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Abstract. Document-level relation extraction (DocRE) is a task that
focuses on identifying relations between entities within a document. How-
ever, existing DocRE models often overlook the correlation between
relations and lack a quantitative analysis of relation correlations. To
address this limitation and effectively capture relation correlations in
DocRE, we propose a relation graph method, which aims to explicitly ex-
ploit the interdependency among relations. Firstly, we construct a relation
graph that models relation correlations using statistical co-occurrence
information derived from prior relation knowledge. Secondly, we employ
a re-weighting scheme to create an effective relation correlation matrix to
guide the propagation of relation information. Furthermore, we leverage
graph attention networks to aggregate relation embeddings. Importantly,
our method can be seamlessly integrated as a plug-and-play module into
existing models. Experimental results demonstrate that our approach can
enhance the performance of multi-relation extraction, highlighting the
effectiveness of considering relation correlations in DocRE. 1

Keywords: Document-level relation extraction · Relation correlation ·
Relation graph construction

1 Introduction

Relation extraction (RE) plays a vital role in information extraction by identifying
semantic relations between target entities in a given text. Previous research has
primarily focused on sentence-level relation extraction, aiming to predict relations
within a single sentence [7]. However, in real-world scenarios, valuable relational
facts are often expressed through multiple mentions scattered across sentences,
such as in Wikipedia articles [17]. Consequently, the extraction of relations from
multiple sentences, known as document-level relation extraction, has attracted
significant research attention in recent years.

Compared to sentence-level RE, document-level RE presents unique challenges
in designing model structures. In sentence-level RE, a single relation type is
associated with each entity pair, as observed in SemEval 2010 Task 8 [10] and
TACRED [33]. However, in document-level RE, an entity pair can be associated
⋆ Zhouhan Lin is the corresponding author.
1 Codes are available at https://github.com/LUMIA-Group/LACE
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James William Murphy (April 17, 1858–
July 11, 1927) was a U.S. Representative 
from Wisconsin. (…2 sentences…) He was 
elected mayor of Platteville for a two-year 
term in 1904, and was then elected to the 
United States House of Representatives as 
a Democrat in 1906, defeating Joseph W. 
Babcock for the seat from Wisconsin's 3rd 
congressional district .

Subject: the United States House

Object:  U.S.
Relation: country;

applies to jurisdiction

(a) A document with entities.          (b) Multi-label entity pairs.       (c) Conditional probability between relations.

located in the administrative territorial entity

applies to jurisdiction country

0.75
0.85

0.02
0.13

0.85

0.10

𝑃 𝐿country 𝐿applies to jurisdiction = 0.85
𝑃 𝐿applies to jurisdiction 𝐿country = 0.10

of  Representatives

Subject: Wisconsin
Object:  U.S.
Relation: country;

located in the administrative 
territorial entity

Fig. 1. Examples of relation correlation for multi-relation extraction. (a) presents a
document containing multiple entities. (b) illustrates the multi-relation entity pairs. For
instance, the subject entity Wisconsin and the object entity U.S. express the country and
located in the administrative territorial entity relations. (c) demonstrates the conditional
probabilities between three relations, which are derived from the DocRED dataset.

with multiple relations, making it more challenging than sentence-level RE. Figure
1(b) illustrates multi-relation examples extracted from the DocRED dataset [27],
where each entity pair is associated with two distinct relations. Moreover, in
document-level RE, the number of relation types to be classified can be large
(e.g., 97 in the DocRED dataset), further increasing the difficulty of extracting
multiple relations.

To address this challenge, previous studies have commonly approached it as a
multi-label classification problem, where each relation is treated as a label. Binary
cross-entropy loss is typically employed to handle this multi-label scenario [16,31].
During inference, a global threshold is applied to determine the relations. More
recently, [14] utilize the asymmetric loss (ASL) [1] to mitigate the imbalance
between positive and negative classes. Additionally, [32] propose to employ a
balanced softmax method to mitigate the imbalanced relation distribution, where
many entity pairs have no relation. [38] introduce the adaptive thresholding
technique, which replaces the global threshold with a learnable threshold class.
However, previous studies have rarely quantitatively analyzed the co-occurred
relations and have not explicitly utilized this feature.

According to the statistics in DocRED dataset, we find that relations co-
occur with priors. As illustrated in Figure 1(c), for entity pairs with multiple
relations, the conditional probability of relation country appears given that
relation applies to jurisdiction appears is 0.85, while the conditional probability
of relation applies to jurisdiction appears given that relation country appears
is 0.10. Besides, with great chance, relation country and relation located in the
administrative territorial entity appear together. Considering the relations exhibit
combinatorial characteristics, it is desirable to employ the relation correlations
to ameliorate the model structure and boost the multi-relation extraction.

In this paper, we aim to tackle the challenge of multi-relation extraction in
document-level RE by leveraging the correlation characteristics among relations.
Specifically, we propose a relation graph method that leverages the prior knowl-
edge of interdependency between relations to effectively guide the extraction
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of multiple relations. To model the relation correlations, we estimate it by cal-
culating the frequency of relation co-occurrences in the training set [24,3]. To
avoid overfitting, we filter out noisy edges below a certain threshold and create
a conditional probability matrix by dividing each co-occurrence element by the
occurrence numbers of each relation. This matrix is then binarized to enhance
the model’s generalization capability, and the relation graph is constructed as
a binary directed graph. Additionally, we employ a re-weighting scheme to con-
struct an effective relation correlation matrix, which guides the propagation
of relation information [5]. We employ Graph Attention Networks (GAT) [21]
with the multi-head graph attention to aggregate relation embeddings. Based
on the adaptive thresholding technique [38], the loss function in our method is
also amended by emphasizing the multi-relation logits. Our method is easy for
adoption as it could work as a plug-in for existing models. We conduct extensive
experiments on the widely-used document-level RE dataset DocRED, which
contains around 7% multi-relation entity pairs. Experimental results demonstrate
the effectiveness of our method, achieving superior performance compared to
baseline models. In summary, our contributions are as follows:

– We conduct comprehensive quantitative studies on relation correlations in
document-level RE, providing insights for addressing the challenge of multi-
relation extraction.

– We propose a relation graph method that explicitly leverages relation corre-
lations, offering a plug-in solution for other effective models.

– We evaluate our method on a large-scale DocRE dataset, demonstrating its
superior performance compared to baselines.

2 Related Work

Relation extraction, a crucial task in natural language processing, aims to predict
the relations between two entities. It has widespread applications, including
dialogue generation [9] and question answering [11]. Previous researches largely
focus on sentence-level RE, where two entities are within a sentence. Many models
have been proposed to tackle the sentence-level RE task, encompassing various
blocks such as CNN [30,19], LSTM [37,2], attention mechanism [23,29], GNN
[8,39], and transformer [26,4].

Recent researches work on document-level relation extraction since many
real-world relations can only be extracted from multiple sentences [27]. From the
perspective of techniques, various related approaches could be divided into the
graph-based category and the transformer-based category. For the graph-based
models that are advantageous to relational reasoning, [16] propose LSR that
empowers the relational reasoning across multiple sentences through automat-
ically inducing the latent document-level graph. [31] propose GAIN with two
constructed graphs that captures complex interaction among mentions and enti-
ties. [35] propose GCGCN to model the complicated semantic interactions among
multiple entities. [12] propose to characterize the complex interaction between
multiple sentences and the possible relation instances via GEDA networks. [34]
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introduce DHG for document-level RE to promote the multi-hop reasoning. For
the transformer-based models that are capable of implicitly model long-distance
dependencies, [22] discover that using pre-trained language models can improve
the performance of this task. [20] propose HIN to make full use of the abundant
information from entity level, sentence level and document level. [28] present
CorefBERT to capture the coreferential relations in context. Recent works nor-
mally directly leverage the pre-trained language models such as BERT [6] or
RoBERTa [15] as word embeddings.

3 Methodology

In this section, we provide a detailed explanation of our LAbel Correlation
Enhanced (LACE) method, for document-level relation extraction. We begin
by formulating the task in §3.1 and then introduce the overall architecture in
§3.2. In §3.3, we discuss the encoder module for obtaining the feature vectors
of entity pairs. The relation correlation module, outlined in §3.4, is designed to
capture relation correlations. Finally, we present the classification module with
multi-relation adaptive thresholding loss for model optimization in §3.5.

3.1 Task Formulation

Given an input document that consists of N entities E = {ei}Ni=1, this task aims
to identity a subset of relations from R ∪ {NA} for each entity pair (es, eo),
where s, o = 1, ..., N ; s ̸= o. The first entity es is identified as the subject entity
and the second entity eo is identified as the object entity. R is a pre-defined
relation type set, and NA denotes no relation expressed for the entity pair.
Specifically, an entity ei can contain multiple mentions with different surface
names eki , k = 1, ...,m. During testing, the trained model is supposed to predict
labels of all the entity pairs (es, eo)s,o=1,...,N ;s̸=o within documents.

3.2 Overall Architecture

As illustrated in Figure 2, the overall architecture consists of three modules. The
encoder module first yields the contextual embeddings of all the entity mentions,
and then each entity embedding is obtained by integrating information from
the corresponding entity mentions, i.e. surface name merging. Afterward, entity
pair features are calculated to enhance the entity pair embedding. The relation
correlation module generates relation feature vectors. The correlation matrix is
built in a data-driven manner, which is based on the statistics of the provided
training set. We employ the edge re-weighting scheme to create a weighted
adjacency matrix, which is beneficial for deploying graph neural networks. GAT
is applied to the correlation matrix and relation features to generate more
informative relation feature vectors. In the classification module, a bi-linear layer
is utilized for prediction. Besides, based on the adaptive thresholding technique,
we resort to a refined loss function for better multi-label classification.
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Fig. 2. Architecture of our LACE method, consisting of three modules: the encoder
module, relation correlation module, and the classification module.

3.3 Encoder Module

For a document consisting of l words [xt]
l
t=1 and N entities (each entity containing

several mentions), we obtain the word embedding xw
i and entity type embedding

xt
i. Then we concatenate them and feed them to BiLSTM layers to generate the

contextualized input representations hi:

hi = BiLSTM([xw
i ;x

t
i]). (1)

Mention representations mi are obtained by conducting a max-pooling operation
on the words, and entity representations Ei are generated by the log-sum-exp
pooling over all the entity mention representations mi:

Ei = log

j∑
i=1

exp (mi) , (2)

where j is the number of entity mentions.
In this way, we can generate the embeddings of the head entity and tail entity,

denoted as Es ∈ RdB and Eo ∈ RdB , respectively. The entity pair features are
obtained by concatenating these embeddings.

Many studies fall in this module, which focus on generating more contextual
representations by leveraging Transformer [38] or document graphs [1]. These
studies can be seamlessly integrated into our LACE method, or conversely, LACE
can be incorporated as a plug-in for other models.
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3.4 Relation Correlation Module

We model the relation correlation interdependency in the form of conditional
probability, i.e., P (Lb | La) means the probability of occurrence of relation type
Lb when relation type La appears. Considering that for conditional probabilities
P (Lb | La) ̸= P (La | Lb), we construct a relation-related directed graph based
on the relation prior knowledge of the training set for modeling, which means
that the adjacency matrix is asymmetric.

Correlation Matrix Construction To construct the correlation matrix, we
first count the co-occurrence of relations in the training set and obtain the
co-occurrence matrix Cr×r, where r is the number of pre-defined relation types.
To obtain the conditional probabilities between relations, each element in the co-
occurrence matrix Cr×r is divided by the total number of relation co-occurrences,
i.e.,

Pij = Cij/
∑
j

Cij , (3)

where Pij = P (Lj | Li) denotes the probability of relation type Lj when relation
type Li appears.

However, the above method for correlation matrix construction may suffer two
drawbacks. Firstly, some relations rarely appear together with others. This will
lead to a large probability value for the co-occurred relation, which is unreasonable.
Secondly, there may be a deviation between the statistics of the training dataset
and the statistics of the test dataset. Using the exact numbers tend to overfit
the training dataset, which might hurt the generalization capacity. Therefore,
to alleviate these issues, we set a threshold τ to filter these rare co-occurred
relations. Then we binarize the conditional probability matrix P by

Bij =

{
0, if Pij < δ

1, if Pij ≥ δ
, (4)

where B is the binarized correlation matrix. δ is the conditional probability
threshold. Besides, We add the self-loop by setting Bii = 1, i = 1, ..., r.

Edge Re-weighting Scheme One concern for utilizing the binary correlation
matrix B for graph neural networks is the over-smoothing issue [36] that the node
attribute vectors tend to converge to similar values. There is no natural weight
difference between the relation features and its neighbor nodes’. To mitigate this
issue, we employ the following re-weighting scheme,

Rij =

{
p/
∑r

j=1
i̸=j

Bij , if i ̸= j

1− p, if i = j
, (5)

where R is the re-weighted relation correlation matrix and p is a hyper-parameter.
In this way, the fixed weights for the relation feature and its neighbors will be
applied during training, which is beneficial for alleviating this issue.
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Relation features are the embedding vectors obtained in the same way as word
embeddings. We then exploit GAT networks with a K-head attention mechanism
to aggregate relation features for two reasons. First, GAT is suitable for directed
graphs. Second, GAT maintains a stronger representation ability since the weights
of each node can be different. The transformed features by GAT are denoted as
R ∈ Rr×dB .

3.5 Classification Module

Given feature vectors Es,Eo ∈ RdB of the entity pair (es, eo) and the transformed
relation features R ∈ Rr×dB , we map them to hidden representations Is, Io ∈ Rr

followed by the layer normalization operation,

Is = LayerNorm (R ·Es) , (6)

Io = LayerNorm (R ·Eo) . (7)
Then, we obtain the prediction probability of the relation r′ via a bilinear layer,

Pr′ = σ
(
(Es ⊕ Is)

⊤Wr(Eo ⊕ Io) + br
)
, (8)

where σ is the sigmoid activation function. Wr ∈ R(dB+r)×(dB+r), br ∈ R are
model parameters, and ⊕ denotes the concatenation operation.

Previous study [38] has shown the effectiveness of the Adaptive Thresholding
loss (AT loss), where a threshold class is set such that logits of the positive classes
are greater than the threshold class while the logits of the negative classes are
less than the threshold class. However, their designed loss function does not quite
match the multi-label problem, since they implicitly use the softmax function
in the calculation of the positive-class loss function. Therefore, during each loss
calculation, the AT loss is unable to extract multiple relations. The superposition
of multiple calculations would result in a significant increase in time overhead.
To mitigate this issue, we propose a novel loss function called Multi-relation
Adaptive Thresholding loss (MAT loss), which is defined as follows,

L+ = − log(1− P(TH))−
∑

r′∈Lp

(yr
′
log P(r′) +

(
1− yr

′
)
log(1− P(r′))), (9)

L− = − log

(
exp (logitTH)∑

r′∈Lo∪{TH} exp (logitr′)

)
, (10)

where the threshold class TH is the NA class. Lp and Lo denote the relations
the exist and do not exist between the entity pair, respectively. logit means the
number without σ in Equation 8. The final loss function is L = αL++(1−α)L−,
where α is a hyper-parameter. In this way, our MAT loss enables the extraction
of multiple relations.

During inference, we assign labels to entity pairs whose prediction probabilities
meet the following criteria,

P (r′ | es, eo) ≥ (1 + θ) P(TH), (11)

where θ is a hyper-parameter that maximizes evaluation metrics.
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4 Experiments

4.1 Dataset

We evaluate our proposed approach on a large-scale human-annotated dataset
for document-level relation extraction DocRED [27], which is constructed from
Wikipedia articles. DocRED is larger than other existing counterpart datasets in
aspects of the number of documents, relation types, and relation facts. Specifically,
DocRED contains 3053 documents for the training set, 1000 documents for the
development set, and 1000 documents for the test set, with 96 relation types and
56354 relational facts. For entity pairs with relations, around 7% of them express
more than one relation type, and an entity pair can express up to 4 relations. 2

4.2 Implementation Details

We employ GloVe [18] and BERT-based-cased [6] word embeddings in the encoder
module, respectively. When employing GloVe word embeddings, we use Adam
optimizer with learning rate being e−3. When employing BERT-based-cased, we
use AdamW with a linear warmup for the first 6% steps. The learning rate for
BERT parameters is 5e−5 and e−4 for other layers. In the relation correlation
module, we set the threshold τ to be 10 for filtering noisy co-occurred relations,
and δ is set to be 0.05 in Equation 4. We set p to be 0.3 in Equation 5 and θ to
be 0.85 in Equation 11. We employ 2-layer GAT networks with k = 2 attention
heads computing 500 hidden features per head. We utilize the exponential linear
unit (ELU) as the activation function between GAT layers. α in the classification
module is 0.4. All hyper-parameters are tuned on the development set.

4.3 Baseline Systems

We compare our approach with the following models, including three categories.

GloVe-based Models. These models report results using GloVe word embeddings
and utilize various neural network architectures including CNN, BiLSTM, and
Context-Aware [27], to encode the entire document, and then obtain the embed-
dings of entity pairs for relation classification. The recent mention-based-reasoning
model MRN [1] also present the results with GloVe word embedding.

Transformer-based Models. These models directly exploit the pre-trained language
model BERT for document encoding without document graph construction,
including HIN-BERT [20], CorefBERT [28], and ATLOP-BERT [38]. We mainly
compare our method LACE with ATLOP model that aims to mitigate the
multi-relation problem.
2 We conduct no experiments on the CDR [13] and GDA [25] datasets in the biomedical

domain, because they do not suffer the multi-relation issue. Therefore, they do not
match our scenario.
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Graph-based Models. Homogeneous or heterogeneous graphs are constructed
based on the document features for reasoning. Then, various graph-based models
are leveraged to perform inference on entity pairs, including BiLSTM-AGGCN
[8], LSR-BERT [16], GAIN-BERT [31]. The MRN-BERT [1] aims to capture the
local and global interactions via multi-hop mention-level reasoning.

When compared to GloVe-based models and graph-based models, we inte-
grate the MRL layer from MRN into the encoder module. When compared to
Transformer-based models, we incorporate the localized context pooling technique
from ATLOP into the encoder module.

Table 1. Results on the development set and test set of DocRED.

Model Dev Test
Ign F1 F1 Ign F1 F1

With GloVe
CNN [27] 41.58 43.45 40.33 42.26
BiLSTM [27] 48.87 50.94 48.78 51.06
Context-Aware [27] 48.94 51.09 48.40 50.70
MRN [14] 56.62 58.59 56.19 58.46

LACE 57.01 58.92 56.61 58.64

With BERT+Transformer
HIN-BERT [20] 54.29 56.31 53.70 55.60
CorefBERT [28] 55.32 57.51 54.54 56.96
ATLOP-BERT [38] 59.22 61.09 59.31 61.30

LACE-BERT 59.58 61.43 59.40 61.50

With BERT+Graph
BiLSTM-AGGCN [8] 46.29 52.47 48.89 51.45
LSR-BERT [16] 52.43 59.00 56.97 59.05
GAIN-BERT [31] 59.14 61.22 59.00 61.24
MRN-BERT [14] 59.74 61.61 59.52 61.74

LACE-MRL-BERT 59.98 61.75 59.85 61.90

4.4 Quantitative Results

Table 1 shows the experimental results on the DocRED dataset. Following
previous studies [27,38], we adopt the Ign F1 and F1 as the evaluation metrics,
where Ign F1 is calculated by excluding the shared relation facts between the
training set and development/test set.

For the GloVe-based models, our method LACE achieves 56.61% Ign F1

and 58.64% F1-score on the test set, outperforming all other methods. For
the transformer-based models using BERT, our method LACE-BERT achieves
61.50% F1-score on the test set, which outperforms the ATLOP-BERT model.
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These experimental results also show that the pre-trained language model can
cooperate well with the LACE method. For the graph-based models, we chieve
61.90% F1-score on the test set. The result demonstrates that capturing the
mention-level contextual information is helpful and our proposed method could
work well with the mention-based reasoning method. Overall, results demonstrate
the effectiveness of leveraging the relation information.

4.5 Analysis of Relation Correlation Module

We investigate the effect of key components in the relation correlation module.

Matrix Construction Threshold. As shown in Table 2, we analyze the effect of
probability filtering threshold δ in Equation 4. We obtain the highest F1 score
when δ equals 0.05 for all experiments. Besides, results indicates that δ = 0.03
will lead to more performance degradation compared with δ = 0.07. We believe
that this is due to the smaller threshold value resulting in more noise edges.

Table 2. F1-score on the development set when tuning the probability filtering threshold
δ.

Model 3% 5% 7%

LACE 58.74 58.92 58.82
LACE-BERT 61.38 61.43 61.40
LACE-MRL-BERT 61.67 61.75 61.71

Table 3. F1-score on the development set with different GAT layers. L denotes layer.

Model 1-L 2-L 3-L

LACE 58.80 58.92 58.64
LACE-BERT 61.40 61.43 61.23
LACE-MRL-BERT 61.69 61.75 61.63

GAT layer. We report the results of different GAT layers with two heads in
Table 3. Results demonstrates that 1-layer and 2-layer GAT networks achieves
relatively similar results, while 3-layer GAT networks leads to greater performance
degradation. The probable reason for the performance degradation might be the
over-smoothing issue, that is, the node feature vectors are inclined to converge
to comparable values.
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Table 4. F1-score for multi-relation extraction on the development set. Rel denotes
relations.

Model 2-Rel 3-Rel Overall

ATLOP-BERT 40.13 29.59 39.62
LACE-BERT 42.03 32.58 41.55

4.6 Performance on Multi-Label Extraction

In order to evaluate the performance of multi-label extraction, we re-implement
ATLOP-BERT model and report the experimental results of multi-relation
extraction as shown in Table 4. As seen, our approach LACE-BERT gains 1.9%
and 2.99% F1-score improvement on the 2-relation and 3-relation extraction,
respectively, which demonstrates the effectiveness of leveraging the relation
correlations. Overall, our approach achieves 1.93% F1-score improvements on
multi-label extraction compared with ATLOP-BERT.

Table 5. F1-score on the development set for ablation study. RCM denotes the relation
correlation module.

Model 2-Relation 3-Relation Overall

LACE-BERT 42.03 32.58 41.55

- RCM 40.74 30.62 40.25
- LMAT 41.43 31.78 40.94

4.7 Ablation Study

We conduct ablation studies to verify the necessity of two critical modules in
LACE-BERT for multi-relation extraction as depicted in Table 5. Results show
that two modules contribute to the final improvements. Firstly, removing the
relation correlation module causes more performance degradation, and we thus
believe that leveraging the prior knowledge of relation interdependency is helpful
for the multi-relation extraction. Secondly, we replace our multi-relation adaptive
thresholding loss LMAT with the adaptive thresholding loss [38] for comparison.
We believe that the reason for the improvement is that the MAT loss enlarges
the margin values between all the positive classes and the threshold class.

4.8 Case Study

Figure 3 shows a case study of our proposed approach LACE-BERT, in comparison
with ATLOP-BERT baseline. We can observe that ATLOP-BERT can only
identify the P17 and P131 relations for the entity pair (Ontario, Canada),
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[S1] Alfred and Plantagenet is a township in eastern Ontario, Canada, in the United Counties of Prescott and Russell. 
[S2] Located approximately from downtown Ottawa at the confluence of the Ottawa River and the South Nation River.
ATLOP:
Subject: Ontario Object:  Canada
Relation: P17: country

P131: located in the admini-
strative territorial entity

LACE:
Subject: Ontario Object:  Canada
Relation: P17: country

P131: located in the admini-
strative territorial entity

P205: basin country

P131

P205 P17

0.750.001

0.93

0.02

P131

P205 P17

0.850.07

Fig. 3. Case study of a triple-relation entity pair from the development set of DocRED.
We visualize the conditional probabilities among these relations and exhibit the con-
structed directed sub-graph.

where the two relations frequently appear together. However, ATLOP-BERT
fails to identity the P205 relation, while LACE-BERT deduces this relation. By
introducing the label correlation matrix, this relation P205 establishes connections
with other relations with high conditional probabilities, which is advantageous
for multi-relation extraction.

5 Conclusion

In this work, we propose our method LACE for document-level relation extraction.
LACE includes a relation graph construction approach which explicitly leverages
the statistical co-occurrence information of relations. Our method effectively
captures the interdependency among relations, resulting in improved performance
on multi-relation extraction. Experimental results demonstrate the superior
performance of our proposed approach on a large-scale document-level relation
extraction dataset.
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