
FalconNet: Factorization for the Light-weight ConvNets

Zhicheng Cai
Nanjing University

caizc@smail.nju.edu.cn

Qiu Shen
Nanjing University

shenqiu@.nju.edu.cn

Abstract

Designing light-weight CNN models with little parame-
ters and Flops is a prominent research concern. However,
three significant issues persist in the current light-weight
CNNs: i) the lack of architectural consistency leads to re-
dundancy and hindered capacity comparison, as well as the
ambiguity in causation between architectural choices and
performance enhancement; ii) the utilization of a single-
branch depth-wise convolution compromises the model rep-
resentational capacity; iii) the depth-wise convolutions ac-
count for large proportions of parameters and Flops, while
lacking efficient method to make them light-weight. To ad-
dress these issues, we factorize the four vital components of
light-weight CNNs from coarse to fine and redesign them: i)
we design a light-weight overall architecture termed Light-
Net, which obtains better performance by simply imple-
menting the basic blocks of other light-weight CNNs; ii) we
abstract a Meta Light Block, which consists of spatial oper-
ator and channel operator and uniformly describes current
basic blocks; iii) we raise RepSO which constructs multiple
spatial operator branches to enhance the representational
ability; iv) we raise the concept of receptive range, guided
by which we raise RefCO to sparsely factorize the channel
operator. Based on above four vital components, we raise a
novel light-weight CNN model termed as FalconNet. Exper-
imental results validate that FalconNet can achieve higher
accuracy with lower number of parameters and Flops com-
pared to existing light-weight CNNs.

1. Introduction
Convolutional Neural Networks (CNNs) possess the ca-

pability of representing high-dimensional complex func-
tions and have been successfully applied to various real vi-
sual scenarios [20, 24, 29, 46]. With lower computational
complexity and higher efficiency than ViTs, CNNs remain
the dominance in computer vision applications [12, 40, 61].
For the implementation on mobile devices for real-world
applications, the computational and storage resources are
always limited, requiring light-weight CNN models with re-

Figure 1. The parameter proportions of channel parameters, spatial
parameters and other parameters (ignore the classifier head).

duced parameters and low Flops while maintaining compet-
itive performance. Depth-wise separable convolution (DS-
Conv), proposed in MobileNetV1 [22], factorizes the reg-
ular convolution into depth-wise convolution (DW-Conv)
and point-wise convolution (PW-Conv), which extracts the
spatial and channel features individually. Consequently,
DS-Conv decreases a large amount of computation and pa-
rameters and has been a fundamental design component for
subsequent light-weight CNNs [21, 31, 45, 49–51, 64, 69]
and modern large CNNs [12, 40, 61]. MobileNetv2 [45]
proposes the inverted residual block (IRB) to alleviate the
destruction to the features and enhance representational ca-
pacity. Utilizing the paradigm of IRB as the basic block,
many light-weight models with different overall architec-
tures (stages, width, depth) [17, 21, 49–51, 57] are raised.
In addition to IRB, many efficient basic blocks [2, 31, 52,
64,69] with different structures are designed to improve the
representational ability of light-weight CNNs. However, the
architectural inconsistencies cause redundant structures that
could be consolidated through unification, and the use of
varying basic blocks along with varying architectures lead-
ing to unfair capacity comparisons and obscuring the causal
relationship between architectural choices and performance
enhancements.

Moreover, while some works [35, 37, 48, 53, 61] factor-
ize the DW Conv into parallel low-rank branches to save
computational cost, the main stem for light-weight mod-
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els chasing for even lower Flops and parameters lies in the
PW Conv. As Fig. 1 exhibited, the PW Conv (broadly,
the densely-connected linear layers processing the channel
information) accounts for the majority of the light-weight
model parameters, while the DW Conv (broadly, conv lay-
ers processing the spatial information) only makes up a
small proportion. ShuffleNet splits channels into groups
and shuffles channels [35, 41, 67], however, the informa-
tion communication between channels in different groups is
insufficient. IGC [47, 58, 66] raises interleaved group con-
volutions to replace the regular convolution with multiple
permuted group convolution layers, while the structure be-
comes complicated. ChannelNet [6] introduces sparse con-
nections to PW-Conv, while one output channel can only at-
tends to a small fraction of the input channels, thus is only
applied to the last PW-Conv layer due to the inadequate in-
formation communication.

This paper want to raise a novel light-weight CNN model
with small amount of parameters while maintaining com-
petitive performance. In light of the aforementioned is-
sues, we factorize the four vital components of constructing
light-weight CNNs, namely, overall architecture, meta basic
block, spatial operator and channel operator. To be specific:

• We first design a light-weight overall architecture
termed as LightNet, which refers to the structural de-
signs of modern CNNs and has four stages, each stage
is stacked with basic blocks. Better performance can
be obtained by simply implementing the basic blocks
of other light-weight CNNs on LightNet.

• We abstract and analyze a Meta Basic Block, consist-
ing of spatial operator and channel operator (specif-
ically, PW-Conv), for light-weight CNN model de-
sign. The paradigm of meta basic block uniformly
describes the current basic blocks, e.g., IRB in Mo-
bileNets [21, 45] and EfficientNets [17, 49–51, 57],
sandglass block [69] and FasterNet block [2], infer-
ring that the framework of the meta block provides
the basic ability to the model, while the differences
of model performances essentially come from differ-
ent structural instantiations [64]. Through extensive
experiments we further simplify meta basic block into
Meta Light Block, which obtains better performance.

• We introduce RepSO as the spatial operator for the
Meta Light block. According to the guidance of weight
magnitude, RepSO constructs multiple extra branches
to compensate for the reduce of learnable parame-
ters and enhance the model representational capacity.
RepSO further utilizes the structural reparameteriza-
tion methodology to equivalently convert these diverse
branches into a single branch in inference.

• We introduce the concept of Receptive Range for

channel dimension correspondence to the concept of
receptive field for spatial dimension. Receptive range
elaborates the way of connection between the output
and input neurons in the PW-Conv, which claims that
one output neuron should attend to all of the input neu-
rons directly or indirectly (first attend to a set of hidden
neurons which attend to all the input neurons) to obtain
the full receptive range. Based on the concept of re-
ceptive range we further raise RefCO which factorizes
the PW-Conv in the Meta Light block through intro-
ducing sparsity to the dense channel connection corre-
spondence to the spatial convolution. Moreover, Re-
fCO utilizes structural reparameterization while con-
struct multiple sparsely factorized PW-Convs to com-
pensate for the reduction of channel connections.

• Finally, we raise a novel light-weight CNN model
termed as FalconNet based on above four vital com-
ponents. Experimental results show that FalconNet
can achieve higher accuracy with less parameters and
Flops compared to existing light-weight CNNs.

2. Related Works
2.1. Light-weight CNN Models

In order to deploy on mobile devices for real-world ap-
plications, many light-weight CNN models with reduced
parameter amounts and limited computational burdens are
proposed. SqueezeNet [27] raises fire module which par-
tially replaces the 3 × 3 convolution kernels with 1 × 1
kernels. InceptionV3 [48] factorizes the standard convo-
lution into two asymmetric convolutions. IGC [47, 58, 66]
raises interleaved group convolutions to decompose the reg-
ular convolution into multi-layer group convolutions. Shuf-
fleNetV1 [67] and MicroNet [35] utilizes 1 × 1 group con-
volutions and then shuffles the grouped channels, while
ShuffleNetV2 [41] firstly splits the channels then shuffles
the channels. ChannelNet [6] introduces sparse connec-
tions to the dense layers. MobileNetV1 [22] and Xcep-
tion [5] propose the depth-wise separable convolution to de-
couple the regular convolution into depth-wise convolution
and point-wise convolution, which alleviates a large amount
of computation and parameters and has been a widely-
adopted design element for modern efficient CNN mod-
els [12, 40, 61]. MobileNetV2 [45] introduces the inverted
residual block. MobileNetV3 [21] enhances MobileNetV2
with squeeze-and-excitation module [23] and neural archi-
tecture search [36, 71, 72]. MobileNeXt [69] introduces
sandglass block to alleviate information loss by flipping the
structure of inverted residual block. HBONet [31] raises
harmonious bottleneck on two orthogonal dimensions to
improve representation. EfficientNet [49–51,57] proposes a
compound scaling method to scale depth, width and resolu-



Figure 2. LightNet overall architecture.

tion uniformly. EMO [64] additionally introduces the self-
attention to the inverted residual block. FasterNet [2] raises
partial convolution to conduct regular convolution on part
of the channels to reduce Flops while increasing FLOPS.

2.2. Structural Reparameterization

Structural Reparameterization [7, 9–13] is a represen-
tative reparameterization methodology to parameterize a
structure with the parameters transformed from another
structure. Typically, it adds extra branches to the model
in training to enhance the representational capacity and
improve the performance, then equivalently simplifies the
training structure into the same as the original model for in-
ference, without any extra computational or memory cost.
ACNet [9] asymmetrically constructs two extra vertical and
horizontal convolution branches in training and converts
them into the original branch in inference. RepVGG [13]
constructs identity shortcuts parallel to the 3 × 3 convo-
lution during training and converts the shortcuts into the
3× 3 branches. DBB [11] constructs inception-like diverse
branches of different scales and complexities to enrich the
feature space. RepLKNet [12] adds a relatively small ker-
nel into the large kernel to capture small-scale patterns. Mo-
bileOne [54] also multiplies the convolution branch in train-
ing and reparameterizes them in inference for performance
improvement.

3. Method
3.1. Design the Overall Architecture

Firstly, although certain light-weight CNNs utilize sim-
ilar basic building blocks, their overall architectures differ,
resulting in unnecessary redundancy that could be consol-
idated through unification. Secondly, certain light-weight
CNNs incorporate distinct basic building blocks, yet they

still exhibit varying overall architectures. This leads to
an unfair comparison of capacity between the basic blocks
and obscures the causal relationship between architectural
choices and performance improvements. Hence we first in-
tend to construct an overall architecture especially for light-
weight CNN models. Referring to the modern architectures
of powerful CNN [2, 12, 40, 61] and ViT [14, 38, 39] mod-
els, we raise LightNet of which architecture is sketched in
Fig. 2.

Stem. Stem refers to the beginning part of the model.
Instead of utilizing single conv layer with relatively large
stride, we desire to capture more details by several conv lay-
ers at the beginning. After the first 3× 3 regular conv layer
with a stride of 2 , we employ a 3×3 DW-Conv layer to cap-
ture low-level patterns, followed by a 1× 1 PW-Conv layer
and another 3 × 3 DW-Conv layer for subsampling [12].
There also exists a shortcut as shown in Fig. 2.

Stages. Stages 1-4 are composed of several repeated ba-
sic blocks, such as IRB. According to the stage compute ra-
tio of 1:1:3:1 [39,40], the number of blocks in each stage is
set as [3, 3, 9, 3]. Following the pyramid principle [20] and
considering reducing the parameters, the channel dimension
in each stage is set as [32, 64, 128, 256].

Subsampling Layers. We add separate subsampling
layers between stages. We use 2× 2 conv layer with groups
of input channel dimension and a stride of 2 for halving
the spatial resolution. The 2× 2 conv layer also doubles the
channel dimension. A batch normalization layer is arranged
subsequently to stablize training.

Head. Head, following the 4-th stage, is the last part of
the model. We first use a 1 × 1 conv layer to further mix
the information, then utilize the global average pooling to
obtain the feature vectors, which is subsequently input into
the last fully-connected classifier and obtain the final output.



(a) (b) (c) (d)

Figure 3. Abstracted unified Meta Basic Block for light-weight
models. Some correspondingly instantiated basic blocks (e.g., IRB
and sandglass block) are also selected to exhibit.

(a) (b) (c) (d)

Figure 4. Simplified abstracted Meta Light Block for efficient
light-weight models. Some correspondingly instantiated basic
blocks (e.g., IRB and FFN) are also selected to exhibit.

Experimental results show that simply implementing
the basic blocks of other light-weight CNNs on LightNet
achieves better performance than the original models.

3.2. Explore the Meta Basic Block

Basic blocks are the pivotal component for light-weight
CNNs. As exhibited in Fig. 3, different basic blocks can
be generally abstracted into the Meta Basic Block (Fig. 3a),
which is alternately composed of spatial and channel op-
erators (i.e., PW-Conv). The framework of the meta basic
block provides the basic ability to the model, which means
instantiating these spatial operators as non-learnable iden-
tity mappings can still achieve effective performance, while
the differences of model performances essentially come
from different structural instantiations of the meta basic
block, e.g., FasterNet block instantiates the first spatial op-
erator as PConv and instantiates the other two spatial opera-
tors as identity mapping, as shown in Fig. 3a. Through con-
ducting extensive experiments (Sec. 4.3.1), it is observed
that the first and the last operator layers make no benefit to
the enhancement of model performance, while the second
spatial operator layer between two channel operator layers
is significant. Thus we further simplify meta basic block
into Meta Light Block (Fig. 4a), which consists of two PW-
Conv layers (with an expansion ratio λ) and a single spatial
operator layer in between.

(a) MobileNetV2 (b) MobileNetV3 (c) EfficientNet (d) MNASNet

Figure 5. The average kernel magnitude matrices of MobileNetV2,
MobileNetV3, EfficientNet and MNASNet trained on ImageNet.

Figure 6. Meta Light Block with RepSO

3.3. Strengthen the Spatial Operator

Though the Meta Light Block guarantees the fundamen-
tal performance of the model with certain overall architec-
ture, powerful spatial operator can significantly enhance the
model representational capacity. Thus we construct multi-
ple branches of versatile spatial operators to enrich the rep-
resentation space. It is assumed that a position of the kernel
tends to be more significant if it has a larger average kernel
magnitude [8, 9, 16, 18, 19]. We first calculate and visual-
ize the average kernel magnitude matrices of four popular
light-weight CNNs as shown in Fig. 5. It is observed that
the positions of the outermost circle in the 5×5 kernel have
negligible importance compared to the central 3 × 3 posi-
tions, thus we utilize 3 × 3 convolution kernels which also
have fewer parameters and Flops. To compensate for the
reduced feature channels, we construct N (N=3 by default)
parallel 3 × 3 DW-Conv branches. Moreover, Fig. 5 shows
that the positions in the skeleton pattern of the 3× 3 kernel
account for much importance compared to these corner po-
sitions, thus we additionally construct horizontal 1× 3 and
vertical 3×1 DW-Conv branches. In addition, it is observed
that the central position always possesses the highest im-
portance score (almost 1), thus we construct an extra 1 × 1
DW-Conv branch to further enhance the central position.
Last but not least, as the meta block provides the fundamen-
tal capacity, we also add an identity mapping branch to the
spatial operator layer. The obtained multi-branch operator
is termed as RepSO (Reparameterized Spatial Operator), as
sketched in Fig. 6 left, all these seven branches are individ-
ually equipped with a batch normalization layer, then the
normalized outputs of each branch are element-wise added.



Figure 7. Connections and corresponding receptive ranges of different 1× 1 Convs

According to the additivity and homogeneity of convolution
and the methodology of structural reparameterization [9],
these seven branches can be equivalently converted to a sin-
gle 3×3 DW-Conv branch in inference as sketched in Fig. 6
right, which produces no extra inference cost.

3.4. Factorize the Channel Operator

3.4.1 Receptive Range

For that 1× 1 Conv accounts for large proportion of model
parameters and Flops, we want to make it light-weight. Es-
sentially, we can change the connections between input and
output neurons to change the amount of parameters. Hence
we propose the concept of Receptive Range as the guideline
for establishing these connections. The concept of recep-
tive range is introduced specifically for channel dimension
and analogous to the receptive field for spatial dimension.
The value of the receptive range of a certain output neu-
ron is the number of input neurons that it attend to directly
(by a weight) or indirectly (attend to a set of hidden neu-
rons which attend to the input neurons). Fig. 7 exhibits the
connections and corresponding receptive ranges of differ-
ent 1 × 1 Convs. Suppose C is the number of input neu-
rons (channel numbers), as observed, each output neuron of
dense 1×1 Conv can attend to all the input neurons directly,
thus the receptive range is C. For group 1 × 1 Conv with
g groups, the receptive range is C

G , thus different groups
can establish information connections, causing significant
reduce of representation capacity. For channel-wise 1 × 1
Conv [6] with window size of k, the receptive range is k,
thus each output neuron can only attend to small amount of
input neurons, leading to insufficient channel information
aggregating. Consequently, to make the channel informa-
tion aggregated sufficiently thus guarantee the model rep-
resentation capacity, each output neuron should have a full
receptive range, namely, each output neuron should be con-
nected to all of the input neurons directly or indirectly.

3.4.2 Sparsely Factorized 1× 1 Conv

With the guidance of full receptive range, we try to intro-
duce sparsity to the densely connected 1×1 conv emulating
the spatial convolution. We raise the Sparsely Factorized
1 × 1 Conv (SF-Conv for short), which is proposed to be
a new paradigm of channel sparse connectivity. As Fig. 8
exhibits, SF-Conv factorizes a densely connected 1×1 conv
into two sparsely connected 1×1 convs, namely, 1st and 2nd
SF-Convs, to guarantee the full receptive range. Given in-
put feature map of tensor X ∈ RH×W×Cin , where H,W is
the spatial size, and Cin is the input channel numbers. The
output feature map is X̂ ∈ RH×W×Cout , where Cout =
λCin = λC. For certain operation, we only consider the
number of parameters since Flops = H ×W × Params
where H,W are fixed. For a SF-Conv , we can consider
Xi,j,: ∈ RC×1×1 for each pixel (i, j) in X as an actual input
feature map with a spatial size of Cin × 1 and 1 channel,
thus we can conduct standard convolution on it, which in-
troduces sparsity connection. The 1st SF-Conv has a chan-
nel reduction coefficient R (hyper-parameter, R = 2 by de-
fault) to control the neuron number of the hidden feature
map Xh thus control the parameters. Thus there are C

R neu-
rons in Xh. Suppose a convolution kernel Ŵ1 with spatial
size of K × 1. Consider the case of single channel, sliding
K × 1 on the input C × 1 with stride S generates C−K+S

S

output neurons. Thus to generate C
R hidden neurons, the

convolution kernel should have C
R/C−K+S

S channels, that
is W1 ∈ R(C

R /C−K+S
S )×1×K×1, and the feature map of

the hidden neurons is Xh ∈ R
C−K+S

S ×1×(C
R /C−K+S

S ). To
achieve the minimal connections while obtain the maximum
receptive range, the stride S it to be S = K. Moreover, to
enhance the representational capacity and increase the de-
gree of freedom, we make the kernel weights unshared in
the spatial dimension, that is, each set of input neurons is
operated by a individual set of weights. As a consequence,
the weights of 1st SF-Conv is W1 ∈ RK

R × C
K ×K×1, and the

output of 1st SF-Conv is Xh ∈ R C
K ×1×K

R . Thus 1st SF-



Figure 8. Sparse Factorized 1× 1 Convolution.

Figure 9. RefCO Channel Operator

Conv has K
R × C

K ×K × 1 = CK
R parameters.

For each output neuron of 1st SF-Conv has a receptive
range of K, while for the set of neurons in a certain channel
of Xh has a total receptive range of C. Thus through at-
tending to the set of neurons in a certain channel of Xh, the
output neuron of SF-Conv can have a full receptive range
with minimal number of parameters. Thus the 2nd SF-
Conv takes Xh ∈ R C

K ×1×K
R as the input and conducts a

DW-Conv on it, thus the weights of 2nd SF-Conv W2 has
a spatial kernel size of C

K × 1. To obtain the λC output
channels, W2 should have a width multiplier of λC/K

R , thus
W2 ∈ RλC×1× C

K ×1 with λC2

K parameters. The output fea-
ture map of the 2nd SF-Conv is X̂i,j,: ∈ RλC×1×1 for the
pixel (i, j) in X̂. Through operating the shared SF-Conv in
all spatial positions of X, we can obtain the X̂.

SF-Conv has a total parameters of CK
R + λC2

K . Given a
certain channel reduction ratio R, to achieve the least pa-
rameters, the kernel size K is set as K =

√
λCR, which

is dynamically adjusted according to C, λ and R. The total

number of parameters of SF-Conv becomes 2C
√

λC
R . For

a dense 1 × 1 conv with weights Wd ∈ RλC×C×1×1 has
λC2 parameters. Therefore, SF-Conv exhibits a parame-
ter count that is only 2√

λCR
of the parameter count of PW-

Figure 10. Meta Light Block with RepSO and RefCO for Falcon-
Net

Conv. In this way, SF-Conv can introduce sparsity to the
channel connections, as well as maintain the full receptive
range (as shown in Fig. 7), thus reducing the number of
parameters and Flops while obtain a competitive represen-
tation capacity.

3.4.3 RefCO

We further raise RefCO as the Reparameterized factorized
Channel Operator. RefCO also employs the structural repa-
rameterization methodology to compensate for the reduced
parameter count and enhance representations. As Fig. 9 ex-
hibits, in training, RefCO firstly constructs C

K parallel 1st
SF-Conv branches and added the outputs, then constructs
K parallel 2nd SF-Conv branches and added the K output
feature maps to obtain the final output. In inference, these
parallel 1st/2nd SF-Conv branches can be equivalently con-
verted into a single SF-Conv branch.

3.5. FalconNet

Based on above four vital components, namely, LightNet
overall architecture, Meta Light Block, RepSO spatial oper-
ator and RefCO channel operator, we obtain a novel light-
weight CNN model termed as FalconNet (Factorization for
the light-weight convNet). Fig. 9 exhibits the Meta Light



Table 1. Results of various light-weight CNN models and LightNets with corresponding basic blocks on CIFAR-10, CIFAR-100 and
Tiny-ImageNet-200. Width multiplier is used for some LightNets to compensate for the largely reduced channels of certain basic blocks,
such as Sandglass and ShuffleNet blocks. The numbers of parameters and Flops in inference are also exhibited.

Basic Block Model CIFAR-10 CIFAR-100 Tiny-ImageNet-200 Params Flops

DSC Block MobileNetV1 93.18% 72.47% 64.36% 4.23M 588.91M

LightNet×3.5 93.22% 74.26% 64.38% 3.59M 536.06M

Residual DSC Block
ResNet-18 93.89% 74.52% 65.02% 11.72M 1844.08M
ResNet-34 93.95% 74.82% 65.21% 21.84M 3698.78M

LightNet×3.5 93.70% 75.01% 64.66% 3.59M 536.06M

ShuffleNetV1 Block ShuffleNetV1 91.35% 68.51% 56.86% 1.81M 138.75M

LightNet×4.0 91.61% 69.42% 58.94% 1.05M 132.86M

ShuffleNetV2 Block ShuffleNetV2 92.31% 70.08% 60.38% 2.28M 154.87M

LightNet×3.5 93.50% 73.56% 64.10% 2.01M 219.65M

Inverted Residual Block

MobileNetV2 93.43% 74.03% 66.30% 3.56M 353.01M
MobileNetV3S 91.89% 70.50% 60.18% 2.94M 66.89M
MobileNetV3L 94.07% 73.56% 65.54% 5.48M 238.85M
EfficientNetV1-B0 94.21% 75.68% 66.62% 4.98M 404.42M
EfficientNetV2-S 93.85% 75.42% 67.18% 21.14M 2915.26M

LightNet 94.84% 76.92% 68.18% 3.32M 526.51M

Sandglass Block MobileNeXt 93.01% 67.42% 58.12% 3.31M 310.04M

LightNet×6.0 94.09% 75.43% 65.76% 3.77M 607.85M

HBO Block HBONet 92.32% 72.39% 64.20% 4.56M 326.99M

LightNet 92.44% 72.85% 65.92% 3.83M 209.23M

FasterNet Block FasterNet-T0 92.94% 68.02% 58.32% 3.64M 310.98M

LightNet 93.45% 74.14% 64.78% 3.36M 509.10M

RepSO Block LightNet 94.96% 78.24% 69.72% 3.32M 526.51M

RepSO+RefCO Block FalconNet 94.85% 78.04% 69.46% 2.39M 333.14M

Block with RepSO and RefCO, which is utilized as the ba-
sic block for FalconNet. Later experimental results vali-
date that FalconNet can achieve higher accuracy with lower
number of parameters and Flops compared to existing light-
weight CNNs.

4. Experiments

4.1. Configurations

We conduct abundant experiments on three challeng-
ing benchmark datasets, CIFAR-10, CIFAR-100 and Tiny-
ImageNet-200, to validate the effectiveness and superior-
ity of the four vital components illustrated above. CIFAR-
10/100 consists of 50K training images and 10K testing
images, Tiny-ImageNet-200 contains 100K training images
and 10K testing images. For the training configuration, we

use the cross entropy loss function and adopt an SGD opti-
mizer with momentum of 0.9, batch size of 256, and weight
decay of 4 × 10−5, as the common practice [12, 45]. We
use a learning rate schedule with a 5-epoch warmup, initial
value of 0.1, and cosine annealing for 300 epochs to guaran-
tee the compete convergence. The data augmentation uses
random cropping and horizontal flipping. The input reso-
lution is uniformly resized to 224 × 224. All the models
are random initialized with Xavier initialization and trained
with the same training configuration from scratch.

4.2. Performance Evaluation

We evaluate the performance of various existing light-
weight CNN models, including MobileNetV1/V2/V3 [21,
22, 45], MobileNeXt [69], EfficientNetV1/V2 [50, 51],
ShuffleNetV1/V2 [41,67], HBONet [31], and FasterNet [2],



Table 2. Results of different meta basic block instantiations on CIFAR-10, CIFAR-100 and Tiny-ImageNet-200.

Index 1st SO 2nd SO 3rd SO 1st CO 2nd CO Exp Ratio CIFAR-10 CIFAR-100

A Identity Identity Identity PW-Conv PW-Conv λ = 6 90.38% 67.56%
B DW-Conv Identity Identity PW-Conv PW-Conv λ = 4 91.55% – –
C DW-Conv Identity Identity PW-Conv PW-Conv λ = 6 92.11% – –
D Identity DW-Conv Identity PW-Conv PW-Conv λ = 4 94.31% – –
E Identity DW-Conv Identity PW-Conv PW-Conv λ = 6 94.84% 76.92%
F DW-Conv DW-Conv Identity PW-Conv PW-Conv λ = 6 93.36% 75.10%
G DW-Conv DW-Conv DW-Conv PW-Conv PW-Conv λ = 6 91.83% 74.92%
H P-Conv Identity Identity PW-Conv PW-Conv λ = 4 92.75% 73.58%
I P-Conv Identity Identity PW-Conv PW-Conv λ = 6 93.45% 74.14%
J Conv Identity Identity PW-Conv PW-Conv λ = 4 93.58% 73.42%
K Conv Identity Identity PW-Conv PW-Conv λ = 6 93.67% 73.89%
L Conv DW-Conv Identity PW-Conv PW-Conv λ = 4 93.71% 74.40%
M Conv DW-Conv Identity PW-Conv PW-Conv λ = 6 94.10% 75.42%
N DW-Conv Identity Identity PW-Conv Identity λ = 1 93.70% 74.26%
O Identity DW-Conv Identity PW-Conv PW-Conv λ = 1 93.16% 75.01%
P DW-Conv DW-Conv Identity PW-Conv PW-Conv λ = 1 93.29% 74.92%
Q DW-Conv Identity DW-Conv PW-Conv PW-Conv λ = 1/6 94.09% 75.43%
R DW-Conv DW-Conv DW-Conv PW-Conv PW-Conv λ = 1/6 92.11% – –
S PW-Conv Identity Identity DW-Conv PW-Conv λ = 6 92.27% – –
T PW-Conv Identity PW-Conv DW-Conv DW-Conv λ = 6 91.59% – –

Table 3. Results of Meta Light Block different instantiations of spatial operator on CIFAR-10, CIFAR-100 and Tiny-ImageNet-200. Each
row exhibits the branch numbers of DW-Conv with certain kernel size that consist the corresponding spatial operator.

Index Identity 1× 1 1× 3 3× 1 3× 3 1× 5 5× 1 3× 5 5× 3 5× 5 7× 7 CIFAR-10 CIFAR-100

A 0 0 0 0 0 0 0 0 0 0 0 90.38% 68.56%
B 0 0 1 1 0 0 0 0 0 0 0 94.86% 76.85%
C 0 0 0 0 1 0 0 0 0 0 0 94.84% 76.92%
D 0 0 0 0 0 1 1 0 0 0 0 94.16% 76.20%
E 0 0 0 0 0 0 0 0 0 1 0 94.31% 76.27%
F 0 0 0 0 0 0 0 0 0 0 1 93.94% 75.21%
G 1 0 0 0 1 0 0 0 0 0 0 94.64% 76.10%
H 0 1 0 0 1 0 0 0 0 0 0 94.61% 76.88%
I 0 0 1 1 1 0 0 0 0 0 0 94.67% 77.24%
J 0 0 0 0 1 1 1 0 0 0 0 94.59% 76.54%
K 0 0 0 0 1 0 0 1 1 0 0 94.63% 76.42%
L 0 0 0 0 1 0 0 0 0 1 0 94.75% 76.27%
M 0 1 1 1 1 0 0 0 0 0 0 – – 77.58%
N 0 0 1 1 1 1 1 0 0 1 0 – – 76.98%
O 0 1 1 1 1 1 1 1 1 1 0 – – 76.92%
P 0 0 3 3 0 0 0 0 0 0 0 – – 76.01%
Q 0 0 0 0 3 0 0 0 0 0 0 – – 77.69%
R 0 0 1 1 3 0 0 0 0 0 0 – – 77.92%
S 0 1 1 1 3 0 0 0 0 0 0 94.92% 78.23%
T 1 1 1 1 3 0 0 0 0 0 0 94.96% 78.24%

as well as two heavy-weight CNNs, i.e., ResNet-18 and
ResNet-34 [20]. Then we implement the basic blocks of

these light-weight CNN models to our LightNet overall ar-
chitecture and compare the performance with existing light-



weight CNNs. Table 1 shows the experimental results. As
can be observed, LightNet can achieve better performance
by simply implementing the basic blocks. For example,
LightNet with Inverted Residual Block surpasses Efficient-
NetV1 by 0.63%, 1.24% and 1.56% on CIFAR-10/100 and
Tiny-ImageNet-200 respectively with only 66% of the pa-
rameters (there exists a trade-off that the Flops is enhanced
by 30%). Moreover, LightNet with ShuffleNetV2 Block
significantly surpasses ShuffleNetV2 by 3.48% and 3.72%
on CIFAR-100 and Tiny-ImageNet-200 with 88% param-
eters (trade-off of 40% more Flops). Besides, LightNet
with Sandglass Block significantly surpasses MobileNeXt
by 8.01% and 9.94% on CIFAR-100 and Tiny-ImageNet-
200 with 14% more parameters, and LightNet with Faster-
Net Block surpasses FasterNet by 6.08% and 6.46% on
CIFAR-100 and Tiny-ImageNet-200 with 8% less parame-
ters. In addition, when compared to the heavy-weight CNN
models ResNet-18/34, LightNet with Residual DSC Block
(obtained by replacing the standard convolution in the bot-
tleneck block of ResNet with DS-Conv) still achieves com-
petitive performance, while the numbers of parameters are
reduced by 70% and 84% respectively. The experimental
results validate the effectiveness and efficiency of LightNet
overall architecture compared to the overall architectures of
existing light-weight CNN models.

Then we evaluate the performance of LightNet with
RepSO Block (Meta Light Block with RepSO), it is ob-
served in Table 1 that RepSO can enhance the performance
of LightNet significantly and achieves the highest accu-
racy on all of the three datasets, for example, it surpasses
LightNet with Inverted Residual Block by 1.32% and 1.54%
on CIFAR-100 and Tiny-ImageNet-200 respectively, while
maintaining the inference parameters and Flops unchanged.
Thus validates the effectiveness of RepSO which boosts the
morel performance significantly without incurring any extra
inference costs.

We then evaluate the performance of FalconNet, which
equips LightNet with Meta Light Block of RepSO and Re-
fCO. As Table 1 exhibits, FalconNet can achieve higher
accuracy than other existing light-weight CNNs while pos-
sessing less parameters and Flops. Moreover, compared to
FalconNet without RefCO (namely, LightNet with RepSO
Block), FalconNet significantly reduces the number of pa-
rameters and Flops by 28% and 37% while still achiev-
ing competitive accuracy with negligible decline of 0.11%,
0.20% and 0.26% on CIFAR-10, CIFAR-100 and Tiny-
ImageNet-200 respectively. This validates the effectiveness
of RefCO which significantly reduce the number of param-
eters and Flops while maintaining good representation ca-
pacity and competitive performance.

4.3. Ablation Study

4.3.1 Meta Basic Block

We first conduct various ablation study to find some princi-
ples in instantiating the Meta Basic Blocks, Table 2 exhibits
the experimental results. We test different combinations of
the 1st/2nd/3rd spatial operators and the 1st/2nd channel op-
erators (with the expansion ratio λ). The A experiment val-
idates that Meta Basic Block provides the basic ability for
the model since the model when having no learnable param-
eters for spatial operators (i.e., identity) still achieve satisfy-
ing performance. Compare the experiments of E,F,G,M, it
can be concluded that instantiating the 1st/3rd spatial oper-
ators with DW-Conv will undermine the final performance.
Moreover, compare the experiments of C,E,I,K,S,T, it can
be concluded that instantiating the 1st/3rd spatial operators
learnable while instantiating the wnd spatial operator iden-
tity will undermine the final performance. Besides, experi-
ments N,S,T illustrate that these two channel operators of
PW-Convs are significant. Thus we further simplify the
Meta Basic Block into Meta Light Block as illustrated in
Sec. 3.2 and Fig. 4a, which only maintain the 2nd spatial op-
erator and 1st/2nd channel operator while leaving the other
two spatial operators.

4.3.2 Spatial Operator

Here we conduct ablation studies to explore the form of the
spatial operator in the Meta Light Block, Table 3 exhibits
the experimental results. Each row exhibits the branch num-
bers of DW-Conv with certain kernel size that consist the
corresponding spatial operator. From experiments C,E,F, it
can be observed that employing large convolutional kernels
does not contribute to the improvement of model represen-
tational capacity. Instead, it adversely impacts the model’s
performance. This conclusion is consistence with the phe-
nomenon stated in Sec. 3.3 and Fig. 5. In addition, experi-
ments B,C,I,S,T validate that adding horizontal and vertical
branches can enhance the representational capacity as stated
in Sec. 3.3 and Fig. 5.

5. Conclusion

This paper factorizes the structure of light-weight from
coarse to fine and obtain four vital components, namely,
overall structure, basic block, spatial operator and channel
operator. In light of the existing issues of these compo-
nents, this paper respectively raise LightNet overall archi-
tecture, Meta Light Block, RepSO spatial operator, concept
of receptive range and RefCO channel operator. Based on
these four components, this paper raises FalconNet, which
achieves higher accuracy with lower number of parameters
and Flops compared to existing light-weight CNNs.
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