target model as possible, where the simulation
process can be categorized in a data-dependent and data-free manner.
Compared with the data-dependent method, the data-free one has been
proven to be more practical in the real world since it trains the sub-
stitute model with synthesized data. However, the distribution of these
fake data lacks diversity and cannot detect the decision boundary of the
target model well, resulting in the dissatisfactory simulation effect. Be-
sides, these data-free techniques need a vast number of queries to train
the substitute model, increasing the time and computing consumption
and the risk of exposure. To solve the aforementioned problems, in this
paper, we propose a novel data-free model extraction method named
SCME (Self-Contrastive Model Extraction), which considers both the
inter- and intra-class diversity in synthesizing fake data. In addition,
SCME introduces the Mixup operation to augment the fake data, which
can explore the target model’s decision boundary effectively and improve
the simulating capacity. Extensive experiments show that the proposed
method can yield diversified fake data. Moreover, our method has shown
superiority in many different attack settings under the query-limited sce-
nario, especially for untargeted attacks, the SCME outperforms SOTA
methods by 11.43% on average for five baseline datasets.

Keywords: Adversarial Attacks, Model Extraction Attacks, Black-Box
Attacks, Model Robustness, Information security.

1 Introduction

Recently, Trusted AI, which contains fairness, trustworthiness and explainability,
⋆ This paper was accepted by ICONIP 2023.
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Substitute Model Decision boundary

Target Model Decision boundary

Synthetic Examples
Clean Examples
Adversarial Examples

Decision Space 

Fig. 1. Synthetic example distribution, de-
cision boundaries and whether the attack
is successful. Top left: bad synthetic ex-
ample distribution failed to fit the target
model decision boundary. Bottom left:
unfitting of the decision boundary leads
to attack failure. Top right: good exam-
ple distribution and decision boundary fit.
Bottom right: good decision boundary.

has received increasing attention and
plays an essential role in the AI de-
velopment process. The security of the
AI models, however, is being doubted
and has bought concerns in academia
and industry. A lot of research has
shown that AI models (including Ma-
chine Learning (ML) models and Deep
Learning (DL) models) are vulnerable
to adversarial examples [2], which are
crafted by adding a virtually imper-
ceptible perturbation to the benign in-
put but can lead the well-trained AI
model to make wrong decisions. For
example, in the physical world, the
attackers can maliciously alter traf-
fic signs by sticking a small patch
[12], changing the content style [4] and
shooting a laser on it [5]. Although
these modifications do not affect hu-
man senses, but can easily trick au-
tonomous vehicles. Therefore, it is imperative to devise effective attack tech-
niques to identify the deficiencies of AI models beforehand in security-sensitive
applications [13].

Existing adversarial attack methods on DL models can be categorized into
white-box attacks and black-box attacks. In the white-box settings, the attackers
can access the whole information of the target model, including weights, inner
structures and gradients. In contrast, in the black-box one, the attackers have
no permission to access the models’ details but the final output [9,3]. With
such rules, it is clear that black-box attacks are more challenging but practical
in the physical world, where the attacker lacks details of the target models.
To attack DL models in black-box settings more effectively, model extraction
attacks have been proposed [17], which is implemented by training a substitute
model and generating adversarial examples on such model to attack the target
model successfully.

Most of the previous model extraction attacks [15,14] concentrates on training
the substitute model by querying the target model with real data, called data-
dependent model extraction. However, it is infeasible to the physical world, where
the adversary can not access the models’ training data. As the counterpart,
the data-free model extraction attack solved this problem by synthesizing fake
data [23,20]. In this scenario, the attackers use generators to synthesize the
fake data to train substitute models. For launching attacks with a high success
rate, as shown in Fig. 1, the decision boundary of the substitute model should
maintain a very high similarity to the target black-box model. Besides, training
the substitute model with synthetic data is challenging to the problem of How
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to generate valuable synthetic data for the substitute model training? Generally
speaking, the synthetic examples should have the following two properties: 1)
inter-class diversity and 2) intra-class diversity. The inter-class diversity
means that the synthetic examples’ categories classified by the target model
should contain all the expected classes, while the intra-class diversity indicates
that the examples should differ from each other, even they belong to the same
category. However, existing methods [23,20,22,18] still suffer from the following
two challenges: 1) They only consider inter-class diversity but ignore intra-class
diversity, resulting in synthetic data not serving as well as real data. 2) The other
is that the query data are generated in the substitute model’s training process.
However, once the substitute model is not well-trained, it can hardly provide the
effective target model’s decision information.

To solve these challenges mentioned above, in this paper, we propose a novel
data-free model extraction method, named Self-Contrastive Model Extraction
(SCME for short). SCME introduces the idea of contrastive learning [1] and
proposes a self-contrastive mechanism to guide the training of the generator.
Specifically, we design a self-contrastive loss to enlarge the distance of the sub-
stitute model’s latent representation. Benefiting from this, the generator will be
encouraged to synthesize more diversified fake data. Furthermore, SCME intro-
duces the Mixup operation to interpolate two random images into a single one
to build the query examples, which can improve the efficiency of the substitute
model in learning the target model’s decision boundaries in a model-independent
manner. Extensive experiments illustrate SCME can synthesize fake data with
diversity and improve the attack performance. Our contributions are summarized
as follows:
– We propose a novel data-free model extraction method, called SCME, to gen-

erate efficient fake data for the substitute model training under query-limited
settings.

– We use a self-contrastive mechanism to guide the generator to synthesize the
fake data with inter- and intra-class diversity to help the substitute model
imitate the target model efficiently.

– We introduce the Mixup into SCME, which can build fake data in a model-
independent manner, to detect decision boundaries of the target model effec-
tiveness and further help the imitating processing.

– Extensive empirical results show the SCME’s superiority in the synthetic di-
versified fake data and the adversarial examples’ attack performance in query-
limited situations.

2 Related Work

Previous researches contend that the DL models are sensitive to adversarial
attacks, which can be classified into white-box and black-box. In white-box set-
tings, the attackers can generate adversarial examples with a nearly 100% attack
success rate because they can access the target model. The black-box attack,
however, is more threatening to the DL models in various realistic applications
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because they do not need the models’ details. Among them, the model extraction
attack [21] has received much attention recently due to its high attack perfor-
mance.

The success of model extraction attacks relies heavily on adversarial exam-
ples’ transferability, which means the adversarial examples generate on model A
can also attack model B successfully. To implement such an attack, the attacker
first trains a surrogate local model by simulating the target models’ output.
When the surrogate model is well-trained, it will have the same decision bound-
ary as the target model, i.e., output the same results for the same input; this
imitation process is called model extraction. However, due to the data bias be-
tween the query data used for surrogate model training and the real data used
for the target model training, creating a valid query dataset is the crucial point
of model extraction attacks. Papernot et al. [15] first used adversarial examples
to query the target model for model extraction. However, due to the surrogate
model is not well-trained, the adversarial examples generated on it cannot per-
form well in the imitating process. Orekondy et al. [14] propose the Knockoff to
try to find valid query examples in a huge dataset, e.g., ImageNet [8], and adopt
an adaptive strategy in the extraction process. Zhou et al. [23] proposed DAST,
which is the first work to use a generator-based data-free distillation technique
in knowledge distillation for model extraction. Later, subsequent studies have
improved this approach to achieve better results [18]. However, the generator-
based approach cannot obtain sufficient supervised information as in white-box
knowledge distillation, leading to a huge number of queries and low attack re-
sults.

Therefore, the block-box attack with adversarial examples’ transferability
poses the request to guarantee that the local model is highly similar to the
target model. To achieve this goal, we know from previous studies that model
extraction can steal the target model from a decision boundary perspective,
even in a data-independent way. However, the previous data-free works can not
guarantee the synthetic data’s diversity and need a massive number of queries
to the target model. Hence, we are well-motivated to develop a better model
extraction strategy adapted to data-free settings for carrying out attacks with
high performance. Besides, it can improve the diversity of the generated fake
data to be suitable for query-limited settings.

3 PRELIMINARY

3.1 Adversarial Attack

Given a classifier F(·) and an input x with its corresponding label y, we have
F(x) = y. The adversarial attack aims to find a small perturbation δ added to
x, so the generated input x′ misleads the classifier’s output. The perturbation
δ is usually constrained by Lp-norm (p = 1, 2, ...,∞), i.e., ∥δ∥p ≤ ϵ. Then, the
definition of adversarial examples x′ can be written as:

F(x′) ̸= ytrue, s.t. ∥x′ − x∥p ≤ ϵ, (1)
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where ϵ is the noise budget, ytrue is the ground-truth label of example x.
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Target Model

Distillation 
LossUpstream Model

Sample Noise

Substitute Model

Projector 

Upstream Model Downstream Model

Synthesis Examples Generation Model Extraction

Boundary 
Examples

Latent Vector 𝒛𝒛

𝓛𝓛G = 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰-𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 +
𝑰𝑰𝑰𝑰𝒕𝒕𝒕𝒕𝒕𝒕-𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Calculate Generated Loss

···

Fig. 2. Framework of SCME, where LG consisting of inter- and intra-diverse loss.

3.2 Contrastive Learning

Contrastive learning models usually consist of two portions: self-supervised train-
ing in the upstream network and supervised fine-tuning in the downstream net-
work. The upstream network f(·) aims to maximize the paired instance by aug-
menting the same data in different ways in the learned latent space while min-
imizing the agreement between different instances. Given a batch of examples
{xN} without ground-truth labels, the random data transformation T takes each
example x in {xN} to a paired augmented data copies xi and xj , resulting in
2N augmented examples. The trained upstream network f(·) encodes the paired
copies to latent vectors zi and zj . n SimCLR [1], the contrastive loss can be
formulated as:

ℓi,j = − log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
, (2)

where the zi and zj are the latent vectors of positive augmented examples, and
zk indicts the latent vector of negative examples from a different class. The
sim(·) is a similarity function, such as cosine similarity loss, 1 is the indicator
function, and τ is the temperature coefficient. A well-trained upstream network
f(·) can extract effective features and use them in the downstream network,
which usually is a simple MLP network, mapping the latent vectors to different
classes through supervised learning.

4 Methodology

4.1 Overview

In this part, we illustrate the framework of our proposed data-free SCME in Fig.
2, which contains the following steps: 1) Synthesised Examples Generation and
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2) Model Extraction. For step 1), we use a generator G(·) to generate the fake
data X . In step 2), we input the X into both substitute model Fsub and target
model Ftgt(·) to minimize the difference of their outputs. Notably, Fsub(·) in
SCME consists of upstream encoder network Fup(·), a feature extraction net-
work, projector network Fdown(·), and a classifier. Mathematically, the Fsub(·)
can be written as:

Fsub(x) = Fdown(Fup(x)), (3)

where x is an arbitrary input example.
Based on the two steps mentioned above, the Fsub can imitate the Ftgt in

a data-free manner. Finally, we can generate adversarial examples by attacking
Fsub, and further attack the target model Ftgt successfully.

4.2 Intra- and Inter-class Diverse

As mentioned above, X should have both inter-class diversity and intra-class
diversity to help the surrogate model training. Regarding this, as Fig. 3 show,
we propose a self-contrastive loss to guide G(·) in the X generation. Inspired by
the self-supervised loss in contrastive learning, we design a self-contrastive loss
in SCME. Firstly, SCME uses the generator G(·) to sample a batch of random
noise N = {n1, n2, · · ·, nB} to generate corresponding synthesize examples X =
{x1, x2, · · ·, xB}. SCME puts the X into the feature extraction network Fup(·)
and gets the latent vectors z. Then, SCME calculates the self-contrastive intra-
class diverse loss Lintra by expanding the distance of each hidden vector zi in z.
The self-contrastive loss can be formulated as:

Lintra = log

B∑
i

B∑
j

1[i ̸=j] · exp(sim(zi, zj)), (4)

where B is the batch size, 1 is the indicator function and sim(·) is a similarity
function.

In the synthesised examples generation, the loss function LG of generator
G(·) contains inter-class diversity loss Linter and intra-class diversity loss Lintra.
To generate inter-class diversity examples, we use the inter-class information
entropy to guide the generator G(·). That is, SCME randomly sets a batch of
target label ytgt and reduces the entropy between ytgt and the substitute model’s
output of the generated examples X . Mathematically, the inter-class loss function
is:

Linter =

B∑
i=1

Fsub(Xi)log[Fsub(Xi)], (5)

where B is the batch size.

4.3 Model-independent Boundary Example

Although the synthesis examples have been generated, however, they are still
challenging to detect the target model’s decision boundary adequately for sub-
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Fig. 3. The calculation process of intra-class diverse loss. C is the number of classes.

stitute model training, resulting in a low attack performance. To solve this prob-
lem, we further modify the boundary examples by the Mixup augmentation to
improve the substitute model’s training efficiency. Specifically, SCME randomly
selects two synthesized examples Xi and Xj first and then uses the Mixup to fuse
them together to get the new boundary examples X̂ , the process can be written
as follows:

X̂ = λXi + (1− λ)Xj , (6)

where the λ ∈ [0, 1] is the mix weight and randomly sampled from β distribution.

4.4 Objective Function

By combining the above inter-class diversity loss Linter and the intra-class di-
versity loss Lintra, we obtain the generate loss LG as the objective function for
training the generator:

LG = Lintra + αLinter, (7)

where the α is the hyperparameter to adjust the weight of each loss.
Once the intra-class and inter-class diverse examples are generated, we input

them into both substitute model Fsub(·) and the target model Ftgt(·) to minimize
the distance between their outputs. To craft more suitable examples for training
the substitute model and make its decision boundary close to the target model in
the training process, we first craft the generated examples by Mixup operation
to get the boundary examples X̂ . Mathematically, the objective loss function
Ltrain of training substitute model is:

Ltrain =

B∑
i=1

d(Fsub(X̂ ),Ftgt(X̂ )), (8)

where the distance function d(·) is the Cross-Entropy loss in the hard label
scenario and is the Mean Square Error loss in the soft label scenario.

Once the surrogate model is well-trained, we are able to generate adversarial
examples on the substitute model and further attack the target black-box model.

5 EXPERIMENTS

5.1 Setup

Datasets: We consider five benchmark datasets, namely MNIST [11], Fashion-
MNIST [19], CIFAR-10 [7], CIFAR-100 [7], Tiny-ImageNet [10] for comprehen-
sive experiments.
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Table 1. Attack performance on MNIST and Fashion-MNIST Datasets.

Dataset Methods
Targeted, Hard Label Untargeted, Hard Label Targeted, Soft Label Untargeted, Soft Label
FGSM BIM PGD FGSM BIM PGD FGSM BIM PGD FGSM BIM PGD

M
N

IS
T

JPBA 3.89 6.89 5.31 18.14 23.56 20.18 4.29 7.02 5.49 18.98 25.14 21.98
Knockoff 4.18 6.03 4.66 19.55 27.32 22.18 4.67 6.86 5.26 21.35 28.56 23.34
DaST 4.33 6.49 5.17 20.15 27.45 27.13 4.57 6.41 5.34 25.36 29.56 29.14
Del 6.45 9.14 6.13 22.13 25.69 23.18 6.97 9.67 6.24 24.56 25.35 25.28

EBFA 14.45 28.71 9.86 39.73 57.54 52.73 16.99 36.82 14.55 36.45 58.48 48.46
SCME 9.98 9.96 10.04 63.45 74.51 78.47 10.05 10.00 10.04 72.46 78.54 82.54

Fa
sh

io
n-

M
N

IS
T JPBA 6.45 8.46 7.57 24.22 30.56 30.11 6.89 8.56 7.56 26.23 31.35 31.11

Knockoff 6.34 8.35 7.32 28.19 36.88 35.92 6.65 8.98 8.23 30.21 36.94 36.22
DaST 5.38 7.18 6.53 30.45 36.17 34.23 5.33 7.46 7.84 32.14 37.34 34.91
Del 3.89 8.19 7.47 28.14 34.14 32.45 3.23 8.59 8.11 31.43 36.26 33.87

EBFA 30.08 76.46 32.42 84.85 80.93 89.30 29.11 66.02 43.56 75.19 79.94 79.30
SCME 31.82 70.79 70.01 82.26 84.76 85.11 32.14 72.07 72.07 82.58 85.46 85.86

Table 2. Attack performance CIFAR-10 and CIFAR-100 Datasets.

Dataset Methods
Targeted, Hard Label Untargeted, Hard Label Targeted, Soft Label Untargeted, Soft Label
FGSM BIM PGD FGSM BIM PGD FGSM BIM PGD FGSM BIM PGD

C
IF

A
R

-1
0

JPBA 6.32 7.70 7.92 27.82 33.23 31.70 7.28 8.56 7.64 28.77 33.38 31.96
Knockoff 6.26 7.02 7.04 29.61 31.86 30.68 6.46 8.27 7.35 30.02 31.98 30.35
DaST 6.54 7.81 7.41 27.61 34.43 26.99 8.15 8.40 8.26 27.58 34.75 27.47
Del 7.14 7.44 6.95 25.33 30.45 30.34 7.86 8.29 7.17 26.38 31.53 31.47

EBFA 14.57 16.95 12.27 86.13 87.02 84.32 31.54 13.93 69.14 83.89 87.68 85.11
SCME 16.53 14.76 14.22 91.01 91.56 91.33 16.22 15.14 15.31 91.23 91.62 91.66

C
IF

A
R

-1
00

JPBA 4.35 6.20 6.17 33.58 38.54 37.08 5.73 7.50 6.41 34.21 39.12 37.31
Knockoff 4.40 5.86 5.25 34.84 36.92 36.34 4.88 7.05 6.18 36.01 37.61 35.47
DaST 4.97 6.19 5.92 33.57 39.86 32.71 6.38 7.04 7.01 32.80 40.34 32.78
Del 5.38 5.72 5.69 30.80 35.63 36.15 6.30 6.53 5.23 31.64 36.63 37.44

EBFA 16.64 16.88 12.77 78.61 91.31 91.21 7.91 16.15 12.54 83.69 94.53 94.14
SCME 18.46 14.23 13.13 94.81 95.40 95.32 10.50 16.02 15.49 94.72 95.09 94.95

Models: For MNIST and Fashion-MNIST datasets, we use a simple network
as the target model, which has four convolution layers and pooling layers and
two fully-connected layers. For CIFAR-10 and CIFAR-100, we use the ResNet-
18 [6] as the target model. For Tiny-ImageNet, we use the ResNet-50 [6] as the
target model. The substitute model for all the datasets is the VGG-16 [16].

Baselines: To evaluate the performance of SCME, we compare it with the
data-dependent method, JPBA [15], Knockoff [14], and data-free methods, DAST
[23], Del [18], EBFA [22].

Training details: SCME and the baseline methods are trained with Adam
optimizer with batch size 256. For the generator in SCME, we use an initial
learning rate of 0.001 and a momentum of 0.9, and for the substitute model,
we set the initial learning rate as 0.01 and momentum as 0.9. Furthermore, we
set the maximal query times as 20K, 100K and 250K for the MNIST dataset,
CIFAR dataset and the Tiny-ImageNet dataset, respectively.

Metrics: We utilize three classical attack methods, which include FGSM,
BIM and PGD, to generate adversarial examples for the surrogate model. For
MNIST and Fashion-MNIST, we set perturbation budget ϵ = 32/255. And for
CIFAR-10, CIFAR-100 and Tiny-ImageNet, we set ϵ = 8/255. In the untargeted
attack scenario, we only generate adversarial examples for the images which
can be classified correctly by the victim model, while in targeted attacks, we
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Table 3. Attack performance on Tiny-ImageNet Dataset.

Hard Label Soft Label
Methods FGSM BIM PGD FGSM BIM PGD
JPBA 15.37 25.16 14.23 26.54 28.91 26.83

Knockoff 22.33 21.39 11.26 29.99 27.64 26.17
DaST 16.23 18.26 15.86 28.81 29.37 26.51
Del 28.31 32.54 29.73 34.28 38.49 36.72

EBFA 78.29 81.12 78.23 80.26 85.32 78.29
SCME 90.16 90.25 89.72 96.44 96.29 96.32
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Fig. 4. Synthesised examples without (left) and with (right) data augmentation.

only generate adversarial examples for the images which are not classified to the
specific wrong labels. The attack success rate (ASR) is calculated by:

ASR =

{
1
N

∑N
i=1[f(x

adv
i ) ̸= yi], for untargeted

1
N

∑N
i=1[f(x

adv
i ) = yt], for targeted

(9)

where N is the total number of generated adversarial examples.
Besides, for given a batch of query examples X , we input them to the target

model Ftgt to get the output of each example and calculate its Boundary Val-
ues (BV) to verify whether the query samples are close to the decision boundary
of the target model or not. The proposed BV can be calculated as follows:

BV =

B∑
i=1

(p(Ftgt(Xi))top1
− p(Ftgt(Xi))top2

), (10)

where p is the Soft-max function, the top1 and top2 are the maximum value
and sub-maximal value in the output probability vector, and the B is the total
example counts.

5.2 Attack Performance

Experiments on MNIST and Fashion-MNIST: We report the ASR under
targeted and untargeted attacks for both label-only and probability-only scenar-
ios. As shown in Table 1, the ASR of SCME is much higher than the SOTA



10 Renyang Liu et al.

baselines on MNIST and Fashion-MNIST datasets. Obviously, our method can
obtain higher ASR than other baselines in most cases with a small number of
queries (here is 20K). This phenomenon shows that the proposed method is more
applicable to the real world than the baselines.

Fig. 5. The T-SNE of original CFIAR-10 data (left), synthetic data by EBFA (middle)
and synthetic data by SCME (right).

Experiments on CIFAR-10, CIFAR-100 and Tiny-ImageNet: We
further investigate the performance of our method on complex datasets. From
the results shown in Tables 2 and 3, our method achieves the best attack per-
formance over probability-only and label-only scenarios under all datasets. In
addition, compared to the strong baselines EBFA, our method still outperforms
it significantly. Although the number of categories directly affects the training of
the substitute model, our method still achieves a very high ASR on the CIFAR-
100 and Tiny-ImageNet datasets, which have 100 categories and 200 categories,
respectively. On the Tiny-ImageNet dataset, our method even achieves the high-
est ASR of 96.44% in the soft label setting. These improvements effectively
demonstrate the superiority of the proposed SCME.

Table 4. Boundary value of EBFA and SCME.

Methods
EBFA SCME

w.o. aug. w. aug. w.o. aug. w. aug.
Boundary Values 9150.8699 9010.6072 9469.6909 8717.2107
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Fig. 6. The ablation results of model accuracy (left) and model ASR (right), where
"- L_sc" means without self-contrastive loss, and "- Mixup" means without Mixup
operation.
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5.3 Evaluation on Data Diversity

To evaluate the generated data’s diversity of the strong baseline EBFA and
the proposed SCME, we generated 10,000 examples and fed them into the same
model trained on the CIFAR-10 dataset to get the predicted labels. The results in
Fig. 4 show the data with data augmentation or not. The results show most of the
examples generated by EBFA were classified as "deer", while synthetic examples
by SCME have preferable inter-class diversity. Further, we plot the T-SNE for
real data and synthetic examples generated by EBFA and SCME, respectively,
in Fig. 5. The results illustrated that our method generates examples similar
to the real data, i.e., with more intra-class diversity. These phenomena strongly
support that our method can generate data with high inter- and intra- diversity.

5.4 Evaluation on Boundary Value

To verify whether the query examples are closer to the decision boundary of
the target model, we compared the BV of 10,000 examples generated by EBFA
and SCME. The results in Table 4 show although EBFA achieves smaller BV
without data augmentation, SCME can achieve substantially lower BV with
data augmentation. This further demonstrates the effectiveness of the Mixup
operation in SCME for generating query examples close to the decision boundary.

5.5 Ablation Study

To investigate the contribution of Self-Contrastive loss LG (described in Sec.
4.2 and Mixup operation, we plot the model classification accuracy (ACC) and
the model ASR in the model training process. The results in Fig. 6 shows that
using both LG and Mixup augmentation performs best on both ACC and ASR,
besides the model training convergence faster. For instance, the standard SCME
is close to convergence with 6K queries, and the ASR is also beyond 80%.

6 Conclusion

In this paper, we proposed a novel data-free model extraction attack, namely
SCME, to boost the attack performance under query-limited settings. Specifi-
cally, we first design a self-contrastive loss to guide the generator to synthesize
the query data with high inter- and intra-class diversity. Besides, we introduce
the Mixup augmentation to combine two generated query samples as the final
query input to obtain effective decision boundaries and further help the simula-
tion process of the substitute model. Extensive empirical results show that the
proposed SCME framework can achieve SOTA attack performance.
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