
SLHCat: Mapping Wikipedia Categories and Lists to
DBpedia by Leveraging Semantic, Lexical, and

Hierarchical Features*

Zhaoyi WANG, Zhenyang ZHANG, Jiaxin QIN*, Mizuho IWAIHARA

Graduate School of Information, Production, and Systems, Waseda University
Kitakyushu 808-0135, Japan

wangzy-joey@akane.waseda.jp zhangzhenyang@fuji.waseda.jp
jiaxinqin@fuji.waseda.jp iwaihara@waseda.jp

Abstract.
Wikipedia articles are hierarchically organized through categories and lists,
providing one of the most comprehensive and universal taxonomy, but its open
creation is causing redundancies and inconsistencies. Assigning DBPedia clas-
ses to Wikipedia categories and lists can alleviate the problem, realizing a large
knowledge graph which is essential for categorizing digital contents through en-
tity linking and typing. However, the existing approach of CaLiGraph is pro-
ducing incomplete and non-fine grained mappings. In this paper, we tackle the
problem as ontology alignment, where structural information of knowledge
graphs and lexical and semantic features of ontology class names are utilized to
discover confident mappings, which are in turn utilized for finetuing pretrained
language models in a distant supervision fashion. Our method SLHCat consists
of two main parts: 1) Automatically generating training data by leveraging
knowledge graph structure, semantic similarities, and named entity typing. 2)
Finetuning and prompt-tuning of the pre-trained language model BERT are car-
ried out over the training data, to capture semantic and syntactic properties of
class names. Our model SLHCat is evaluated over a benchmark dataset con-
structed by annotating 3000 fine-grained CaLiGraph-DBpedia mapping pairs.
SLHCat is outperforming the baseline model by a large margin of 25% in accu-
racy, offering a practical solution for large-scale ontology mapping.
Keywords: Knowledge graph, ontology alignment, Wikipedia categories and
lists, DBpedia, CaLiGraph, Distant supervision.

1 Introduction

Categorizing concepts and entities into a taxonomy is a fundamental task of digital
libraries. A universal entity categorization system is desirable for various tasks such
as entity disambiguation, entity linking, and text classification. For such a universal
taxonomy, Wikipedia serves as an indispensable knowledge resource, because it is the
largest online encyclopedia containing a wide range of articles on vast topics. Most of

* Jiaxin Qin’s current affiliation is United Automotive Electronic Systems Co., Ltd

2

its entries (i.e., Wikipedia articles) can be considered as (semi-structured) representa-
tions of entities. For grouping related articles, Wikipedia provides three complemen-
tary mechanisms: Categories, lists and navigation templates, based on shared charac-
teristics or topics of articles [18]. Categories are organized in a hierarchy and each
Wikipedia article is assigned to at least one category. Lists provide a mean for manual
categorization of articles and can include entities that do not have a Wikipedia page
yet. Lists are more difficult to process automatically due to informal construction.

Although lists and categories of Wikipedia provide rich resources for universal
taxonomy, their vastness and open creation introduce wildness such as irregularities
and redundancies, causing difficulties in automating categorization of new entities.
DBpedia [21] is a project aiming at extracting structured information from Wikipedia
and organizing into a large knowledge graph. The DBpedia ontology is the heart of
DBpedia, currently enlisting 788 classes, and around 4.8 million instances, on which a
subsumption hierarchy is formed.

An ontology is a structured representation of knowledge that models a collection of
concepts within a particular domain, along with their interrelationships [8]. However,
independent development of ontologies often results in heterogeneous knowledge
representations with varying categorizations and naming schemes. Ontology align-
ment is a vital solution to the semantic heterogeneity problem, which aims to establish
the relation between semantically related entities in heterogeneous ontologies.

CaLiGraph [5,6, 7] is a large semantic knowledge graph with a rich ontology
compiled from the DBpedia ontology and Wikipedia categories and list pages, as
depicted in Fig. 1(a). CaLiGraph expands the DBpedia ontology classes with fine-
grained value restrictions to more than one million classes and over 200,000 re-
strictions by Cat2Ax [7] approach, which extracts entities from Wikipedia listings
through a combination of the ontological information, axioms, and transformer-based
extractors.

Fig. 1 (a) CaLiGraph ontology schema [5] (b) A mapping between CaLiGraph and DBPedia

Fig. 1(b) shows an example of mapping CaLiGraph classes to DBPedia classes.
Suppose we intend to find a DBPedia class for the CaLiGraph class “20th-
century_Americal_women_politician.” The word “politician” indicates the possibil-

Subgraph of CaLiGraph Subgraph of DBpedia

Most specific type

3

ity of mapping the class to “Politician” in DBPeida, which can be done by lexical
analysis. We also notice that the ancestors of the class also include “Politician,” where
class inheritance can be considered. However, the class “Woman” is also a candidate
because of the word match, where multiple inheritance to the same class is occurring.
In this case, “Politician” can be chosen as the most specific class because this is less
populated than class “Woman.”

Although the objective of CaLiGraph occupies a vital role in utilizing Wikipedia as
a universal taxonomy, the quality of precise categorization on Wikipedia entities still
needs improvement. In this paper, we propose an effective method for finding the
most specific and accurate DBpedia class for a given Wikipedia list or category.

Our method includes the following parts: (1) A mapping method by lexical proper-
ties, which includes root phrase matching between class names of CaLiGraph and
DBPedia, part-of-speech (POS) tagging, and inheritance in the class hierarchies.
These mappings are then used for finetuning the pretrained language model (PLM)
BERT [1]. Also, class name embeddings generated by SimCSE [4] are used to find
semantically similar class names. We further utilize named entity typing on article
titles of a target Wikipedia list or category, to find majority types in these listings.
These approaches are combined to build CaLiGraph-DBpedia class pairs. (2) Fine-
tuning of the pre-trained language model BERT, with the distantly supervised sam-
ples from the previous step. Here we also try to finetune BERT using a simple
prompt-tuning strategy [10]. To reflect hierarchical properties of ontologies in
prompt-based tuning, we use hierarchical classification such that ancestor class names
are appended into prompt templates to enrich contextual information.

For evaluating the correctness of the generated mappings, we construct a manually
annotated benchmark dataset, which consists of 3000 fine-grained CaLiGraph-
DBpedia mapping pairs annotated by three annotators. We evaluate our model
SLHCat on the CaLiGraph-DBpedia mapping task, by macro and micro F1-scores,
and accuracy. Our proposed model outperforms the baseline model Cat2Ax by all the
evaluation metrics by a large margin.

2 Related Work

2.1 Ontology alignment

Lexical matching serves as the foundation for traditional ontology mapping solutions,
which is often combined with structural matching. This gave rise to various existing
systems such as Cat2Ax [7]. Their lexical matching approach, however, only focuses
on the text's surface form, such as overlapping sub-strings and sharing a textual pat-
tern, which is unable to capture word semantics. Lexical and structural matchings
have recently been suggested to be replaced by machine learning; for instance,
DeepAlignment [9] and OntoEmma [16] use word embeddings to represent classes
and compute the similarity of two classes according to the Euclidean distance be-
tween their word vectors. However, these approaches either require extensive feature
engineering that is ad-hoc and relies on great amounts of annotated examples for

4

training, or they use classic non-contextual word embedding models like Word2Vec
[11], which only learns a global (context-free) embedding for each word.

2.2 CaLiGraph and Cat2Ax

CaLiGraph is a large semantic knowledge graph that incorporates a rich ontology
compiled from the DBpedia ontology and Wikipedia categories and list pages [6]. The
ontology is enriched with fine-grained value restrictions on its classes that are discov-
ered with the Cat2Ax approach. CaLiGraph covers over 1 million classes and over
200,000 restrictions, containing information of 15 million entities, as shown in Table
1.

Table 1. Statistics of DBpedia and CaLiGraph

 Classes Instances

DBpedia 788 4,828,418

CaLiGraph 1,061,597 15,230,974

The following four major steps are used in Cat2Ax for allocating a DBPedia class

to Wikipedia lists and categories: (1) Identify candidate category sets that share a
textual pattern. (2) Find characteristic properties and types for candidate sets and
combine them to patterns. (3) Apply patterns to all categories to extract axioms. (4)
Apply axioms to their respective categories to extract assertions. The estimated map-
ping accuracy of Cat2AX reported in [7] is 96.8%. However, the authors’ independ-
ent examinations on the mappings generated by Cat2Ax, reported in Section 5.1,
reveals that 50% of mappings are either onto very general DBpedia types, mapping to
a wrong type, or no DBpedia type is given. One example is that the CaLiGraph class
"Male actor from Saskatchewan" is mapped to DBpedia class "Person" by Cat2Ax,
but in this case "Actor" is more specific and appropriate.

2.3 Distant Supervision

Most of machine learning and deep learning techniques require a large amount of
training samples for training a model for the target task. Manual labeling of training
data requires considerable time and cost. An alternative approach to annotating train-
ing data is distant supervision [12], in which training samples are labeled automatical-
ly based on certain rules, suitable for situations where training data construction is
costly.

Distant supervision for semantic typing is an extension of the paradigm used by
[15] for utilizing WordNet to uncover hypernym (is-a) relations between entities, and
is analogous to the application of poorly labeled data in bioinformatics [1][13], and in
relation extraction which has no labeled data [12]. A typical distant supervision’s
assumption for relation typing is that any statement that contains two entities that are
involved in a relationship may refer to that relationship [12].

5

In our work, we introduce distant supervision rules for discovering mappings be-
tween CaLiGraph classes and DBpedia classes, where the rules are based on textual
and semantic similarities between class names, knowledge graph structures, and the
lexical database WordNet on semantic relations.

2.4 Prompt-based learning

Prompt-based learning [15] is a new paradigm for finetuning PLMs for specific tasks
by providing task-specific prompts, which has attracted attentions in the NLP field. In
prompt learning, downstream tasks are formalized as equivalent cloze-style tasks by
adding some pieces of text as a prompt, and the PLM is asked to handle these cloze-
style tasks instead of original tasks. In contrast to the traditional finetuning methods,
prompt-based learning does not require extra neural layers and bridges the objective
form gap between pre-training and finetuning.

3 Problem definition and overview

In this paper, we focus on finding the most specific and matching DBpedia class for
each of Wikipedia category and list names included in CaLiGraph. This task can be
formulated as a multi-class classification problem.

Ontologies are often composed of statements in the form of triples (subject, predi-
cate, object) in the Web Ontology Language OWL. Here, we denote by and the
two ontologies of CaLiGraph and DBpedia, respectively. The named class set
(resp. is denoted as (resp. . The set of articles assigned to a class is
denoted as as .

Fig. 2. Matching by exact and semantic match on root phrases

The goal of this paper is to find a mapping that maps each class to a target

class where the target class should represent the minimum concept
that subsumes . In other words, our goal is to find the most specific named class

of DBpedia for each CaLiGraph class .

DBpedia
CaLiGraph

Thing

Building

Venue

Theatre

exact match

semantic match

6

Fig. 2 shows an example of the task of mapping CaLiGraph classes to DBPedia
classes. Suppose that “Opera_house_in_Puerto_Rico” is the target CaLiGraph class.
Lexical analysis of the class name indicates the root phrase, which is the phrase lo-
cated at the root of its dependency tree. The phrases “house,” “opera house,” “house
in Puerto rico” are also root phrases. Using this root phrase set, we can search the
DBPedia classes. However, since there is no exactly matching class in DBpedia, we
need to consider semantic similarities between class names. DBPedia classes “Venue”
and “Theatre” are semantically close to “opera house.” For evaluating semantic simi-
larities, we can utilize contextualized representations of texts generated by PLMs,
such as SimCSE [4] and BERT [2]. “Theartre” turns out to be most specific and se-
mantically close to the target, so “Theartre” will be selected.

 An alternative approach to the above is utilizing inheritance on the class hierar-
chies. The target class has an ancestor “Theatre_in_the_United_States.” The root
phrase of this class name is also matching with “Theatre.” We can propagate this
class mapping to its descendants. The approach of hierarchical classification [15] can
be applied here. One another approach is utilizing named entity typing. Existing
part-of- speech (POS) tagging tools can provide named entity typing. Although the
results of the typing are general, such as “house” is typed as “building,” this extra
information can assist semantic matching by PLMs.

4 Methodology

4.1 Model architecture

In this paper, we propose a novel ontology mapping method SLHCat, which exploits
the hierarchical structures of DBpedia and CaLiGraph, as well as lexical and semantic
similarities between class names. Then a hierarchical classifier based on pre-trained
language model BERT is finetuned by distantly-supervised samples. Fig. 3 shows the
overall structure of SLHCat. Our method consists of two main parts: (1) Generating
distantly-supervised training samples. (2) Finetuning pretrained language models.

Fig. 3. Overall structure of our proposed model SLHCat.

7

4.2 Root phrase extraction

 A DBPedia class node in the hierarchy of DBPedia may have an exactly identical
class name in the hierarchy of CaLiGraph. As shown in Fig. 1(a), CaLiGraph uses
DBPedia as an upper-level taxonomy and categorizes these rather general types in
DBPedia into more specific types, although the mapping is not accurate enough. We
check an exactly matching CaLiGraph node in the hierarchy for every DBPedia node.
For example, “Joan Baez compilation album” is a CaLiGraph node, which contains
“album” as a part of the class name, which is also found in DBpedia. So, it is likely
that “Joan Baez compilation album” is mapped to “Album”. Such matching pairs can
be utilized as confident samples for distant supervision.

More generally, we define the root word as a single noun word which represents the
subject information of the whole sentence. For a long noun phrase, the root word
holds the most basic meaning of the whole phrase. However, considering only the
root word may not be sufficient to find matching class names. The root word needs to
be extended to a phrase by adding part of words that are modifying the root word. A
root phrase is a phrase consisting of a root word and its modifying components. Fig.
4(a) shows an example of part-of-speech (POS) tagging and Fig. 4(b) shows an ex-
ample of dependency parsing for class name “American football team in Finland”.
Here, the phrase “football team” is more specific than the root word “team,” which
could be matched with DBPedia class “SportTeam.” But the most specific DBPedia
type for this CaLiGraph class is “AmericanFootballTeam.” Also, the phrase “team in
Finland” can be a candidate of matching class names. This example indicates that we
need to extract a candidate set of root phrases from a given class name, and then se-
lect the root phrase that matches with the most specific and semantically consistent
and DBpedia class.

Fig. 4. (a) “American football team in Finland” after POS tagging (b) dependency parsing

We extract a root phrase candidate set for each CaLiGraph class as follows:
Step 1. Perform POS tagging and dependency parsing on the CaLiGraph class

names. Extract root words and append them to the root phrase set.
Step 2. In the dependency parse tree, enumerate the left and right subtrees of the

root word, and add the phrase corresponding to each subtree to the root phrase set.
Step 3. If the subtree node is a preposition, append the preposition and its descend-

ant nodes to the root word, and add the corresponding phrase to the root phrase set.

In the example of “American football team in Finland,” we obtain the root phrase

candidate set consisting of “team”, “American team”, “football team”, “American
football team” and “team in Finland.”

8

SpaCy [20] is a tool for advanced natural language processing, which provides
modules for POS tagging and dependency parsing. In this paper, we utilize these two
modules to analyze the dependency structure of sentences and extract root words and
root phrases.

4.3 Sentence embedding for matching by semantic similarities

 Sentence embedding can capture semantic and contextual features of texts and the
embedding can be mapped onto a shared vector space, on which semantic similarities
can be measured by certain distance metrics over the vector space. In this paper, we
use unsupervised SimCSE [4] to embed each root phrase in the root
phrase candidate set , where , and DBpedia
class names . We utilize the cosine similarity to calculate the distance between
each root phrase from the root phrase candidate set and DBpedia class names as fol-
lows:

We choose the pair of a root phrase and DBpedia class which has the highest co-

sine value as a confident sample for BERT finetuning under distant supervision. In
the previous example, the cosine value of the root phrase “American football team”
and DBpedia class “AmericanFootballTeam” achieves the highest, which is close to
1, so we assign “AmericanFootballTeam” to CaLiGraph class “American football
team in Finland.”

There may exist multiple pairs whose cosine values are close to 1. In such cases,
we choose the DBpedia class which has the longest word matching to the CaLiGraph
class name. For the CaLiGraph class “Collectible card game”, the cosine values of
root phrases “game” and DBpedia class “Game”, “card game” and “CardGame” are
close to 1. In this situation, we choose “CardGame” as the corresponding DBpedia
class of “Collectible card game”.

4.4 Propagating classes through CaLiGraph hierarchy

 The subsumption hierarchies of CaLiGraph and DBpedia can be utilized for class
inference. Suppose that a confident mapping that maps a CaLiGraph class to a
DBPedia class . Then we can extend the mapping to the descendants of as
type inheritance. Regarding the example of Fig. 2, CaLiGraph class “Thea-
tre_in_the_United_States” can be mapped “Theatre”, thorough matching on the root
phrase. Then by class inheritance, “Opera_house_in_Puerto_Rico” can be also
mapped to “Theatre.” Class inheritance is useful when no corresponding DBpedia
class is found for a descendant of However, the hierarchies of Wikipedia lists and
categories allow one class having multiple parents, causing multiple inheritance, as

9

we saw in Fig. 1(b). To resolve multiple inheritance and choose one target class, we
utilize the BERT classifier.

We call nodes sharing the same parent as sibling nodes. We observe that sibling
nodes sharing the same root phrase are likely to have the same DBpedia type, thus
propagating types to such sibling nodes is possible. Sibling nodes can be searched
from each CaLiGraph node in the current confident labeled dataset. In Fig. 5, the
classes “Penn State Lady Lions basketball player”, “Virginia Tech Hokies women’s
basketball player” and “Virginia Tech Hokies women’s basketball player” are the
children of “College women’s basketball player in the United States,” and share the
same root phrase “basketball player.” These class names can be added to the confi-
dent dataset. This can be viewed as a form of class inheritance, but sharing a root
phrase between the parent and siblings is a strong indicator that they belong to the
same class, giving a higher priority when resolving multiply assigned classes.

Fig. 5. Propagating classes to sibling nodes sharing a common root phrase

4.5 Named entity typing on Wikipedia article titles

Wikipedia articles included in the same category or list are supposed to share the
same theme or subject. Thus, we can assume that in a given Wikipedia category or
list, its member articles share a common aspect or attribute, from which we can infer
the DBpedia class of the list or category.

Fig. 6. Wikipedia pages in category “American football teams in Finland”

Fig. 6 shows the Wikipedia articles belong to CaLiGraph class “American football
team in Finland,” on which several entities can be linked to American football play-
ers. To infer the DBpedia type of each member article, we utilize the technique of
named entity typing on the article titles, where each article is regarded as representing
a Wikipedia entity. Here we use the named entity recognition tool of SpaCy to identi-
fy the types of articles. The type of “Helsinki Roosters” is “ORG”, which refers to
companies, agencies, institutions, etc. We adopt a criterion such that we select the

10

type that appears for more than half of the occurrences to reduce the potential errors
in named entity recognition or the presence of multiple entity types within a single
category or list.

Since the named entity types predicted by SpaCy do not exactly match with DBpe-
dia classes, we map the types to DBpedia classes based on their descriptions. Table 2
shows the named entity types, their descriptions, and the mapped DBpedia classes.

Table 2. The mapping from named entity types to DBpedia class

Named entity type Description DBpedia class

PERSON People, including fictional. Person

NORP Nationalities or religious or political groups.
Organization

ORG Companies, agencies, institutions, etc.

FAC Buildings, airports, highways, bridges, etc. ArchitecturalStructure

GPE Countries, cities, states.

Place
LOC

Non-GPE locations, mountain ranges, bodies of

water.

PRODUCT Objects, vehicles, foods, etc. (Not services.) Thing

EVENT Named hurricanes, battles, wars, sports events, etc. Event

WORK_OF_ART Titles of books, songs, etc. Work

This method can be effective when member article titles indicate entity types such

as person names, which can complement the approaches based on ontology hierar-
chies and class names. However, the resulting DBpedia classes shown in Table 2 are
rather general, locating around the top level of DBpedia. To find more specific and
precise DBpedia classes, we need to search descendants of these classes.

Similarly to named entity typing on classes names, we can utilize the external lexi-
cal database WordNet for typing root words. WordNet provides semantic relations
between words and sets of cognitive synonyms (synsets), as well as POS tags having
suffix (POS.suffix), such as noun.person and noun.animal, from which we can ex-
tract candidate DBpedia classes. For example, the root word of CaLiGraph class “Re-
cipient of French pardons” is “recipient”, and the corresponding POS.suffix is
noun.person. The POS tags and lexical name can further give us hints of labeling.
However, as the POS tags from WordNet are either too general, or not fitting well
with DBpedia classes, in this work we only consider the types noun.person and
noun.group. If the root word of a CaLiGraph class name belongs to noun.person, it is
highly likely that the CaLiGraph class belongs to DBpedia class “Person” or its de-
scendants.

4.6 Resolving results predicted by multiple methods

In the step of Section 4.3 for obtaining vector representations using SimCSE, there
can exist multiple vector pairs with similarity close to 1, which means that CaLiGraph
classes have a nearly exact match to certain DBpedia classes. We regard such

11

CaLiGraph-DBpedia pairs as having high confidence, and use these pairs for distant
supervision. For those whose similarity is significantly less than 1, we use the candi-
date types obtained in the previous steps, and select a DBpedia class according to the
following rules:

Rule 1: If the WordNet POS.suffix of the root word is noun.person or noun.group

we only consider the types under person or group, respectively.
Rule 2: Suppose the DBpedia classes predicted by 1) named entity typing, 2)

CaLiGraph hierarchy, and 3) sentence similarity with similarity score higher than 0.75
form a directed path in the DBpedia hierarchy. Then we choose the DBpedia class
that is deepest in the path.

Rule 3: If two or more methods predict one identical class, the class is selected.
Rule 4: If none of the above rules are met, the class given by named entity typing is

selected.

4.7 BERT Finetuning

BERT finetuning. Given sets of CaLiGraph-DBpedia pairs generating from previous
steps, we finetune a pre-trained BERT model along with a downstream binary classi-
fier on the cross-entropy loss. We limit the inputs length of BERT to 256. The classi-
fier consists of a linear layer which takes as input the embedding of [CLS] token from
BERT’s last-layer outputs and apply to the output softmax layer. The optimization is
done by Adam algorithm. The final output is the probability distribution over the
DBpedia classes for the given CaLiGraph class.
Prompt-based tuning. In our prompt-based learning, for each DBpedia class ,
we define a supplemental word set , where is a subset of the
vocabulary of BERT. A prompt template wraps the input (the input is
CaLiGraph class) into a prompt input by adding additional tokens, and a
[MASK] token is added. The classification task is transformed into a masked lan-
guage modeling (MLM) problem, that is to predict the missing word in [MASK] [3].
Verbalizer. The verbalizer is a significant part of prompt-tuned classification task,
which projects the words that predicted at [MASK] to our label set. We use related
words [19] to expand the DBpedia classes. Specifically, we chose the top-10 related
words for each class in DBpedia as the supplemental word set of the class.

For MLM, we use the confidence scores of all the words in
to construct the final score of each DBpedia class.

where is the number of top-ranked related words, is a related word for DBpedia
class , and is a parameter indicating the importance of the current word .
Template. Template wraps the inputs with textual or soft-encoding sequence. Here,
we utilize the soft-encoding templates, which can continuously optimize in a vector
space. Soft-encoding strategy introducing special tokens as the templates.
The template becomes:

12

Hierarchical classification as hint for prompt-based learning. Hierarchical classi-
fication [14] is an effective approach for classification when the target classes are
organized in a tree structure. As we discussed in Section 1, we can proceed hierar-
chical classification according to the hierarchy of the DBpedia ontology, where the
classification result at a class is utilized as a hint or bias at its child classes. The
template that utilizes the result of hierarchical classification is realized by:

5 Experiments

5.1 Benchmark dataset construction

To evaluate the accuracy of the mappings of the proposed method, the authors con-
structed a benchmark dataset that consists of 3,000 mappings from CaLiGraph classes
to DBpedia classes. The benchmark dataset construction was done as follows: 3,000
classes were randomly sampled from CaLiGraph. For each CaLiGraph class, one
corresponding DBpedia class was selected by three annotators, where the most specif-
ic and valid class was instructed to be chosen. The mappings were cross-checked by
the three annotators and one DBpedia class was selected after reaching agreement.

We compare the mappings generated by Cat2Ax and our benchmark dataset. Ta-
ble 3 shows the results of comparison. We find that 49.2 % of the mappings generat-
ed by Cat2Ax are identical to our manual mappings, which we judge as correct. On
the other hand, the remaining 17.8% are judged as wrong, in which 437 mappings are
not specific enough. The remaining 32.9% classes have assigned no DBpedia class,
meaning that Cat2Ax failed to find a class. Overall, 50% of CaLiGraph classes have
not been assigned appropriate DBpedia classes, leaving room for improvement.

Table 3 Evaluation of Cat2Ax mappings by the benchmark dataset

Cat2Ax mapping
Benchmark

dataset
Percentage

Correct 1476 49.2%

Wrong
Not specific 437

17.8%
Others 97

Missing 986 32.9%

Total 3000 100%

For finetuing the PLM, we generated another 3,000 mappings by the distant super-
vision method described in Section 4, as follows: 3,000 CaLiGraph classes were ran-
domly sampled, where the classes are disjoint from the 3000 classes used for the
benchmark dataset. Then the method of Section 4 was used to assign DBpedia classes
to construct 3,000 mappings. The training dataset is divided into 90% for the training
set and 10% for the validation set. Then the training dataset was augmented into

13

12,700 classes, by propagation on sibling nodes described in Section 4.4. Table 4
shows the statistics of the benchmark dataset.

Table 4. Statistics of datasets

Dataset Training data Augmented set Benchmark
dataset Training set Validation set

CaLiGraph
-DBpedia

2700 300 12700 3000

5.2 Experimental Settings

Our proposed model SLHCat, for mapping CaLiGraph classes to DBpedia classes, is
evaluated over the benchmark dataset. SLHCat is compared against the baseline
model Cat2Ax. We evaluate effectiveness of each proposed component, by compar-
ing seven different configurations (a) – (g), where each configuration is shown in
Table 5. Each symbol means that: (Dist) No PLM classifier, and only distant super-
vision rules are used. (BERT) BERT finetuning. (Prompt) Prompt-based tuning.
The distant supervision rules are divided as: (Root Phase) Root phrase set. (NER)
Name entity typing on entities in Wikipedia member pages. (Inherit) Class inher-
itance. (Lex) Lexical typing by WordNet. (Hier) Hierarchical classification approach
in prompt tuning.

The evaluation metrics of the experiments are {Macro, Micro}-{Precision, Recall,
F1 score} and Accuracy. For BERT finetuing, we use vanilla finetuning. We choose
early stopping to monitor the training process and determine the early training stop
when the performance on the validation set starts to deteriorate. In the training, when
the validation loss no longer decreases for 7 consecutive times, the model is consid-
ered to have converged, and the training is stopped. The training batch size is equal to
16, the input max length is 256 and learning rate is 1e-5 for both vanilla finetuning
and prompt-based tuning.

5.3 Results and discussions

Table 5 shows the results of the evaluation. The overall results demonstrate that our
proposed method SCHCat achieved higher scores in all the seven metrics than the
baseline model Cat2Ax. Within the seven configurations, using BERT finetuning for
final classification is prevailing over the models (a) using only the distant supervision
rules, and (f, g) prompt-based tuning. Full-finetuning of BERT achieves higher per-
formance than the prompt-based approach, which is explained as prompt-based tuning
is training only prompt-related parameters, although it is cost effective.

 NER (c) is improving Micro and Macro F1 scores by 0.015 and 0.081, respectively,
over the model (b) using only Root Phrase. Inherit (d) shows improvement over (c)
on Micro-F1 score and accuracy, while Lex (e) shows improvement over (d) on Mac-
ro-F1 score. Macro-F1 score assigns equal weights on both populated and minority
classes in averaging, indicating that Lex is showing effectiveness on minority classes.

14

Same trends are observed between Hier (g) and without Hier (f) on the prompt-based
models. In terms of accuracy, the prominent configuration of SCHCat is (d)
BERT+Root Phrase + NER + Inherit + Lex, improving the accuracy of Cat2Ax by
0.251.

Table 5 Results of mapping categories and lists to DBpedia classes by SLHCat

and baseline

Model
Macro-

Pre

Macro-

Recall

Macro-

F1

Micro-

Pre

Micro-

Recall

Micro-

F1

Accu-

racy

Cat2Ax 0.342 0.335 0.321 0.528 0.492 0.509 0.492

SLHCat
a) Dist + Root Phrase +

NER + Inherit + Lex
0.623 0.567 0.562 0.670 0.662 0.666 0.662

b) BERT + Root Phrase 0.607 0.667 0.598 0.699 0.642 0.669 0.642

c) BERT + Root Phrase+
NER 0.646 0.647 0.613 0.746 0.723 0.734 0.723

d) BERT + Root Phrase +
NER + Inherit 0.625 0.658 0.608 0.774 0.743 0.758 0.743

e) BERT+ Root Phrase +
NER + Inherit +Lex 0.636 0.663 0.618 0.753 0.723 0.728 0.723

f) Prompt + Root Phrase +
NER + Inherit + Lex 0.601 0.623 0.578 0.748 0.712 0.729 0.712

g) Prompt + Root Phrase
+ NER + Inherit + Lex +
Hier

0.644 0.627 0.607 0.741 0.703 0.721 0.703

6 Conclusion and Future work

In this paper, we proposed a novel approach for ontology alignment that utilizes dis-
tant supervision to automatically generate confident mappings, for finetuning a pre-
trained language model. Our approach covers textual, semantic, lexical, and structural
features of ontologies. We employ two different training strategies, namely prompt-
based tuning and finetuning on the pre-trained language model BERT. Hierarchical
classification is employed to give guiding signals in prompt-based tuning. To evaluate
the correctness of mappings, we constructed a benchmark dataset consisting of 3,000
labeled mappings, through manual annotation. Our proposed method outperforms the
baseline Cat2Ax by a wide margin of 0.25 in accuracy.

While category and list structures of Wikipedia are considered as an important
source for finding valid mappings, considerable noises are also introduced due to not
well-maintained link structures. In future work, we shall consider denoising mecha-
nisms to improve correctness, and consider utilization of large language models, for
augmenting class names.

15

References

1. Craven, M., Kumlien, J., “Constructing biological knowledge bases by extracting infor-
mation from text sources.” In ISMB, Vol. 1999, pp. 77-86, 1999.

2. Devlin J, Chang M. W., Lee K. et al., “BERT: Pre-training of deep bidirectional trans-
formers for language understanding,” Proc. NAACL 2019, pp. 4171–4186, Minneapolis,
June 2019.

3. Ding, N., Hu S., Zhao W. et al., “OpenPrompt: An Open-source Framework for Prompt-
learning,” Proc. ACL 2022, pp. 105–113, May 2021.

4. Gao, T., Yao. X., Chen. D., “SimCSE: Simple Contrastive Learning of Sentence Embed-
ding,” Proc. EMNLP’21, pp. 6894–6910, 2021.

5. Heist N, Paulheim H., “Entity extraction from Wikipedia list pages,” The Semantic Web:
17th International Conference, ESWC 2020, Heraklion, Crete, 2020, pp.327-342.

6. Heist, N., Paulheim H., “The CaLiGraph ontology as a challenge for OWL reasoners,”
Proc. Semantic Reasoning Evaluation Challenge (SemREC 2021), Oct. 2021.

7. Heist, N., Paulheim H., “Uncovering the semantics of Wikipedia categories,” Proc. Int.
Semantic Web Conf., Springer, Cham, pp. 219-236, 2019.

8. Jeong, Jin-Woo, Hyun-Ki Hong, Dong-Ho Lee. “Ontology-based automatic video annota-
tion technique in smart TV environment,” IEEE Trans. Consumer Electronics 57.4, 1830-
1836, 2011.

9. Kolyvakis, P., Kalousis, A., Kiritsis, D. “Deepalignment: Unsupervised ontology matching
with refined word vectors,” Proc. 2018 Conf. North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Vol. 1, pp. 787-798, 2018.

10. Liu, P., Yuan, W., Fu, J., et al, “Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing,” ACM Computing Surveys, 55(9): 1-
35, 2023.

11. Mikolov, Tomas, et al. “Efficient estimation of word representations in vector space,”
arXiv preprint arXiv:1301.3781, 2013.

12. Mintz, M., Bills, S., Snow, R., Jurafsky, D., “Distant supervision for relation extraction
without labeled data,” Proc. ACL-IJCNLP 2009, pp. 1003–1011, Aug. 2009.

13. Morgan, A. A., Hirschman, L., Colosimo, M., Yeh, A. S., Colombe, J. B., “Gene name
identification and normalization using a model organism database,” J. Biomedical Infor-
matics, 37(6), 396-410, 2004.

14. Silla, C. N., Freitas, A. A., “A survey of hierarchical classification across different applica-
tion domains,” Data Mining and Knowledge Discovery, 22, pp. 31-72, 2011.

15. Snow, R., Jurafsky, D., Ng, A., “Learning syntactic patterns for automatic hypernym dis-
covery,” Advances in neural information processing systems, 17, 2004.

16. Wang, L. L., Bhagavatula, C., Neumann, M., et al., “Ontology alignment in the biomedi-
cal domain using entity definitions and context,” Proc. BioNLP 2018 Workshop, pp. 47-
55, 2018.

17. http://CaLiGraph.org/statistics.html
18. https://en.wikipedia.org/
19. https://relatedwords.org/
20. https://spacy.io/usage/processing-pipelines
21. https://www.DBpedia.org/resources/ontology/

