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Abstract. Real-time video analytics on edge devices for changing scenes
remains a difficult task. As edge devices are usually resource-constrained,
edge deep neural networks (DNNs) have fewer weights and shallower ar-
chitectures than general DNNs. As a result, they only perform well in
limited scenarios and are sensitive to data drift. In this paper, we intro-
duce EdgeMA, a practical and efficient video analytics system designed to
adapt models to shifts in real-world video streams over time, addressing
the data drift problem. EdgeMA extracts the gray level co-occurrence
matrix based statistical texture feature and uses the Random Forest
classifier to detect the domain shift. Moreover, we have incorporated
a method of model adaptation based on importance weighting, specifi-
cally designed to update models to cope with the label distribution shift.
Through rigorous evaluation of EdgeMA on a real-world dataset, our
results illustrate that EdgeMA significantly improves inference accuracy.

Keywords: Edge Computing · Deep Neural Network · Video Analytics
· Data Drift · Model Adaptation.

1 Introduction

Real-time video analytics has become a promising application in the field of
computer vision, which is powered by deep neural network (DNN) models, e.g.,
ResNet [7] and EfficientNet [28]. Video analytics applications such as traffic
monitoring [17] use local cameras that continuously generate high-quality video
streams to understand the environment. Most of these applications have to be
carried out with real-time feedback. Therefore, edge computing is favored in
video analytics because it eliminates the need for costly network overhead asso-
ciated with uploading videos to the cloud and also reduces latency.

Due to limited computing resources, edge devices typically use lightweight
DNN models [8, 34] for video analytics. Lightweight models have fewer weights
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(a) Video snapshot (day) (b) Video snapshot (night)
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Fig. 1. (a) and (b) show the crossroad traffic in the video during the day and night,
respectively. (c) shows the domains from day to night and the results of inference labels
for data. We count the frequency of objects within each time window, and (d) shows
the statistics results of class label distribution.

and shallower architectures, often making them unsuitable for delivering high
accuracy. In addition, when employed in the actual field, they are vulnerable to
the data drift [21] problem: a mismatch between initial training data and live
video data. Data drift results in substantial declines in accuracy as it violates
the underlying assumption of DNN models that the training data from the past
should resemble the test data in the future. This further aggravates the challenge
of real-time video analytics.

In video analytics serving, domain and label distribution shifts are typical
data drift phenomena [1, 12, 15, 16, 19]. As shown in Figure 1, street cameras
encounter varying scenes over time. The label distribution of video varies over
time, reducing the edge model’s accuracy. In addition, the domain goes from
day to night. While the model trained on the data collected based on daytime
conditions fails to work well when deployed in the dark, degrading the accuracy.

Having a static model throughout the entire life-long inference process often
negatively impacts performance, particularly with edge models. Due to their con-
strained capacity to learn object variations, edge DNNs require regular updates
to accommodate changing object distributions and ensure optimal accuracy. We
must consider the migration from domain to domain (e.g., weather, light).

In this work, we propose EdgeMA (Edge Model Adapter), a video analytics
system that resolves data drift in real-time video analytics on edge devices.
EdgeMA copes with changes in the image domain and the label distribution
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over time, providing the model adaptation for edge computing. In summary, the
main contributions of our work are the following:

– We propose a novel system EdgeMA for real-time video analytics on edge
devices to cope with both domain shift and label distribution shift.

– We design the lightweight domain detector to effectively identify and address
domain shift.

– We detect label distribution shift and allow for real-time model retraining
while ensuring the overall system remains resource-efficient.

– In our experiment on a real-world dataset, EdgeMA substantially outper-
forms scenarios without automatic model adaptation.

2 Related Work

Video analytics systems. Existing work has contributed to the creation of
efficient video analytics systems. VideoStorm [33] investigates quality-lag re-
quirements in video queries. Focus [9] uses low-cost models to index videos.
Chameleon [13] exploits correlations in camera content to amortize profiling
costs. NoScope [14] enhances inference speed through cascading models and fil-
tering mechanisms. Clownfish [23] amalgamates inference outcomes from opti-
mized models on edge devices with delayed results from comprehensive models in
the cloud. However, these systems predominantly employ offline-trained models,
overlooking the potential impact of model adaptation and data drift on accuracy.
Edge computing. The proliferation of the Internet of Things (IoT) has driven
the production and usage of diverse hardware devices/sensors across the globe.
These devices are able to collect data and then send it to the server for storage
or processing, allowing end-users to access and extract the information as per
their requirements [27]. Nevertheless, cloud computing has begun to reveal some
issues. The centralized nature of cloud computing, handling data generated by
global end devices, leads to numerous challenges, such as reduced throughput,
increased latency, bandwidth constraints, data privacy concerns, and augmented
costs. These challenges become particularly pressing in IoT applications, which
demand rapid and low-latency data processing, analytics, and result delivery [24,
25]. To combat the aforementioned challenges associated with cloud computing,
a novel computing paradigm known as edge computing, has attracted widespread
attention [10]. In essence, edge computing offloads data processing, storage, and
computing tasks traditionally assigned to the cloud to the network’s edge, in
close proximity to the terminal devices. This transition helps minimize data
transmission and device response times, alleviate network bandwidth pressure,
decrease data transmission costs, and facilitate a decentralized system [5].
Data drift. Edge DNNs can only memorize a limited number of object appear-
ances and scenarios. Hence, they are particularly vulnerable to data drift [12,21],
which arises when real-time video data significantly diverges across domains.
Variations of scene density (for instance, during rush hour) and lighting condi-
tions (such as daytime versus nighttime) over time pose challenges for surveil-
lance cameras attempting precise object detection. Additionally, the distribution
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of object classes changes over time, leading to a decrease in the precision of the
edge model [29]. Because of their restricted ability to memorize changes, edge
models necessitate continuous retraining with the most recent data and shift-
ing object distributions to maintain high accuracy. Video-analytics systems are
beginning to adopt continuous learning to adapt to changing video scenes and
improve inference accuracy [1, 15, 16]. Ekya [1] provides sophisticated resource-
sharing mechanisms for efficient model retraining. AMS [16] dynamically adjusts
the frame sampling rate on edge devices depending on scene changes, mitigating
the need for frequent retraining. RECL [15] combines Ekya and AMS, and offers
more rapid responses by choosing an appropriate model from a repository of his-
torical models during analysis. EdgeMA further considers lightweight retraining
processing at the edge.

3 System Design

(1) Lightweight Domain Shift Detection (2) Label Distribution Shift Detection and Adaption
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Fig. 2. EdgeMA system overview.

Figure 2 presents an overview of EdgeMA. Each edge device continuously
performs inference for video analytics and buffers sampled video frames over
time. The EdgeMA at the edge device runs iteratively on each new buffered
batch of frames BT , deciding whether to adapt the lightweight specialized model.
The fundamental information upon which our system depends, when analyzing
video feeds from static cameras or any other videos where the camera remains
stationary, is that their domains and label distributions exhibit spatio-temporal
locality. The model adaptation algorithm consists of two phases: (1) lightweight
domain shift detection and (2) label distribution shift detection and adaptation.

In the first phase, EdgeMA detects in which domain the current batch lies.
In our system, each domain corresponds to a training set containing a few data
samples (e.g., 2000 images) from the domain scenario and an existing model
pre-trained on a general dataset. After detecting, if the domain has changed,
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the model is fine-tuned using the corresponding training set to adapt to the
specialized domain.

In the second phase, the edge device detects if the label distribution shifts. If
the label distribution changes, the model also requires retraining with the dataset
of the current domain. We assume that it makes sense to give more importance
to the classes of training data whose frequency of appearance is nearest to the
features of the live data to improve accuracy for different label distributions.

When our training set is small, retraining can perform well with low comput-
ing costs [6]. And for concreteness, we describe our design for object detection,
but the system is general and can be adapted to other tasks. Next, we illustrate
the two phases of model adaptation in detail.

3.1 Lightweight Domain Shift Detection

The variations of illumination, weather, or style in different domains can se-
riously affect the model performance. Cross-domain detection for video is the
challenge that model adaptation must overcome. Previous works [11, 32] can
use heavily computation-intensive networks for domain shift detection. How-
ever, edge devices must allocate computing resources as much as possible to the
video analytics model. It is not desirable to run the video analytics model with
the complex domain detection network simultaneously on a resource-constrained
edge device. Therefore, we design a lightweight domain detector for EdgeMA.
We detect the video’s environment condition by a random forest classifier [3]
(RFC) and Gray Level Co-occurrence Matrix (GLCM)-based texture features,
to detect the video’s environmental conditions. This approach not only ensures
high accuracy but also minimizes computational expenses and conserves energy.

Pre-processing Operation. EdgeMA requires conversion of the frame to
grayscale, wherein each pixel value represents spectral intensity ranging between
0 and 255. The grayscale image, represented by g, is derived by computing the
luminance of the color image using equation (1):

g = 0.299×R+ 0.587×G+ 0.114×B (1)

Adaptive Feature Selection. For image classification, texture features,
dependent on the repetitive patterns across an image region, are predominantly
utilized. The GLCM of an image I of dimensions n∗m characterizes the texture
by quantifying occurrences of pixels with specific absolute values based on a
spatial offset, is defined as:

C(gi,gj)=

n∑
p=1

m∑
q=1

{
1, if I(p,q)=gi and I(p+∆x,q+∆y)=gj

0, otherwise
(2)

where gi and gj represent the gray level values of an image. For spatial positions
p and q within the image I, the offset (∆x, ∆y) is determined by both the
direction and distance for which the matrix is computed. GLCM features are
computed with directions θ ∈ {0°, 45°, 90°, 135°}, distance d ∈ [1, 30], and the 6
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prevailing texture properties [20], including contrast, correlation, homogeneity,
angular second moment, dissimilarity, and energy. In total, 4*30*6=720 features
are derived from GLCM.

Moreover, we employ the AdaBoost method [26] for feature selection to as-
certain the relative importance of features. AdaBoost not only selects the most
significant features but also assigns weights to weak classifiers to enhance clas-
sification performance. The algorithm based on AdaBoost starts by choosing a
feature as an initial weak learner. During each iteration t, the primary steps
of the selection process are shown as follows. (1) Normalize the weights of the
images as w[t] =

{
w

[t]
I

}
I
, where I is from the training image set. (2) Choose

the feature Fj that yields the least classification error summed over all images,
weighted by w[t]. (3) Increase the value Sj , denoting the importance score of the
feature Fj . (4) Adjust the weights for each image sample I(w[t]). The weights
should correlate with the error rate E for that image. Through this method, im-
ages correctly classified by the chosen feature have diminished influence, whereas
the weights of misclassified images increase. The final output of the algorithm is
the vector S, signifying the relative importance of the original features.

Random Forest Classification. RFC [3] is a prominent method in machine
learning, particularly for high-dimensional classification. RFC comprises a col-
lection of decision trees, with each tree generated using a random vector drawn
independently from the feature vector. During training, each tree’s training set
is formed from a bootstrap sample of the data, selecting frames with replace-
ment. Each tree then casts a vote for the most probable class to predict the
output. To develop and evaluate our proposed model, the classifier was trained
multiple times, recording the best accuracy achieved. The frames were classified
into diverse domain classes.

When EdgeMA is executed, it, by default, retrieves the last ten frames from
the batch, converts them to grayscale, and extracts features to ascertain the
domain. To evaluate our proposed detector, we train it multiple times and record
the highest accuracy, as discussed in Section 4.1.

3.2 Label Distribution Shift Detection and Model Adaptation

After identifying the specific domain, EdgeMA fine-tunes the model using the
corresponding domain training set. Fine-tuning employs importance weighting
[4] (IW). This powerful technique applies a weight of importance to each class
in the training set based on the distributional feature, which captures similarity
to the live data distribution.

The label distribution of the training set XS for the current domain is PS(XS)
(default IID). And the label distribution of the dataset XT consisting of all N
frames in the batch BT is PT (XT ). The distribution PT (XT ) of different windows
is non-IID and dynamically varying. Figure 3 shows the streaming schema of
main operations.

Estimate PT . The model M identifies K classes in total, and the predicted
value of these is f(∗), then the distribution PT (XT ) is as follows:
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Estimate 𝑃𝑇 Compute𝑊 Fine-tune ℳ

Wait for a new batch

𝐵𝑇

If not malignant

Fig. 3. Streaming schema of the main operations.

PT (XT ) =


N∑
j=1

{f (xj) == i}
N


K

i=1

(3)

where {f(xj) == i} is a Boolean operation (1 if equal, 0 if not). The distribution
outcome is a vector.

Compute W . Similarly to [18], the importance weight W (X) is calculated
as follows. It explains that the class is given a higher weight with a higher
probability of occurrence:

W (X) =
PT (XT )

PS(XS)
= C−1

h0
qh0 (4)

where h0 is the initial neural network trained on XS , Ch0 is the confusion matrix
of h0 in source label distribution PS , and qh0 is a K-dimension vector qh0 [i] =
PT (h0(X) = yi).

Fine-tune M . Finally, model M is fine-tuned with W to cope with the
ever-changing distribution. To reduce time cost, we utilize coordinate descent
[22,31]. In this approach, EdgeMA retrains a limited subset of parameters (e.g.,
20%) during each fine-tuning phase, with the edge device refining them over
k iterations. The final optimization target for fine-tuning the model is shown
below:

1

n

n∑
i=1

PT (yi)

PS (yi)
f (xi, yi) → Ex,y∼PS

(
PT (y)

PS(y)
f(x, y)

)
(5)

Notably, fine-tuning can take up computing resources on the edge device.
EdgeMA needs to determine the malignancy of a shift and reduces model up-
date frequency. EdgeMA allows the model lags if not malignant. In practice,
distributions shift constantly, and often these changes are benign. We employ
the Kullback-Leibler (KL) divergence to quantify the discrepancy between the
distribution PM at the final stage of fine-tuning and the current distribution PT .
The KL divergence is defined as:

d = DKL(PT ∥PM ) = Ex∼PT

[
log

PT (XT )

PM (XM )

]
(6)

By configuring a distance threshold D to determine whether adaptive learn-
ing is required, if d < D, it means that the model still matches the current label
distribution.
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4 Evaluation

In this section, we assess the performance of EdgeMA. Specifically, our evalua-
tion seeks to answer two primary questions: (1) How effective is the lightweight
detector, and what constitutes its peak performance? (2) How does EdgeMA
cope with domain and label distribution shifts, and how does the effect of model
adaptation perform in comparison to the baseline model?

4.1 Effectiveness of Lightweight Domain Detector

We evaluate EdgeMA on the task of object detection with the UA-DETRAC [30]
dataset, which contains various environments, including sunny, rainy, cloudy, and
night. We first trained our lightweight detector multiple times to develop and
assess it for detecting the four domain environments.
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Figure 4 shows the accuracy for a collection of 6 features from GLCM using
different pixel distances d ∈ [1, 30] and different angles 0°, 45°, 90°, 135°. Then
we select the 2 best neighboring pixel distances for each of the 4 angles (d={5,9}
for 0°, d={4,11} for 45°, d={2,4} for 90°, d={2,6} for 135°). Consequently, the
total number of features is calculated as 6*2*4 = 48 features.
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The AdaBoost selects the top-performing features from the pool of 48 based
on their feature importance. We set the iteration parameter for AdaBoost to
100. We number these 48 features. Among these, F22 has the highest score,
which denotes the correlation of the GLCM matrix with d=4 and angle 45°.
Figure 5 shows the importance of all features.

Then we analyze the accuracy by varying the number of top-ranked features
based on their scores, as illustrated in Figure 6. The highest accuracy, 83.38%,
is achieved with six selected features.

We set 32 as the number of decision trees in the above evaluation. In addition,
we evaluate other numbers, and the results are shown in Figure 7. Assigning 32
trees for the random forest still shows the best performance.

4.2 Overall improvements of Model Adaptation

The UA-DETRAC dataset comprises over 140 thousand frames with times-
tamps, and we utilize these frames, concatenating part of them to form a one-
hour-long video stream, 25 frames per second. We use Nvidia Jetson AGX Xavier
boards as edge devices. For these devices, we use the YOLOv4 [2] with the
Resnet18 [7] model backbone. We select an additional 2000 images as the train-
ing set, and we find that choosing the fine-tuning iteration k=8 is the ideal
trade-off between accuracy and training time.
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Fig. 9. Top-1 Acc over time.

To validate the robustness and efficacy of our model adaptation, we compare
the detection accuracy (mAP metric) of the static lightweight YOLOv4 and
the models fine-tuned in different domain conditions. The results are shown in
Figure 8. The adaptative solution delivers higher detection accuracy since the
model is specifically adapted to the revealed shift. Figure 9 shows the result of
the lightweight model and model adaptation on the inference top-1 accuracy of
the video over time. There are several intervals when the accuracy significantly
drops (about 3-5 minutes per interval) as the model lags during scene changes.
Nevertheless, the average performance of model adaptation is much higher than
using only a lightweight model for inference. The adaptive solution has a top-1
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accuracy above 0.8 most of the time, while the fixed lightweight model solution
is stable in the range of 0.6-0.7.

Table 1. Comparison of two different schemes.

Scheme Fraction of
Parameters mAP@0.5 FPSavg

Fine-tuning
Time Cost

Lightweight - 0.406 59.6 -

Model
Adaptation

5% 0.470 56.3 95 s
10% 0.493 54.9 123 s
20% 0.515 52.2 192 s

100% 0.523 37.5 887 s

Table 1 summarizes the performance of two different schemes. Fractions for
model adaptation represent the percentage of how many model parameters for
each fine-tuning. Selecting only 20% of model parameters performs very effec-
tively, achieving >0.1 better mAP score than the lightweight model. It results
in only a 0.008 loss of mAP on average, but it reduces the fine-tuning time cost
from 887s for full-model fine-tuning to 192s. In addition, due to the usage of
computing resources for model fine-tuning, it shows a slight speed advantage
over the model adaptation scheme.

5 Conclusion

In this paper, we propose EdgeMA, an innovative framework designed for video
analytics on edge devices, which utilizes model adaptation supported by data
drift detection and adaptive retraining methods. EdgeMA fine-tunes the model
based on importance weighting after detecting shifts in the domain and label
distribution during inference. Our evaluation shows that EdgeMA delivers overall
higher accuracy compared to the static setting without model adaptation.
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