
M3FGM:A Node Masking and Multi-granularity
Message passing-based Federated Graph Model

for Spatial-Temporal Data Prediction

Yuxing Tian1, Jiachi Luo1, Zheng Liu2, Song Li3, and Yanwen Qu1

1 Jiangxi Normal University
2 Nanjing University of Posts and Telecommunications

3 Shanghai enflame technology co. ltd

Abstract. Researchers are solving the challenges of spatial-temporal
prediction by combining Federated Learning (FL) and graph models with
respect to the constrain of privacy and security. In order to make bet-
ter use of the power of graph model, some researchs also combine split
learning(SL). However, there are still several issues left unattended: 1)
Clients might not be able to access the server during inference phase; 2)
The graph of clients designed manually in the server model may not re-
veal the proper relationship between clients. This paper proposes a new
GNN-oriented split federated learning method, named node Masking
and Multi-granularity Message passing-based Federated Graph Model
(M3FGM) for the above issues. For the first issue, the server model of
M3FGM employs a MaskNode layer to simulate the case of clients being
offline. We also redesign the decoder of the client model using a dual-
sub-decoders structure so that each client model can use its local data
to predict independently when offline. As for the second issue, a new
GNN layer named Multi-Granularity Message Passing (MGMP) layer
enables each client node to perceive global and local information. We
conducted extensive experiments in two different scenarios on two real
traffic datasets. Results show that M3FGM outperforms the baselines
and variant models, achieves the best results in both datasets and sce-
narios.

Keywords: Federated learning · split learning · spatial-temporal data
prediction · graph neural network · data privacy.

1 Introduction

Utilizing graph structure to model spatial-temporal data in the prediction task
has been popular in recent years [29,8,25,6,23,13]. It is critical for various appli-
cations including traffic flow prediction, forecasting, and user activity detection.
Most of these works train models under the assumption that a massive amount
of real-world spatial-temporal data can be centralized. However, with increas-
ing concerns about data privacy and access restrictions due to existing licensing
agreements and commercial competition, there are numerous real-world cases in

ar
X

iv
:2

21
0.

16
19

3v
3 

 [
cs

.L
G

] 
 7

 S
ep

 2
02

3



2 Yuxing Tian, Jiachi Luo, Zheng Liu, Song Li, and Yanwen Qu

which spatial-temporal data is decentralized. For instance, in traffic flow pre-
diction, different organizations or companies collect traffic data by their private
deployed road sensors and these data cannot exchange it due to privacy preser-
vation or commercial reasons.

As an effective solution to data privacy protection, Federated Learning (FL)
[18] has attracted significant research efforts recently. FL is a learning paradigm
for model training that collaborates with clients (i.e., local data owners) without
exposing their original data. By integrating all client model weights or gradients,
the FL-trained model demonstrates superior generalization capabilities.

Recent research has introduced a series of FL-based models for spatial-
temporal data prediction while preserving privacy [16,32]. However, these models
do not consider the inherent spatial dependencies of the data. Current works fo-
cus on integrating FL with graph neural networks(GNNs), which can be divided
into two categories: 1) Client-side GNN model training for local model updates:
A common characteristic of these approaches [2,15] is their emphasis on training
with well-established graph-structured data. In practice, not all clients possess
built-in graph structure datasets, which raises the question of how to process
node-level data using GNNs in such contexts. 2) Server-based GNN model train-
ing for enhanced FL aggregation: Techniques such as PFL [4] employ GCN to
perform model parameters aggregation according to the clients’ relational graph
structure, introducing a supervised loss function with graph smoothness regu-
larization for training both local and server models. BiG-Fed [30] devises bi-level
optimization schemes for training local models and GNN models with dual objec-
tive functions and proposes an unsupervised contrastive learning loss function.
Despite these methods consider the structural relationships among clients and
offer GNN-based model parameter aggregation techniques, they do not fully ex-
ploit the true capabilities of GNNs as they are unable to directly model the
dependency relationships within spatial-temporal data. Consequently, their per-
formance is significantly distant from that of centralized GNN approaches.

In recent years, there has been an architectural approach called Split Fed-
erated Learning(SFL) that divides a complete model into several parts, placing
them on the client and server sides respectively, such as [26] and [7]. This ap-
proach is primarily adopted due to the limited computational resources of the
devices participating in federated learning. However, recently, meng et.al have
successfully employed this framework to enable GNNs to directly participate
in spatial-temporal data processing, proposed CNFGNN [19]. Specifically, CN-
FGNN partitions the complete model into two components: employing identical
encoder-decoder models on all clients, with the encoder used to extract local
temporal embeddings, and the decoder utilized to generate predictions. Graph
Network (GN) [1] is employed on the server side to obtain spatial embeddings by
aggregating the local temporal embeddings uploaded from the clients. CNFGNN
can be regarded as a GNN-oriented SFL method.

Nonetheless, two significant issues remain. (1) For CNFGNN, when employ-
ing trained model for inference, some clients might be unable to connect to
the server due to network disconnection. While it is feasible to replace missing



Title Suppressed Due to Excessive Length 3

embeddings with all-zero data, this approach significantly diminishes predictive
performance. Moreover, these offline clients cannot generate predictions without
the server model. (2) The performance of GNN training relies heavily on the ac-
curacy of the graph structure. However, the graph structure of clients in existing
methods [31,33,19] is constructed manually in a heuristic way, which might not
represent client relations properly, leading to deteriorated performance.

In this paper, we propose a new GNN-oriented split federated learning method
for spatial-temporal data prediction, named nodeMasking andMulti-granularity
Message passing-based Federated Graph Model (M3FGM) to overcome the above
issues. To address the concern of offline clients, we propose a MaskNode layer to
the server model to simulate that clients are offline during the training phase.
Additionally, we devise a dual-sub-decoders structure for the client model’s de-
coder, permitting offline clients to make predictions during the inference phase.
For the issue of graph structures, a new GNN layer, named Multi-Granularity
Message Passing (MGMP) layer, is proposed. We construct a comprehensive
coarse-grained graph, referred to as the cluster graph, by applying spectral clus-
tering on the client graph. The MGMP layer empowers each client node to
aggregate fine-grained local information from neighbors in the client graph and
global coarse-grained information from the cluster graph.

The contribution of this paper is summarized as follows:

(1) As far as we know, this paper is the first to consider the non-ideal scenario
when designing a GNN-oriented SFL method. We propose MaskNode to enhance
the model robustness and design a dual-sub-decoders structure, enabling offline
clients to make independent predictions.

(2) We propose a novel GNN Layer, MGMP Layer, which enables client
nodes to perceive local and global information through multi-granularity message
passing.

(3) We propose M3FGM for spatial-temporal data prediction under privacy
protection. The extensive experiments demonstrate the effectiveness of our model
on two real-world traffic datasets.

2 Related Work

Our method combines elements from graph neural networks, split federated
learning. We now review related works in these areas and discuss their relevance
to our work.

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) have demonstrated outstanding efficacy across
a diverse range of learning tasks involving graph-structured data, such as node
classification [12,27,28], link prediction [17,3], spatial-temporal data modeling
[20,22]. Although GNNs exploit a powerful inductive bias to extract meaningful
information from graph-structured data, there are challenges that need to be



4 Yuxing Tian, Jiachi Luo, Zheng Liu, Song Li, and Yanwen Qu

addressed to fully exploit their potential. One critical aspect of GNN perfor-
mance is the accurate representation of graph structure. In real-world scenarios,
graph structures can be highly complex, making it difficult to manually con-
struct them using only prior knowledge. Another challenge faced by GNNs is
the difficulty in capturing long-range dependencies within a limited number of
message passing steps. This limitation can hinder the learning capabilities of
GNNs, especially in scenarios where long-range interactions play a significant
role. Therefore, in this paper, we propose a novel GNN Layer to address above
issues through multi-granularity message passing.

Furthermore, most studies necessitate centralized data during training and
inference processes. This reliance on centralized data leads to privacy concerns,
especially when dealing with sensitive information in domains like healthcare,
finance, or social networks. Consequently, there is a burgeoning interest in devel-
oping privacy-preserving GNNs that facilitate distributed learning across multi-
ple entities, ensuring data confidentiality and compliance with data protection
regulations.

2.2 Split Federated Learning

Federated learning (FL) [18] is a machine learning paradigm that enables multi-
ple entities, such as mobile devices, edge nodes, or data centers, to collaboratively
train a model while maintaining the privacy and decentralization of their local
data. In a typical federated learning setting, multiple clients and a central server
participate in training a global model. The global model is copied in multiple
copies and deployed on each client. Each participating client trains the model lo-
cally using its data and sends only the updated model parameters to the central
server for aggregation.

Split learning (SL) [9] is a technique that divides a complete model into sev-
eral components to enable efficient utilization of computational resources across
a network of devices, leveraging their individual strengths while minimizing the
overall computational burden. SL can also achieve increased scalability in large-
scale distributed systems.

Recent research has integrated SL with FL to address high training latency
for clients with limited resources[26][7]. This combination, referred to as Split
Federated Learning (SFL), typically divides the global model into two compo-
nents: client-side and server-side components. Clients access only the client-side
component, while the server exclusively accesses the server-side component. In
SFL, clients send their processed data (outputs from the client-side model) to
the server, where the server-side model continues training. After calculating the
loss and updating the gradient, the server adjusts the server-side model, and the
gradients of the processed data are sent back to the clients. Clients then up-
date the client-side model based on the gradient. By training part of the model
on the server, SFL significantly reduces the computational burden for resource-
constrained devices. Collaborative training between clients and the server en-
sures that the original data remains stored locally on the client, preventing sen-
sitive information disclosure. However, most studies primarily focus on standard



Title Suppressed Due to Excessive Length 5

deep learning models such as CNN and RNN, with GNN-oriented SFL being
rarely studied. CNFGNN [19] can be regarded as an example of a GNN-oriented
SFL method. The GNN-oriented SFL method can truly unleash the potential
of graph models in modeling graph-structured data, as the input for the GNN
portion of the model is processed data rather than model parameters.

3 Problem Formulation

We introduce notions and definitions in this section, followed by a brief intro-
duction to the GNN-oriented split federated learning. Let us denote the client
graph constructed by the server as G={V,E}, where V is the set of client nodes,
and E represents the edge set. vi ∈ V denotes the i-th client node in the G.
N=|V | is the number of client nodes (the number of clients). ci represents the
client corresponding to the client node vi . Let xt1:t2

i denotes the local graph
signals recorded between the timestamp t1 and t2 at client i . Xt1:t2 denotes the
graph signals observed at all clients between the timestamp t1 and t2.

The GNN-oriented split federated learning method aims to learn a client
model fi for each client ci, and a GNN modelfser for the server. At each time
step t, each client model ci uses an encoder fenc

i to extract local temporal embed-

ding ht
i according to x

(t−S:t)
i . Server model fser computes the spatial embeddings

{sti}Ni=1 according toG and the local temporal embeddings {ht
i}Ni=1 collected from

all clients. Each client model ci then uses a decoder fdec
i to output prediction ac-

cording to ht
i and sti. Thus, the mapping from S historical graph signals X(t−S):t

to future T graph signals X(t+1):(t+T ) can be achieved.

[X(t−S):t, G]
{fi={fenc

i ,fdec
i }}N

i=1,fser−−−−−−−−−−−−−−−−→ X(t+1):(t+T ) (1)

4 Methodology

Figure 1 shows the overall architecture of M3FGM, and we will cover the details
of the model in terms of the server model, the client model, and the training and
inference process, respectively.

4.1 Server model

The MaskNode Layer: The MaskNode (MN) layer is employed exclusively
during the training phase. Prior to model training, we select a mask rate mr.
Upon feeding data into the MN layer, a certain number of client nodes, mr×N ,
are randomly sampled. When mr × N is a noninteger, we round it down. The
uploaded local temporal embeddings of these sampled client nodes are replaced
with a shared trainable tensor hs. The set of sampled nodes is denoted as Voff ,
while the set of remaining nodes is denoted as Von. The operation of the Mas-
kNode layer can be expressed by Eq. (2).



6 Yuxing Tian, Jiachi Luo, Zheng Liu, Song Li, and Yanwen Qu

Fig. 1: The overall architecture of M3FGM

|{ z
in,0
i = ht

i, if vi ∈ Von

zin,0i = hs, if vi ∈ Voff
| (2)

Zin,0={zin,0i }Ni=1 is the output of the MN layer and will be fed into the first
MGMP layer. When the model training is completed and deployed, if client ci
is offline, the server model will utilize the trained tensor hs as ht

i to conduct
inference. Next, we briefly describe the differences between the MaskNode op-
eration and two related techniques. Unlike the DropEdge operation [21], the
MaskNode operation does not perturb the graph structure. In contrast to the
masked self-supervised task [11], we only replace the masked node embeddings
with shared trainable tensors. We do not attempt to reconstruct or forecast the
node embeddings.

Fig. 2: The structure of MGMP Layer



Title Suppressed Due to Excessive Length 7

The MGMP layer: The MGMP layer employs the following three graph
structures for message passing: 1) client graph G={V,E}, 2) cluster graph
GClu={V Clu, EClu}, and 3) cross-level graph G→Clu={V →Clu, E→Clu}.

The client graph G is constructed manually in a heuristic way. To obtain the
cluster graph GClu, we apply spectral clustering on the Laplacian matrix of the
client graph G and get M clusters. Each cluster is regarded as a coarse node
of the cluster graph GClu. Denote the set of client nodes in the m-th cluster as
V Clu
m ⊂ V . The edge of the cluster graph GClu is constructed based on the client

graph G, for example, if Vi ∈ V Clu
m and Vj ∈ V Clu

n , and the Vi connects to Vj in
client graph G, then the V Clu

m connects to V Clu
n in cluster graph GClu .

G→Clu is a bipartite graph for accelerating the message transfers. V →Clu=V ∪
V Clu, E→Clu is the edge set contains directed edges which are from client nodes
in V to the cluster nodes in V Clu corresponding to the cluster of starting node.
The diagram of these three graphs is given on the left side of Fig.1.

Figure.2 shows the internal structure of the l-th MGMP layer, which contains
three sub-layers with same backbone. The backbone can be any graph model. Let
us assume that the inputs of the l-th layer, which include the input embeddings
Zin,l={zin,li }Ni=1 of client nodes and the input embeddings Zin,l

Clu={zin,lm,c}Mm=1 of

cluster nodes are known. In particular, Zin,0
Clu are calculated by Eq. (3):

zin,0m,c =
∑

vi∈V Clu
m

zin,0i /|V Clu
m |, m = 1, ...,M (3)

We will describe how client nodes can perceive the local and global infor-

mation with the help of MGMP. First, information is propagated on G→Clu

(sublayerl→Clu) so that the cluster nodes can perceive cluster-level information
from the client graph. Then, information is propagated on GClu(sublayerlClu) to
obtain Zl

Clu={zlm,c}Mm=1 which represents the embeddings of cluster nodes. Af-
terwards, the information on the cluster graph is passed back to the client graph
according to Eq.(4), where Zl∗={zl∗i }Ni=1 represents the embeddings of the client
nodes after perceiving the coarse-grained global information, W l is a trainable
matrix. Finally, fine-grained local information is propagated on G(sublayerlCli)
to obtain the Zl={zli}Ni=1, which represents the embeddings of client nodes.

zl∗i = zin,li ||W lzlm,c, vi ∈ V Clu
m (4)

Computational flow of server model: The computational flow first passes
the MaskNode layer and subsequently passes two MGMP layers with residual
connection[10]. Note that we only add the residual connection to the input Zl .
The outputs of the last MGMP layer are sent back to clients.

4.2 Client model

We employ the encoder-decoder architecture on each client for the modeling of

local temporal embeddings. Given an input sequence x
(t−S):t
i ∈ RS×D on the



8 Yuxing Tian, Jiachi Luo, Zheng Liu, Song Li, and Yanwen Qu

i-th client, the encoder sequentially reads the whole sequence and outputs the
hidden state ht

i as the temporal embedding of the input sequence.

ht
i = fenc

i (x
(t−S):t
i ) (5)

The dual-sub-decoders structure Unlike the usual Encoder-Decoder ar-
chitecture, to enable offline clients to make independent predictions, we propose
the dual-sub-decoders structure. As shown in Figure 1, the dual-sub-decoders
structure includes an online-sub-decoder and an offline-sub-decoder. The online-
sub-decoder fdec

i,on employs local temporal embedding ht
i and spatial embedding

sti to generate the predictions x̂
(t+1):(t+T )
i,on . The offline-sub-decoder fdec

i,off only

employs local temporal embedding to output predictions x̂
((t+1):(t+T )
i,off .

x̂
(t+1):(t+T )
i,on = fdec

i,on(h
t
i, s

t
i) (6)

x̂
((t+1):(t+T )
i,off = fdec

i,off (h
t
i) (7)

The backbone of Encoder and dual-subdecoders can be any model. In exper-
iments, for fair, we use GRU as the backbone.

Loss function To train the two sub-decoders alternately, we designed two

loss functions: Lo
in and Loff

i , By taking a single training sample (x
(t−S):t
i ,x

(t+1):(t+T )
i )

owned by client ci as an example, the two loss functions are as follows:

Lon
i =

∑T
k=1(x

t+k
i − x̂t+k

i,off )
2/T (8)

Loff
i =

∑T
k=1(x̂

t+k
i,off − x̂t+k

i,off )
2/T (9)

It can be observed that Loff
i is MSE function between the outputs of the two

sub-decoders. This design aims to bring the prediction of offline-sub-decoder as
close as feasible to online-sub-decoder.

4.3 Training and inference process

Training step We use the alternating training method proposed in [19] to train
our model to reduce communication consumption. The training and inference
process of M3FGM is slightly different from [19] because of the dual-subdecoders
architecture. Here we briefly describe the training process:

Step 1: Initially, the clients’ models are trained for Rc round with the server
model and spatial embeddings fixed. Taking client i for example, in each round,
the offline-sub-decoderfdec

i,off is fixed, and the encoder fenc
i and online-sub-decoder

fdec
i,on are trained by minimizing Lon

i . Then the fenc
i and fdec

i,off are fixed and the

fdec
i,off is trained by minimizing Loff

i .

Step 2: After completing Rc round, all clients’ model parameters {θc,i}Ni=1

and local temporal embeddings {ht
i}Ni=1 are uploaded to the server, and then



Title Suppressed Due to Excessive Length 9

Algorithm 1 Training pipeline for M3FGM with one training sample

Require: Client graph G and data
(X(t−S):t, X(t+1):(t+T )). Initial each
client model weights as θc =
{θenc, θdecon , θdecoff}, initial server model
weights θserver. Initial spatial embed-
dings {sti}Ni=1 = s0, s0 is a zero-valued
vector. Masknode rate mr.

Ensure: Trained client model weights θc,
trained server model weights θserver

1: for global training round rg =
1, 2, ...Rg do

2: Step 1:
3: for client i(i = 1, ..., N) in parallel

do
4: for local training round rc =

1, 2, ...Rc do
5: fenc

i (x
(t−S):t
i ) → ht

i

6: fdec
i,on(h

t
i, s

t
i) → x̂

(t+1):(t+T )
i,on

7: fdec
i,off (h

t
i) → x̂

(t+1):(t+T )
i,off

8: Calculate Lon
i and Loff

i ac-
cording to Equations (8) and
(9)

9: update {θenc
i , θdeci,on} according

to Lon
i

10: update θdeci,off according to

Loff
i

11: end for
12: end for

13: Step 2:
14: Send latest embedding {ht

i}Ni=1 and
the client model weights {θc,i}Ni=1 to
the server

15: Fix all client models’ weights.
16: for server training round rs =

1, 2, ...Rs do
17: construct cluster graph Gclu and

cross-level graph G→Clu accord-
ing to client graph G

18: fserver({ht
i}Ni=1, G,Gclu, G→Clu,mr) →

{sti}Ni=1

19: send {sti}Ni=1 to corresponding
clients

20: fdec
i,on(h

t
i, s

t
i) → x̂

(t+1):(t+T )
i,on , i =

1, ..., N
21: Calculate

∑N
i=1 L

on
i and update

θserver
22: end for
23: Step 3:
24: Update latest graph embedding

{sti}Ni=1

25: Use FedAvg to aggregate
{θc,i}Ni=1 → θc

26: {sti}Ni=1 is send to corresponding
clients respectively and θc is send to
all clients as the new model weights
for next global training round.

27: end for

the training of the server model begins for Rs rounds with clients’ model fixed.∑N
i=1 L

on
i is used to update the server model.

Step 3: Once the server model is trained, the FedAvg algorithm [18] is em-
ployed by the server to aggregate {θc,i}Ni=1 to obtain θc. The server subsequently
sends θc back to all clients and spatial embeddings {sti}Ni=1 are returned to their
corresponding clients.

The above process is repeated Rg times.

Inference step If a client can connect to the server, the client feeds its local
data to the encoder to obtain local temporal embedding, then upload embedding
to the server to compute spatial embedding. After that, the client receives the
spatial embedding transmitted back by the server and makes predictions using
the online-sub-decoder. Conversely, when a client is unable to establish a connec-



10 Yuxing Tian, Jiachi Luo, Zheng Liu, Song Li, and Yanwen Qu

tion to the server, it utilizes the encoder and offline-sub-decoder independently
to make predictions.

5 EXPERIMENTS

5.1 Datasets

Traffic data are commonly in the format of spatial-temporal graphs. We verify
M3FGM on two real-world traffic datasets: METR-LA and PEMS-BAY, which
are released by Li et al. [14]. (1)METR-LA: which records traffic speed informa-
tion collected from 207 loop detectors in the highway of Los Angeles County over
4 months. (2)PEMS-BAY: which contains 6 months of traffic speed information
ranging on 325 sensors in the Bay Area.

For both two datasets, the readings of sensors are aggregated into 5 minutes
windows. We standardize the data by removing the mean and scaling to unit
variance. And then we split 70% into training set, 20% into testing set and
10% into validation set, in chronological order. And We adopt the same data
pre-processing method as [19].

5.2 Compared models and Settings

Since our primary focus is on the architecture of the federated graph, rather
than the specific models, we have not made comparisons with some SOTA cen-
tralized spatial-temporal graph methods. We follow the setup of [19], compar-
ing M3FGM with four baselines. We compare M3FGM with 4 baselines: GRU,
GRU+ FedAvg, GRU+FMTL [24] and CNFGNN. These baselines all use the
GRU-based encoder-decoder model [5] as the client-side model. For each base-
line, there are 2 variants of the GRU model to show the effect of on-device model
complexity: one with 63K parameters and the other with 727K parameters. For
CNFGNN, the encoder-decoder model on each client has 64K parameters and
the GN model has 1M parameters. The experimental results of the baseline
models, as reported in [19], are utilized in the subsequent analysis. Addition-
ally, to facilitate an objective ablative analysis, two variant models have been
constructed: CNFGNN+MN : Add the MaskNode layer to the server model of
CNFGNN. M3FGM w/o MN : M3FGM without MaskNode layer.

We conduct experiments under two scenarios to verify the effectiveness of our
model: an ideal scenario in which all nodes are online during the inference phase
and a non-ideal scenario in which some nodes are offline during the inference
phase. To ensure fair evaluation and comparison, GRU is used as the backbone
of the encoder and sub-decoder in the client model when implementing M3FGM
and M3FGM w/o MN. To optimize the model, the Adam optimizer is employed
with a learning rate set at 1e-3. The root mean squared error (RMSE) metric is
utilized to evaluate the predictive performance.



Title Suppressed Due to Excessive Length 11

Table 1: Comparison of performance with the Rooted Mean Squared Error
(RMSE) as the evaluation metrics.

Method PEMS-BAY METR-LA

GRU(central,63k) 4.124 11.730

GRU(central,727k) 4.128 11.787

GRU+GN(central,64k+1M) 3.816 11.471

GRU(local,63k) 4.010 11.801

GRU(local,727k) 4.152 12.224

GRU(63k)+FedAvg 4.512 12.132

GRU(727k)+FedAvg 4.432 12.058

GRU(63k)+FedMTL 3.9561 11.548

GRU(727k)+FedMTL 3.955 11.570

CNFGNN(64k+1M) 3.822 11.487

CNFGNN(64k+1M) +MN 3.831 11.504

M3FGM w/o MN 3.697 11.371

M3FGM (mr=25%) 3.684 11.352

5.3 Performance comparison under the ideal scenario

Table 1 reveals that M3FGM achieves the lowest prediction error on both datasets.
Specifically, M3FGM and CNFGNN demonstrate superior performance com-
pared to GRU+FedAvg and GRU+ FedMTL by taking into account the spatial
correlation of client nodes.

Ablation analysis: In Table 1: 1) M3FGM outperforms M3FGM w/o MN,
indicating that the MaskNode layer contributes to enhanced prediction perfor-
mance under the ideal scenario. 2) M3FGM w/o MN surpasses CNFGNN. Given
that the client models of the two methods share the same structure under the
ideal scenario, this result suggests that the MGMP Layer is instrumental in
improving prediction performance. 3) CNFGNN+MN exhibits slightly inferior
performance compared to CNFGNN on both datasets. We hypothesize that this
is because the server model of CNFGNN+MN struggles to aggregate valuable
information within a few message-passing steps when certain node embeddings
are masked. In contrast, M3FGM with the MGMP layer addresses this issue by
passing neighbor and global information.

5.4 Performance comparison under the non-ideal scenario

To simulate non-ideal situations, we set two different client offline rates: 25%
and 35%. We calculate the RMSE of the models separately for online and offline
nodes. Given that each client of GRU (local) makes predictions independently
during the inference phase, we also compare M3FGM with GRU (local). We find
that the prediction performance of M3FGM on offline clients surpasses that of
GRU (local) on all clients. The results show that the training method adopted
by M3FGM enables the offline-sub-decoder, which is used for local independent



12 Yuxing Tian, Jiachi Luo, Zheng Liu, Song Li, and Yanwen Qu

Table 2: Performance comparison under the non-ideal scenario

online|offline 75%|25% 65%|35%

P
E
M
S
-B

A
Y

GRU(local) 4.010 4.010

CNFGNN 3.972|∗ 4.232|∗
CNFGNN+MN(mr = 10%) 3.904|∗ 4.163|∗

M3FGM w/o MN 3.837|3.967 4.021|3.969
M3FGM (mr = 25%) 3.741|3.934 3.836|3.938

M
E
T
R
-L
A

GRU(local) 11.801 11.801

CNFGNN 11.637|∗ 11.809|∗
CNFGNN+MN(mr = 10%) 11.563|∗ 11.704|∗

M3FGM w/o MN 11.516|11.787 11.633|11.788
M3FGM(mr = 25%) 11.423|11.782 11.513|11.782

prediction, to outperform GRU(local). Moreover, M3FGM exhibits better ro-
bustness than CNFGNN as the offline rate increases. Comparing the prediction
error of M3FGM with CNFGNN on online nodes, the increase rate of RMSE is
2.5% vs. 6.5% on PEMS-BAY and 0.8% vs. 1.5% on METR-LA.

Ablation analysis:Upon analyzing the results in Table 2, we observe that 1)
CNFGNN+MN outperforms CNFGNN on online clients, and M3FGM surpasses
M3FGM w/o MN on both online and offline clients. These results demonstrate
that the MaskNode layer improves the model’s robustness. 2) Comparing the ex-
perimental results of M3FGM and CNFGNN+MN on online clients, we deduce
that employing the MGMP layer enhances the prediction performance on on-
line clients under the non-ideal scenario. This finding highlights the importance
of incorporating the MGMP layer in non-ideal scenarios to achieve improved
prediction accuracy and model robustness.

5.5 Effect of mask node rate and Discussion

In order to investigate the effect of mask rate on model prediction performance,
we selected five mask rates to train M3FGM: 10%, 20%, 25%, 30%, and 40%,
and conducted inference on two datasets under different offline rates:0%, 25%,
35%. Figure. 4 displays the performance of the model on online nodes. From
these results, it can be observed that: (1) On the two datasets, it is not the case
that the lower or higher the mask rate, the better. When the offline rate is fixed,
compared to other mask rates, selecting a mask rate closer to the offline rate leads
to better performance of the model. When the offline rate is 0%, which is the ideal
scenario, choosing a mask rate within the range of 10% to 25% would be better.
(2) When the mask rate is fixed, as the offline rate increases, the performance
of model decreases. (3) The prediction error of the model on the PEMS-BAY
dataset is significantly lower than that on the METR-LA dataset. However, the
model’s performance on the PEMS-BA dataset exhibits greater fluctuations with
mask rate variation compared to its performance on the METR-LA dataset.



Title Suppressed Due to Excessive Length 13

(a) METR-LA (b) PEMS-BAY

Fig. 3: Data distribution of training set data and test set data

To understand the underlying principles of these trends, we analyzed the data
used in the experiments. We selected six nodes from the first 100 nodes ranked by
their IDs in METR-LA and PEMS-BAY and illustratedthe statistical histogram
of traffic speed of training data and test data of different nodes of METR-
LA and PEMS-BAY in Figure. 3(a) and Figure. 3(b), respectively. The analysis
revealed the following key insights: (1)On the METR-LA dataset, the histograms
show that the data distribution varies with nodes, and most importantly, their
training and test data distributions exhibit considerable discrepancies. (2)On
the PEMS-BAY dataset, however, the differences between the training and test
data distributions are much smaller. Additionally, the data distributions among
different nodes are more similar to each other.

Based on this analysis, we can conclude that on the METR-LA dataset, exist-
ing a strong shift in data distribution. The occurrence of data distribution shift
can result in a significant decline in the predictive performance of a model. For
instance, when employing traffic forecasting model trained on the data collected



14 Yuxing Tian, Jiachi Luo, Zheng Liu, Song Li, and Yanwen Qu

(a) METR-LA (b) PEMS-BAY

Fig. 4: Comparison of performance under different mask rate and offline rate
with RMSE.

in sunny days for rainy or foggy environments, inevitable performance drop can
often be observed in such scenarios. Because the trained models tend to overfit
the training data and show vulnerability to the statistic changes at testing time,
substantially limiting the generalization ability of the learned representations.
Thus, selecting an appropriate mask rate can effectively prevent model over-
fitting and reduce prediction errors. In contrast, The data distribution among
various nodes in the PEMS-BAY dataset is relatively similar, and the differences
between the training data distribution and the testing data distribution within
each node are not substantial. This suggests that the correlation among nodes
in the PEMS-BAY dataset is stronger, resulting in a more significant impact of
the offline rate and mask rate on the model’s performance. These observations
above emphasize the importance of selecting an appropriate mask rate based on
the specific characteristics of the dataset to achieve optimal model performance.

6 CONCLUSION

In this paper, we propose a new GNN-oriented split federated learning method,
named node Masking and Multi-granularity Message passing-based Federated
Graph Model(M3FGM) specifically developed for spatial-temporal data pre-
diction in scenarios where data decentralization is imperative due to privacy
concerns. We improve robustness of model by introducing the MaskNode layer
and the proposed dual-sub-decoders structure enables independent offline pre-
diction. In addition, a new GNN layer named Multi-Granularity Message Passing
(MGMP) layer enables each client node to perceive global and local information
in a short message passing steps. We conducted evaluations under both ideal and
non-ideal scenarios, the comprehensive experimental results demonstrate the su-
periority of the proposed M3FGM model in comparison to existing methods in
terms of prediction accuracy and robustness under various conditions.



Title Suppressed Due to Excessive Length 15

7 Acknowledgments

This work was supported by the National Science Foundation of China 61562041.

References

1. Battaglia, P., Hamrick, J., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,
et.al, M.: Relational inductive biases, deep learning, and graph networks.
arXiv:1806.01261 (2018)

2. Caldarola, D., Mancini, M., Galasso, F., Ciccone, M., Rodolà, E., Caputo,
B.: Cluster-driven graph federated learning over multiple domains. CoRR
abs/2104.14628 (2021), https://arxiv.org/abs/2104.14628

3. Chang, X., Liu, X., Wen, J., Li, S., Fang, Y., Song, L., Qi, Y.: Continuous-time
dynamic graph learning via neural interaction processes. In: Proceedings of the
29th ACM International Conference on Information & Knowledge Management.
pp. 145–154 (2020)

4. Chen, F., Long, G., Wu, Z., Zhou, T., Jiang, J.: Personalized federated learning
with a graph. IJCAI (2022)

5. Cho, K., Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using rnn encoder-decoder for statistical machine
translation. EMNLP (2014)

6. Fang, Z., Long, Q., Song, G., Xie, K.: Spatial-temporal graph ode networks for
traffic flow forecasting. KDD (2021)

7. Gao, Y., Kim, M., Abuadbba, S., Kim, Y., Thapa, C., Kim, K., Çamtepe, S.A.,
Kim, H., Nepal, S.: End-to-end evaluation of federated learning and split learning
for internet of things. CoRR abs/2003.13376 (2020), https://arxiv.org/abs/
2003.13376

8. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal
graph convolutional networks for traffic flow forecasting. AAAI (2019)

9. Gupta, O., Raskar, R.: Distributed learning of deep neural network over multiple
agents. CoRR abs/1810.06060 (2018), http://arxiv.org/abs/1810.06060

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CVPR (2015)

11. Hou, Z., Liu, X., Cen, Y., Yuxiao, D., Yang, H., Wang, C., Tang, J.: Graphmae:
Self-supervised masked graph autoencoders. KDD (2022)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

13. Lan, S., Ma, Y., Huang, W., Wang, W., Yang, H., Li, P.: Dstagnn: Dynamic spatial-
temporal aware graph neural network for traffic flow forecasting. ICML (2022)

14. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Graph convolutional recurrent neural network:
Data-driven traffic forecasting. ICLR (2018)

15. Litany, O., Maron, H., Acuna, D., Kautz, J., Chechik, G., Fidler, S.: Feder-
ated learning with heterogeneous architectures using graph hypernetworks. CoRR
abs/2201.08459 (2022), https://arxiv.org/abs/2201.08459

16. Liu, Y., Yu, J.J., Kang, J., Niyato, D., Zhang, S.: Privacy-preserving traffic flow
prediction: A federated learning approach. IEEE Internet of Things Journal (2020)

17. Luo, L., Haffari, R., Pan, S.: Graph sequential neural ode pro-
cess for link prediction on dynamic and sparse graphs (11 2022).
https://doi.org/10.48550/arXiv.2211.08568

https://arxiv.org/abs/2104.14628
https://arxiv.org/abs/2003.13376
https://arxiv.org/abs/2003.13376
http://arxiv.org/abs/1810.06060
https://arxiv.org/abs/2201.08459
https://doi.org/10.48550/arXiv.2211.08568


16 Yuxing Tian, Jiachi Luo, Zheng Liu, Song Li, and Yanwen Qu

18. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y.:
Communication-efficient learning of deep networks from decentralized data. AIS-
TATS (2016)

19. Meng, C., Rambhatla, S., Liu, Y.: Cross-node federated graph neural network for
spatio-temporal data modeling. KDD (2021)

20. Peng, H., Du, B., Liu, M., Liu, M., Ji, S., Wang, S., Zhang, X., He, L.: Dynamic
graph convolutional network for long-term traffic flow prediction with reinforce-
ment learning. Information Sciences 578, 401–416 (2021)

21. Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: Towards deep graph convolu-
tional networks on node classification. ICLR (2020)

22. Shao, W., Jin, Z., Wang, S., Kang, Y., Xiao, X., Menouar, H., Zhang, Z., Zhang,
J., Salim, F.: Long-term spatio-temporal forecasting via dynamic multiple-graph
attention. arXiv preprint arXiv:2204.11008 (2022)

23. Shao, Z., Zhang, Z., Wei, W., Wang, F., Xu, Y.J., Cao, X., Jensen, C.: Decou-
pled dynamic spatial-temporal graph neural network for traffic forecasting. VLDB
(2022)

24. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.: Federated multi-task learning.
NIPS (2017)

25. Song, C., Lin, Y., Guo, S., Wan, H.: Spatial-temporal synchronous graph convolu-
tional networks: A new framework for spatial-temporal network data forecasting.
AAAI (2020)

26. Thapa, C., Chamikara, M.A.P., Camtepe, S.: Splitfed: When federated learning
meets split learning. CoRR abs/2004.12088 (2020), https://arxiv.org/abs/
2004.12088

27. Wang, Y., Wang, W., Liang, Y., Cai, Y., Liu, J., Hooi, B.: Nodeaug: Semi-
supervised node classification with data augmentation. pp. 207–217 (08 2020).
https://doi.org/10.1145/3394486.3403063

28. Wu, L., Lin, H., Gao, Z., Tan, C., Li, S.Z.: Graphmixup: Improving class-
imbalanced node classification on graphs by self-supervised context prediction.
CoRR abs/2106.11133 (2021), https://arxiv.org/abs/2106.11133

29. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-
temporal graph modeling. IJCAI (2019)

30. Xing, P., Lu, S., Wu, L., Yu, H.: Big-fed: Bilevel optimization enhanced graph-aided
federated learning. IEEE Transactions on Big Data (2022)

31. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. IJCAI (2018)

32. Zhang, C., Cui, L., Yu, S., Yu, J.J.: A communication-efficient federated learning
scheme for iot-based traffic forecasting. IEEE Internet of Things Journal PP, 1–1
(12 2021). https://doi.org/10.1109/JIOT.2021.3132363

33. Zhang, C., Zhang, S., Yu, J.J., Yu, S.: Fastgnn: A topological information protected
federated learning approach for traffic speed forecasting. IEEE Transactions on
Industrial Informatics (2021)

https://arxiv.org/abs/2004.12088
https://arxiv.org/abs/2004.12088
https://doi.org/10.1145/3394486.3403063
https://arxiv.org/abs/2106.11133
https://doi.org/10.1109/JIOT.2021.3132363

	M3FGM:A Node Masking and Multi-granularity Message passing-based Federated Graph Model for Spatial-Temporal Data Prediction

