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Abstract. Multimodal medical image fusion plays an instrumental role
in several areas of medical image processing, particularly in disease recog-
nition and tumor detection. Traditional fusion methods tend to process
each modality independently before combining the features and recon-
structing the fusion image. However, this approach often neglects the
fundamental commonalities and disparities between multimodal infor-
mation. Furthermore, the prevailing methodologies are largely confined
to fusing two-dimensional (2D) medical image slices, leading to a lack
of contextual supervision in the fusion images and subsequently, a de-
creased information yield for physicians relative to three-dimensional
(3D) images. In this study, we introduce an innovative unsupervised fea-
ture mutual learning fusion network designed to rectify these limitations.
Our approach incorporates a Deformable Cross Feature Blend (DCFB)
module that facilitates the dual modalities in discerning their respective
similarities and differences. We have applied our model to the fusion of
3D MRI and PET images obtained from 660 patients in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset. Through the applica-
tion of the DCFB module, our network generates high-quality MRI-PET
fusion images. Experimental results demonstrate that our method sur-
passes traditional 2D image fusion methods in performance metrics such
as Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index
Measure (SSIM). Importantly, the capacity of our method to fuse 3D
images enhances the information available to physicians and researchers,
thus marking a significant step forward in the field. The code will soon
be available online.
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1 Introduction

Multimodal image fusion represents a crucial task in the field of medical image
analysis. By integrating information from diverse imaging modalities, image fu-

First Author and Second Author contribute equally to this work.

ar
X

iv
:2

31
0.

06
29

1v
1 

 [
ee

ss
.I

V
] 

 1
0 

O
ct

 2
02

3



sion leverages the complementary characteristics of each technique. Each modal-
ity inherently focuses on distinct physiological or pathological traits. Hence, an
effective fusion of these attributes can yield a more holistic and intricate im-
age, thereby easing and enhancing physicians’ decision-making processes during
diagnosis and treatment [1].

For instance, the significance of Magnetic Resonance Imaging (MRI) and
Positron Emission Tomography (PET) in image fusion is particularly notewor-
thy. MRI provides excellent soft tissue contrast and high-resolution anatomical
structure information, while PET can present images of metabolic activity and
biological processes [2]. The resultant image, derived from the fusion of MRI and
PET, provides a comprehensive perspective, encompassing detailed anatomical
structures alongside metabolic function data. This amalgamation plays a vital
role in early disease or tumor detection and localization and significantly influ-
ences subsequent treatment strategies [3].

Traditionally, medical image fusion primarily utilizes multi-scale transfor-
mations in the transform domain, which typically comprises three steps. First,
the images from each modality are subjected to specific transformations, such
as wavelet [4,5,6] or pyramid transformations [7,8], yielding a series of multi-
scale images. Then, these multi-scale images at the same scale level are analyzed
and selected to retain the most representative information. Finally, through an
inverse transformation, these multi-scale images are amalgamated into a novel
image. Beyond these methods, sparse representation has also been applied in
image fusion [9,10,11].

Nevertheless, image fusion tasks face significant hurdles, primarily due to
the absence of a ”gold standard” or ”ground truth” that could encapsulate all
modality information—ideally, a comprehensive reference image. Traditional fu-
sion techniques often falter when dealing with high-dimensional data, particu-
larly when encountering noise and complex data distributions across modalities.
Moreover, the design of fusion rules remains manual, resulting in suboptimal
generalization and unresolved semantic conflicts between different modality im-
ages [12]. Deep learning, with its inherent capacity for automatic feature learning
and multi-layer abstraction, is poised to mitigate these challenges, enabling more
accurate and interpretable image fusion.

Despite the progress, existing medical image fusion techniques primarily focus
on two-dimensional (2D) slice fusion, which presents clear limitations. Medical
images are predominantly three-dimensional (3D) signals, and 2D fusion ap-
proaches often neglect inter-slice context information. This oversight leads to a
degree of misinterpretation of spatial relationships crucial for decoding complex
anatomical structures. It is in this context that the potential benefits of 3D fu-
sion become salient. By incorporating all 3D of space, 3D fusion can deliver more
accurate localization information—a critical advantage in applications requiring
precision, such as surgical planning and radiation therapy. Equally important,
3D fusion affords a panoramic view, enabling physicians to inspect and analyze
anatomical structures and physiological functions from any perspective, thereby
acquiring more comprehensive and nuanced information.



In this paper, we focus on the fusion of PET and MRI medical images, al-
though the proposed methodology is generalizable to other imaging modalities.
Our contributions can be delineated as follows: 1) We break new ground by
applying a deep learning-based framework for 3D medical image fusion. 2) We
introduce a Deformable Cross-Feature Fusion module that adjusts the corre-
spondence information between the two modalities via Positional Relationship
Estimation (PRE) and cross-fuses the features of the two modalities, thus facil-
itating image feature fusion. 3) We evaluate our approach on publicly available
datasets, and our method yields state-of-the-art results quantitatively, based on
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure
(SSIM). Qualitatively, our technique, even within the same 2D slice, surpasses
baseline methods focusing on 2D fusion by not only retaining ample PET in-
formation but also integrating MRI structural data. The structural information
discerned by our approach aligns more closely with the original MRI image.

2 Methods

2.1 Overview of Proposed Method

In this study, we utilized a U-shaped architecture for MRI-PET image fusion,
shown in Fig. 1. The network employed a dual-channel input, with MRI and
PET 3D image information fed separately. To reduce the parameter count of the
3D network, we applied Patch Embedding using DC2Fusion to both inputs. The
resulting patch images were then passed through the Multi-modal Feature Fusion
(MMFF) module. MMFF consisted entirely of Cross Fusion Blend (CFB) blocks
at different scale levels. Notably, MMFF exhibited a fully symmetrical network
structure, allowing the MRI branch to learn PET image information and the
PET branch to acquire MRI image information. This symmetrical information
interaction was facilitated by the CFB block, which had two input streams: input
flow A and input flow B. In the MRI branch, MRI image information served as
input flow A, while PET image information served as input flow B. The CFB
block enabled the interaction and fusion of features between the two inputs.
Consequently, the MRI branch adjusted its own features after perceiving certain
characteristics in the PET image and outputted MRI image feature information.
When the CFB block operated in the PET branch, input flow A and input flow
B reversed their order compared to the MRI branch, enabling the adjustment
of PET image features. After passing through the MMFF module, all branches
entered a Fusion Layer composed of convolutions to merge the features and
reconstruct the Fusion image.

2.2 Deformable Cross Feature Blend (DCFB)

Positional Relationship Estimation The DCFB Block is a dual-channel in-
put that takes input flow A (IA) and input flow B (IB) as inputs, shown in
Fig. 2(a). At the Deformable Fusion stage, the two inputs obtain the relative



Fig. 1. Overall architecture of the proposed model comprising Patch Embedding and
a fully mirrored symmetric Multi-modal Feature Fusion module, followed by a Fusion
Layer consisting of fully convolutional operations.

positional deviations (offsets) between IA and IB in terms of their correspond-
ing features’ absolute positions. To calculate the relative positional deviations
between the two images, we introduce depth-wise convolution. Depth-wise con-
volution partitions the features into groups, prioritizing the calculation of po-
sitional deviations within each group and then integrating the positional devi-
ations across multiple groups. This process allows us to obtain the positional
deviation of a point in one image with respect to the corresponding point in the
other image. The process can be represented as follows:

FI = Concat(FIA , FIB ) FIA ∈ RC1,H,W,D, FIB ∈ RC2,H,W,D (1)

inner offset = Concat(Conv1(F 1
I ), Conv2(F 2

I ), . . . , ConvC1+C2(FC1+C2

I )) (2)

offset = Conv1×1×1(inner offset) (3)

Here, FIA and FIB are feature maps from IA and IB , respectively. By concate-
nating FIA and FIB , we obtain the feature map FI ∈ RC1+C2,H,W,D. We employ
depth-wise separable convolution with the number of groups set to C1+C2. Based
on the calculation of depth-wise separable convolution, the positional relation-
ships between any point and its k-neighborhood (determined by the kernel size of
the convolution) can be determined for each feature map. To search for the posi-
tional relationships between any two points in a given feature map, we only need
to use the inner offset for computation. Currently, the obtained inner offset rep-
resents only the relative positional deviations within the feature map. To obtain
the relative positional deviations between corresponding points across multiple
modalities, we apply a 1 × 1 × 1 convolution along the channel (C) dimension.
This allows points Point1 and Point2 in the two feature maps to establish po-
sitional relationships based on absolute coordinates, enabling Point1 to locate
the position of the corresponding point Point′1 in the other feature map. It is
worth noting that offset is a three-channel feature map, where each channel
represents the positional deviation in the x, y, and z directions, respectively.



Fig. 2. Overall architecture and specific implementation details of the Cross Feature
Blend module: (a) PRE is employed to determine the deviation between corresponding
points of the two modalities, optimizing the receptive field shape of Cross Attention.
(b) The Cross Attention module learns the correlation between the features of the
two modalities and fuses their respective characteristics. (c) The Cross Feature Blend
module primarily consists of PRE and Deformable Cross Attention.

After obtaining the known positional deviation offset, we apply it to IB . IB
is sampled on offset to obtain the position-corrected I ′B , expressed as follows:

I ′B = Resample(IB , offset) (4)

This means that a point p on IB , after undergoing the deviation offsetp,
obtains a new coordinate point p′, and p′ represents the same anatomical location



on both IA and I ′B . In other words, the anatomical significance represented by
the absolute positions of I ′B and IA is similar.

Cross Attention To enable information exchange between IA and IB , we in-
troduce the Cross Attention module, as shown in Fig. 2(b). The Cross Attention
module is a component commonly used in computer vision to establish connec-
tions between different spatial or channel positions. In our implementation, we
adopt the window attention mechanism from Swin Transformer. However, unlike
Swin Transformer, which takes a single input, Cross Attention takes the features
FIA and FIB from two images as input. The two feature maps are initially di-
vided into windows, resulting in FWA

and FWB
, respectively. To extract relevant

information from FWA
in FWB

, we utilize FWB
as the ”Key” and FWA

as the
”Query.” To reconstruct the fused feature map for IA, we employ FWA

as the
”Value.” The following equations describe the process:

Q = FWA
·WQ K = FWB

·WK V = FWA
·WV (5)

Here, WQ, WK , and WV represent transformation matrices for the ”Query,”
”Key,” and ”Value” features, respectively. Finally, the Cross Attention calcula-
tion is performed by combining Q, K, and V as follows:

Attention(Q,K, V ) = softmax

(
Q ·KT

√
dk

)
· V (6)

Here, dk denotes the dimension of the key vectors, and softmax indicates
the softmax activation function applied along the dimension of the query. The
output of the Cross Attention operation represents the fusion of information
from FWA

and FWB
, enabling the exchange of relevant information between the

two modalities.

DCFB Although we have applied positional deviation estimation to correct IB ,
it is important to note that due to the computational characteristics of convolu-
tions and the accumulation of errors, the most effective region for an individual
point is its local neighborhood. Beyond this neighborhood, the accuracy of the
estimated offset gradually decreases. Therefore, the fundamental role of the off-
set is to overcome the limited receptive field of the window attention in the Swin
Transformer architecture. Moreover, the expansion of the receptive field achieved
by the offset follows an irregular pattern. Refer to Fig. 3 for an illustration.

Assuming IA represents the features extracted from PET images and IB
represents the features from MRI images, our goal is to query the correspond-
ing points in IB and their surrounding regions based on IA. However, utilizing
the Swin Transformer architecture alone may result in the inability to find corre-
sponding points between the two windows, even with the shift window operation.
To address this issue, we propose the Deformable Cross Attention module, which
incorporates an offset into the Swin Transformer module. This offset enables the
positional correction of IB beforehand, followed by regular window partitioning



Fig. 3. Deformable Window Cross Attention achieves equivalent receptive field defor-
mation through PRE, in contrast to Swin Window Cross Attention.

on the adjusted I ′B . While employing a similar approach as shown in Fig. 2(c)
for IA and I ′B , the windows on IB are not regular windows but rather shaped by
the features perceived from IA due to the positional correction applied to IB .

Loss Functions In our image fusion algorithm, we utilize three distinct loss
functions: Structural Similarity Index (SSIM) LSSIM , Normalized Cross-Correlation
(NCC) LNCC , and L1 loss L1. These loss functions contribute equally to the
overall loss with a weight ratio of 1:1:1. Here, we provide a brief explanation of
each loss function and their respective contributions to the fusion process. The
SSIM (LSSIM ) is defined as follows:

LSSIM (I, J) =
(2µIµJ + C1)(2σIJ + C2)

(µ2
I + µ2

y + C1)(σ2
I + σ2

J + C2)
(7)

where I and J represent the input and target images, respectively. µ represents
the mean, σ represents the standard deviation, and c1 and c2 are small constants
for numerical stability. The Normalized Cross-Correlation (LNCC) is defined as
follows:

LNCC(I, J) =

∑
x,y,z

(
I(x, y, z)− I

)
·
(
J(x, y, z)− J

)√∑
x,y,z

(
I(x, y, z)− I

)2 ·∑x,y,z

(
J(x, y, z)− J

)2 (8)



where I and J represent the input and target images, respectively. The sum-
mation is performed over corresponding image patches. The L1 loss (L1) is de-
fined as follows:

L1(I, J) = ||I − J ||1 (9)

where I and J represent the input and target images. By combining these
three loss functions with equal weights, our image fusion algorithm achieves a
balance between multiple objectives. The SSIM loss function focuses on preserv-
ing the image structure, the NCC loss function emphasizes structural consis-
tency, and the L1 loss function aims to maintain detail and color consistency.
Through the integration of these diverse loss functions, our algorithm compre-
hensively optimizes the generated image, thereby enhancing the quality of the
fusion results.

To avoid biased fusion towards any individual modality solely for the pur-
pose of obtaining favorable loss metrics quickly, we depart from traditional fusion
strategies by adopting an end-to-end training approach in our method. To ad-
dress this concern, we introduce a specific loss function based on the SSIM,
which enables us to mitigate the risk of overemphasizing a single modality dur-
ing the image fusion process solely to optimize loss metrics. This ensures a more
balanced fusion outcome and enhances the overall performance of our method:

Lpair = ||SSIM(Fusion,MRI)− SSIM(Fusion, PET )|| (10)

The formulation of total loss is as follows:

L = LSSIM (Fusion,MRI) + LSSIM (Fusion, PET )

+ LNCC(Fusion,MRI) + LNCC(Fusion, PET )

+ L1(Fusion,MRI) + L1(Fusion, PET ) + Lpair

(11)

3 Experiments

3.1 Data Preparation and Evaluation Metrics

In this study, we evaluate the performance of our MRI-PET image fusion method
on the ADNI-2 dataset[13]. The ADNI-2 dataset consists of 660 participants,
each with both MRI and PET images acquired within a maximum time span
of three months. We employed the SyN[14] registration algorithm to align the
MRI and PET images to the MNI152 standard space, resulting in images with
dimensions 182 × 218 × 182. Subsequently, we extracted regions of interest in
the form of MRI-PET pairs and resampled them to a size of 128 × 128 × 128.
Among the collected data, 528 pairs were used as the training set, while 66 pairs
were allocated for validation, and another 66 pairs were designated for testing
purposes.

To ensure a fair comparison, we conducted a comparative evaluation between
our proposed approach and various 2D image fusion methods. For evaluation,



we selected the same slice from the MRI, PET, and the fusion image predicted
by our method. Objective metrics, SSIM, PSNR, Feature Mutual Information
(FMI), and Normalized Mutual Information (NMI), were used to compare the
selected slice with alternative methods. This comprehensive assessment enabled
us to evaluate the effectiveness and performance of our proposed method against
existing approaches in the field of image fusion.

Table 1. Quantitative results of the MRI-PET fusion task. The proposed methods
demonstrate exceptional performance in terms of the SSIM metric and PSNR when
employing 2D-based strategies, establishing a new state-of-the-art benchmark.

Method 2D-/3D- PSNR ↑ SSIM ↑ NMI ↑ FMI ↑

SwinFuse [15] 2D 14.102±1.490 0.623±0.020 1.275±0.019 0.817±0.009

MATR [16] - 15.997±1.190 0.658±0.035 1.451±0.009 0.795±0.018

DILRAN [17] - 19.028±0.821 0.690±0.033 1.301±0.015 0.806±0.019

DC2Fusion(ours) 3D 20.714±1.377 0.718±0.033 1.312±0.012 0.807±0.020

3.2 Implementation Details

The proposed method was implemented using Pytorch [18] on a PC equipped
with an NVIDIA TITAN RTX GPU and an NVIDIA RTX A6000 GPU. All
models were trained for fewer than 100 epochs using the Adam optimization
algorithm, with a learning rate of 1× 10−4 and a batch size of 1. During train-
ing, the MR and PET datasets were augmented with random rotation. Our
DC2Fusion model consists of three downsampling stages. To handle the limita-
tions imposed by the image size, we employed a window partition strategy with
a window size of 2, 2, 2 at each level. Additionally, the number of attention heads
employed in each level is 3, 6, 12, 24.

We conducted a comparative analysis between our method and the 2D image-
based fusion methods SwinFuse [15], MATR [16], and DILRAN [17]. Each of
these methods was evaluated locally using the provided loss functions and hy-
perparameter settings by their respective authors. MATR [16] and DILRAN [17]
methods employ image pair training, where the input images correspond to slices
from MRI and PET, respectively. The SwinFuse method [15] does not provide
an image pair end-to-end training approach. Therefore, we adapted its fusion
process, as described in the paper, which involved fusing infrared and natural
images. During testing, a dual-path parallel approach was employed, where MRI
and PET slices were separately encoded. Subsequently, a specific fusion strategy
(such as the L1 normalization recommended by the authors) was applied to fuse
the features of both modalities. Finally, the fused features were passed through
the Recon module for reconstruction.



3.3 Results and Analysis

Fig. 4 illustrates the fusion results of DC2Fusion in comparison with other meth-
ods. DILRAN, SwinFuse, and our method all exhibit the ability to preserve the
highlighted information from PET while capturing the structural details from
MRI. However, the MATR algorithm, which lacks explicit constraints on image
fusion during training, demonstrates a complete bias towards learning PET im-
age information and severely lacks the ability to learn from MRI information
when applied to the ADNI dataset. Consequently, the model quickly achieves
high SSIM(Fusion, PET ) values during training, thereby driving the overall
loss function gradient. In this experiment, our focus is to compare the fusion im-
age quality of DILRAN, SwinFuse, and DC2Fusion. As shown in Fig. 4, DILRAN
exhibits less prominent MRI structural information compared to SwinFuse and
DC2Fusion. Moreover, in terms of preserving PET information, SwinFuse and
DC2Fusion offer better contrast. For further comparison, Fig. 5 provides addi-
tional details. PET images primarily consist of high-signal information with min-
imal structural details. DILRAN, SwinFuse, and DC2Fusion effectively fuse the
structural information from MRI. In comparison to DC2Fusion, both DILRAN
and SwinFuse display slightly thinner structures in the gyri region, which do not
entirely match the size of the gyri displayed in the MRI. However, DC2Fusion
achieves better alignment with the gyri region of the MRI image. Nevertheless,
the structural clarity of DC2Fusion is inferior to SwinFuse. This discrepancy
arises because the SwinFuse algorithm does not utilize patch embedding oper-
ations or downsampling layers, enabling it to maintain high clarity throughout
all layers of the model. However, this approach is limited by GPU memory con-
straints and cannot be extended to 3D image fusion. Therefore, in our method,
we made trade-offs in terms of clarity by introducing techniques such as patch
embedding to reduce memory usage and accomplish 3D image fusion tasks.

Fig. 4. Comparative images of MRI, PET, and other fusion methods on 3 representa-
tive PET and MRI image pairs. From left to right: MRI image, PET image, MATR[16],
Dilran[17], SwinFuse[15], and DC2Fusion.



Fig. 5. Qualitative comparison of the proposed DC2Fusion with 3 typical and state-
of-the-art methods on a representative PET and MRI image pair: (a) MRI image, (b)
PET image, (c) MATR[16], (d) DILRAN[17], (e) SwinFuse[15], (f) DC2Fusion.

Table 1 presents a summary of the performance metrics for different meth-
ods, including 2D-/3D-fusion, namely PSNR, SSIM, NMI, and FMI. Among
the evaluated methods, SwinFuse, a 2D fusion technique, achieved a remarkable
FMI score of 0.817. However, it is important to note that FMI solely focuses on
feature-based evaluation and does not provide a comprehensive assessment of
image fusion quality. SwinFuse obtained lower scores in other metrics, namely
PSNR (14.102), SSIM (0.623), and NMI (1.275), suggesting potential limitations
in preserving image details, structure, and information content. In contrast, our
method, specifically designed for 3D image fusion, exhibited superior perfor-
mance. DC2Fusion achieved a notable FMI score of 0.807, indicating consistent
and correlated features in the fused images. Moreover, DC2Fusion outperformed
other methods in terms of PSNR (20.714), SSIM (0.718), and NMI (1.312),
highlighting its effectiveness in preserving image details, structural similarity,
and information content. Overall, the results demonstrate the competitive per-
formance of our method in medical image fusion, particularly in 3D fusion tasks.
These findings emphasize the potential of DC2Fusion in enhancing image qual-
ity and preserving structural information, thereby providing valuable insights
for further research in the field of medical image fusion.

As shown in Fig. 6, we present fusion metrics for all samples in our test
cases. It is evident that DC2Fusion consistently outperforms other methods in
terms of PSNR and SSIM for each sample. However, the NMI metric reveals an
anomaly with significantly higher results for MATR. This can be attributed to



MATR’s fusion results being heavily biased towards the PET modality, result-
ing in a high consistency with PET images and consequently yielding inflated
average values. Nevertheless, these values lack meaningful reference significance.
Excluding MATR, our proposed method also achieves better results than other
methods in terms of the NMI metric. With regards to the FMI metric, our
method does not exhibit a noticeable distinction compared to other methods.
Considering Fig. 5, although our results may not possess the same level of clarity
as other methods, our approach still obtains relatively high FMI scores in terms
of these detailed features. This observation demonstrates that our method pre-
serves the feature information during image fusion, even at the cost of reduced
clarity.

Fig. 6. Illustration of the average fusion metrics (PSNR, SSIM, NMI, and FMI) for
each sample in our test cases. These metrics are computed by comparing the fusion
images with both the MRI and PET images separately. The reported values represent
the average scores across all samples.

4 Conclusion

In this study, we propose a novel architecture for 3D MRI-PET image fusion. Our
approach, DCFB, achieves cross-modal PRE and provides a deformable solution
for enlarging the receptive field during cross-attention. This facilitates effective
information exchange between the two modalities. Experimental results demon-
strate the outstanding performance of our proposed 3D image fusion method.
Although the image fusion quality of our method is currently limited by GPU
constraints, resulting in slightly lower clarity compared to 2D fusion, we have
provided a novel solution for 3D medical image fusion tasks. Furthermore, we



anticipate applying this framework to various modalities in the future, thereby
broadening its applicability across different modal combinations.
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