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Abstract. Most of the existing work on verified compilation leaves
unverified the translation of assembly programs into binary code in object
file formats (e.g., the Executable and Linkable Format or ELF). The
challenges of developing verified assemblers come from the intrinsic com-
plexities in low-level assembling processes caused by the need to support
different computer architectures and their details, such as encoding a
large number of instructions and verifying its correctness. We present
a framework that overcomes the above challenges. It works as a tem-
plate which may be instantiated to generate verified assemblers for dif-
ferent architectures targeting ELF object files. For this, it is parameter-
ized over the implementation and verification of architecture-dependent
assembling processes through well-defined interfaces. By plugging the
architecture-dependent parts into the template, we get complete veri-
fied assemblers. To manage the complexity in developing and verifying
encoding of instructions, we integrate into our framework the CSLED
framework for automatically generating verified instruction encoders and
decoders from declarative instruction specifications. To show the effec-
tiveness of our framework, we have applied it to generate verified assem-
blers for the complete X86 and RISC-V assembly languages in CompCert.

1 Introduction

Although the formal development of compilers and their correctness proofs have
been extensively studied (e.g. the state-of-the-art verified C compiler Comp-
Cert [7,8]), few of the existing work has completed the last mile, i.e., to verify
the translation of assembly code into machine code. An obvious obstacle of
developing verified assemblers is the potentially large amount of work to sup-
port different commercial architectures. Even for a single architecture, the details
need to be taken care of during assembly are overwhelming. A typical example
is the encoding of assembly instructions into machine instructions which may be
hundreds or even thousands in number in any instruction set architecture (ISA).

To manage the high complexity in building assemblers that target differ-
ent object files formats (e.g., PE/COFF, Mach-O and ELF) and architectures
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(e.g., X86, RISC-V and ARM), the standard practice in industry is to sepa-
rate the implementation of platform-independent parts of assemblers from the
platform-dependent parts. The GNU assembler [18] follows this approach by
employing Binary File Descriptor (BFD) to implement this separation. The same
idea should also be applicable to verified assemblers. However, the existing work
on assembler verification does not provide this flexibility as they are designed to
work for ad-hoc machine code formats or for fixed architectures (see Sect. 6).

In this paper, we present our initial attempt to develop a framework for build-
ing verified assemblers that target the ELF format by following the above idea. In
our framework, the architecture-independent parts of assemblers are developed
separately from the architecture-dependent parts. The former is captured by a
template of implementation and proofs which formalizes the assembly processes
that transform the architecture-independent parts of assembly programs into
constituents of ELF objects (e.g., generation of symbol tables). Furthermore,
this template is parameterized over the architecture-dependent transformations
(e.g., instruction encoding) through well-defined interfaces. To generate a veri-
fied assembler for a specific architecture, users instantiate the template with the
implementation and proofs of the architecture-dependent components for this
architecture through these interfaces. An immediate benefit of this approach is
the ability to generate assemblers targeting different platforms by only switching
the architecture-dependent instances, which significantly reduces the complexity
in developing verified assemblers.

An essential architecture-dependent assembly pass is the encoding of assem-
bly instructions into binary machine code. It is difficult to implement and even
more difficult to prove correct because there are at least hundreds or sometimes
even thousands of instructions in a common ISA. To tackle this difficulty, we
adopt the CSLED framework [22]. In CSLED, one can write down an instruc-
tion format as a declarative specification, from which a pair of verified instruc-
tion encoder and decoder is automatically generated. However, the generated
encoders and decoders work with a form of abstract assembly instructions dif-
ferent from our source assembly language. We address this problem by devel-
oping verified translators to connect the verified encoders with our assembly
instructions.

Our framework is implemented in the Coq proof assistant [17] and utilizes
CompCert’s infrastructure [7]. To demonstrate its effectiveness, we apply it to
generate verified assemblers for the complete X86 and RISC-V assembly lan-
guages used in CompCert. There are different challenges to apply our frame-
work to X86 and RISC-V. For X86, we need to deal with the complex instruc-
tion format. For RISC-V, we improve the CSLED framework to overcome the
limitation in CSLED for supporting RISC instructions. To examine their use-
fulness, we have connected them with the back-end of the newest version of
Stack-Aware CompCert [19,21] to form a full compilation chain from C to ELF
objects. We choose to connect with Stack-Aware CompCert instead of the regular
CompCert because its target assembly languages are closer to realistic assembly
languages (e.g., no pseudo instructions for stack manipulation). Note that this
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connection is not fully verified yet due to limitations in (Stack-Aware) CompCert
(see Sect. 5.1).

We summarize our contributions as follows:

– Our key contribution is an approach to developing customizable veri-
fied assemblers targeting different ISAs by separating the architecture-
independent and -dependent components of verified assemblers, such that
the former are abstracted over the latter through well-defined interfaces. To
generate concrete verified assemblers, users only need to provide instances of
architecture-dependent components which meet the abstract interfaces. The
design of such interfaces is a key challenge of this work. To reduce the effort
for instantiating instruction encoders, we integrate the automation frame-
work CSLED into our framework. Users only need to write down declarative
specifications, from which verified encoders are automatically generated, and
add glue code to integrate these encoders into verified assemblers.

– We demonstrate the effectiveness and flexibility of our approach by applying
our framework to develop verified assemblers for the complete X86 and RISC-
V assembly languages in CompCert. We have successfully replaced the unveri-
fied GNU assembler used by CompCert with our verified assemblers, therefore
significantly reduce its TCB. These applications show that the complexity of
implementing verified assemblers for different ISAs is confined in architecture-
dependent components, and it takes a reasonable amount of effort to support
representative CISC and RISC architectures.

The entire framework and their applications can be found at https://doi.org/
10.5281/zenodo.8363543. In the rest of the paper, we first introduce necessary
background in Sect. 2. We then present the design of our framework in Sect.
3. In Sect. 4, we discuss the application of our framework to X86 and RISC-V.
We connect the instantiated assemblers to Stack-Aware CompCert and discuss
evaluation in Sect. 5. Finally, we discuss the related work and conclude in Sect. 6.

2 Background

2.1 A Running Example

To provide a better understanding of the background knowledge, we introduce
a running example which is a simple C program that gets compiled to X86-64
assembly code and finally translated into an ELF object file, as shown in Fig. 1.
In the C program, main initializes the global variable counter and calls incr to
increase it by one. The corresponding assembly code is in the AT&T X86 syntax,
in which incr loads counter into the register eax, adds one to eax by using leal
instruction, and then stores the modified value back to the counter. counter is
labeled as a common symbol which is not initialized and not allocated in the
object file. Note that we have omitted instructions not relevant to our discussion
(e.g., for stack allocation). In the later sections, the running example will be
used to explain the important concepts and components of our framework, such
as generation of symbols and sections, generation of relocation information for
linking, and encoding of instructions.

https://doi.org/10.5281/zenodo.8363543
https://doi.org/10.5281/zenodo.8363543
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Fig. 1. A Running Example

2.2 Compiler Verification Based on Simulation

Correctness of compilation is often described as preservation of program seman-
tics. A common approach to semantics preservation is to model semantics in a
small-step style as labeled transition systems (LTS) and to establish simulation
relations between the source and target semantics. Our framework makes use of
this approach, in particular, its realization in CompCert [7] which consists of a
sequence of passes that successively translate a large subset of C into assembly
languages. We discuss the essential concepts supporting this approach below.

CompCert provides a uniform abstraction of programs for all of its languages.
In any language L of CompCert, a program P of type PC consists of a mapping
from identifiers to global definitions which are parameterized by the types of
functions and information of variables (denoted by F and V , respectively):

G := λ(F V : Type).〈fun : F, var : Gv V 〉
PC := λ(F V : Type).{defs : List (id ∗ (G F V ))}.

Here, we use {·} to represent records and 〈·〉 to represent variants. id is the type
of identifiers. G is the type of global definitions, which may be either functions of
type F or variables of type Gv V where Gv provides information about variables
such as their initial values. For instance, the formalized C program in the running
example contains three global definitions: two functions and one variable.

Assembly programs are based on this uniform representation, albeit param-
eterized by the type of instructions to support different architectures:

Fn := λ(I : Type).{signature : Sig , code : List I}
Fd := λ(I : Type).〈internal : Fn I, external : Ef 〉
PA := λ(I : Type).PC (Fd I) Unit .

Here, I is the type parameter of instructions. A function of type Fd is either
internal or external, where an internal function (of type Fn) has a signature
and consists of a list of assembly instructions. The type Unit denotes that there
is no type information for global variables in assembly programs. For instance,
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the formalized assembly program in the running example again contains two
functions and one variable where the functions are parameterized by an inductive
definition of X86 instructions.

Memory models are essential components of program semantics. CompCert
adopts a uniform memory model for all of its languages [9,10]. A memory state
m consists of a finite set of memory blocks with distinct identifiers and with
linear memory addresses such that (b, δ) denotes a pointer to block b at address
δ. Such abstraction enables straightforward pointer arithmetic and memory iso-
lation which are essential for low-level programming. With the uniform memory
model, the semantics of a program P of type (PC F V ) is defined as an LTS
derived from the following relations over program states which are pairs of mem-
ory states of type M and language-specific states of type St (e.g., register states
in assembly programs). Moreover, Tc is the type of event traces, and Prop is the
type of propositions.

init : λ(F V : Type).(PC F V ) → (M × St) → Prop
step : (M × St) → Tc → (M × St) → Prop.

Here, init establishes the initial program state as a result of loading P ; step
describes the effect of one-step execution which emits a list of events. The mem-
ory initialized by init contains a unique block for each global definition in P . In
the remaining discussions, we denote the semantics of P in language L as [[P ]]L,
or simply [[P ]] if L can be inferred from the context.

For a given compiler pass C described as a partial function, if C(P ) = �P ′�
(where �·� is the some constructor of the option type), CompCert establishes a
forward simulation between [[P ]] and [[P ′]] denoted by [[P ]] � [[P ′]]. A particular
instance we will use in this paper is the lock-step forward simulation, for which an
invariant (or simulation relation) ∼ between source and target program states
is defined and satisfies the following conditions: 1) (m, s) ∼ (m′, s′) holds for
the initial states (m, s) and (m′, s′), and 2) ∼ is preserved during the execution.
We write [[P ]] �∼ [[P ′]] when ∼ is explicitly given. Note that ∼ must capture
the relation between source and target memory states which is represented by
memory injections [9,10]. A memory injection j is a partial function which maps
source memory blocks into target blocks. The values (e.g., pointers) stored in the
source and target memory must be related according to the injection. A special
case is when ∼ is equality, meaning that the injection is an identity function.
We shall write [[P ]] �= [[P ′]] to denote simulations with the equality invariant.

With the above definitions, the correctness of C is formulated as follows:

∀P P ′,C(P ) = �P ′� =⇒ [[P ]] � [[P ′]].

By vertically composing simulations established for every compiler pass, the
semantics preservation of CompCert is proved.

2.3 Relocatable ELF Object Files

The verified assemblers we intend to develop target relocatable ELF object files,
which represent open binary modules that may be linked into executable ELF
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programs. As shown in Fig. 1c, a relocatable ELF object consists of an ELF
header which contains meta-information, a list of sections containing program
data (including symbol and relocation tables), and section header tables that
store the attributes of these sections (e.g., locations of sections in the object).

Sections are the key constituents of ELF objects. In this work, we are only
concerned with four kinds of sections: code sections, data sections, symbol tables,
and relocation tables. Code and data sections store the binary form of instruc-
tions and data. In our running example, the assembly program is complied to
an object with two code sections for incr and main, respectively. It has no data
section for counter as it is not needed for global variables with no initial value.
Symbol tables are used to record references to global definitions. A symbol table
consists of a list of symbol entries. Each entry contains the information extracted
from a global definition in the program, including the type of the definition (e.g.,
function or data), the type of its binding (e.g., local or global), the section index
which points to the section where the definition resides in (special indices are
used for common or external symbols), its value (e.g., the offset into its section)
and size. In Fig. 1c, there is a single symbol table containing three symbol entries
for the global definitions, where counter is labeled as a common symbol.

A code or data section may refer to symbols whose addresses cannot be
resolved at compile time (e.g., any reference to global definitions in a section
whose memory location may be adjusted by the linker). In this case, there is a
relocation table associated with this section which consists of relocation entries.
Each relocation entry points to a location in the section that stores an unresolved
symbol. During the linking, the linker would determine the concrete addresses
of these symbols and overwrite this location with them. More specifically, a
relocation entry contains the offset of the unresolved symbol in its section, the
relocation type (e.g., relative or absolute addressing), the identifier of the unre-
solved symbol, and a constant addend for adjusting the symbol address. In our
example, the addresses (or relative addresses) of incr and counter are unknown
before linking. Therefore, there are two relocation tables for the sections for incr
and main, respectively. The table for incr contains two relocation entries pointing
to counter in movl counter,%eax and movl %eax,counter, and main contains one
entry for call incr. The linker will determine the addresses of incr and counter
and overwrite the locations pointed by the relocation entries.

2.4 Machine Instruction Formats

A main job of assemblers is to encode assembly instructions into their binary
form. For this, we need to understand the binary format of instructions. In this
paper, we are concerned with two representative CISC and RISC instruction
formats, i.e., X86 and RISC-V instruction formats.

X86. Figure 2 shows the format of X86 instructions. An instruction consists
of a sequence of binary tokens. The REX prefixes, when present, indicate the
instructions are in 64-bit mode or in 32-bit mode and referring to extended
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Fig. 2. The Format of X86 Instructions

registers (r8 to r15). An opcode is 1 to 3 bytes in length and determines the
types of instructions. The ModRM byte indicates which addressing modes are
used for the operands of this instruction. These addressing modes, which follow
the ModRM byte, include SIB (Scale, Index, and Base) byte and a displacement
of the address of the referred symbol. For an instruction operating on immediate
values, a token of immediate data (Imms) must occur at the end of it.

We use the instruction movl counter,%eax in the running example and its
variants movq counter,%rax and movl counter,%r8 to demonstrate instruction
encoding. For movl counter,%eax, its encoding in hexadecimal is {Opcode:8B,
ModRM:05, Disp:00 00 00 00}. Here, 8B is the opcode for move instructions that
move memory contents to a register. 05 contains the encoding of eax and part
of the addressing mode. Disp is the location that stores the address of counter
which is currently zero and to be resolved by linking. The encoding of movq
counter,%rax has an REX prefix 48 which indicates it is a 64-bit instruction.
movl counter,%r8 is 32-bit albeit refers to an extended register r8. It has an
REX prefix 44 which contains one bit in the encoded r8 because r8 requires four
bits to encode but there is only space for three bits in ModRM.

RISC-V. RISC-V instructions have a uniform size of 32-bit. Therefore, each
instruction consists of a single token. RISC-V uses different formats for differ-
ent types of instructions. Their encoding is straightforward because, given any
instruction of a specific type, the positions of its operands are fixed by its format.

2.5 The CSLED Framework

To alleviate the difficulty of the instruction encoding, we employ the CSLED
framework. CSLED [22] is a meta-programming framework for automatic gener-
ation of verified instruction encoders and decoders from declarative specifications
of instruction formats. Given an instruction set, the user first writes down its
specifications S in the CSLED instruction specification language, which capture
the encoding format of the instruction set (e.g., the X86 format described in Sect.
2.4). Given S, the framework generates an abstract syntax of instructions A, an
encoder E : A → �List Byte� and a decoder D : List Byte → �A × List Byte�
for these instructions. It also generates the proofs of the following properties
asserting that the encoder and decoder are mutual inverses of each other. All
the generated definitions and proofs are formalized in Coq.

Theorem 1 (Consistency of Encoders and Decoders).

∀ k l l′,E(k) = �l� =⇒ D(l++l′) = �(k, l′)�.
∀ k l l′,D(l++l′) = �(k, l′)� =⇒ E(k) = �l�.
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Fig. 3. An Example of CSLED Specifications

As an example, we show a snippet of the specifications of X86 instructions
in Fig. 3. An instruction is built from tokens. Each token has one or more bytes
(multiple of 8 bits). A field occupies a segment of a token, representing an
operand or a constant. The tokens and fields reflect the instruction formats as
described in Sect. 2.4. A class can be viewed as a variant whose binary form
occupies a list of tokens. It is used to describe either a collection of instructions
or its operands such as the addressing modes. Each branch of the Instruction
class relates constant or values of operands to their corresponding fields in tokens
or other classes through a pattern (written inside the parentheses). Here, the
names of operands are listed in the brackets. The references to the n-th operand
in the patterns are represented by fld %n or cls %n, depending on whether the
operand is a field or a class. For example, the specification of movl counter,%eax
in CSLED makes use of the branch with the constructor mov_mr. Its pattern
corresponds to its encoding discussed in Sect. 2.4, such that the operand reg_op
and the addressing mode are mapped into their corresponding binary tokens
according to the pattern after the opcode 0x8B.

3 The Framework

3.1 An Overview

Our framework is shown in Fig. 4. It can be viewed as a template of verified
assemblers parameterized over architecture-dependent components, as depicted
in the left box. This parameterization is achieved by exposing interfaces for
encapsulation of architecture-dependent assembly processes. The main inter-
faces are highlighted with colored boxes in the assembly passes (C1 and C2)
and disassembly functions (D1 and D2). Here, boxes with the same color repre-
sent interfaces for the same pass. The implementation of architecture-dependent
components is shown in the right dashed box. By plugging them into the tem-
plate through its interfaces, we get complete verified assemblers. The concrete
definitions of these interfaces will be discussed in Sect. 3.3.

The main constituent of the template is a verified assembly chain with four
passes, i.e., Ci(0 ≤ i ≤ 3). The source program is called Realistic Assembly
or RealAsm in which every formalized assembly instruction corresponds to an
actual machine instruction. The assembly chain transforms RealAsm programs
into relocatable ELF objects through an intermediate representation called relo-
catable programs which is an abstract representation of ELF objects. We write
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Fig. 4. The Framework

Pi(0 ≤ i ≤ 4) to represent these programs where P0 is a RealAsm program, P4

is an ELF object and the remaining ones are relocatable programs. Verification
of the assembler is accomplished by proving lock-step forward simulation for
every pass. To define the semantics for intermediate programs at different stages
of assembly by reusing a single semantics of relocatable programs (denoted by
[[·]]R), we define functions D1, D2, and D3 for reverting the assembly processes.
The rationale for using such “disassembly” functions is given in Sect. 3.2. Another
constituent of the template is the enhanced version of CSLED that supports
both CISC and RISC instructions. It is used to automatically generate instruc-
tion encoders and decoders along with their consistency proofs from instruction
specifications. In particular, the decoder is plugged into D2 to implement the
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inversion of instruction encoding. In the rest of this section, we elaborate on the
representations and semantics of programs and the implementation of assembly
passes along with their verification.

3.2 Source, Intermediate and Target Programs

Memory Model. CompCert’s assembly language treats the stack as an
unbounded linked list of stack frames, therefore requires pseudo instruction
for stack manipulation (e.g., Pallocframe and Pfreeframe). To define semantics
for realistic assembly programs without pseudo instructions, we adopt Stack-
Aware CompCert’s memory model for all the languages of our assembler. It
enhances CompCert’s memory model with a single and continuous stack [19],
thereby enabling stack manipulation using the stack pointer instead of pseudo
instructions.

Realistic Assembly Programs. A realistic assembly (or RealAsm) program is
an instance of the assembly program of the type PA introduced in Sect. 2.2, where
the instructions (of type I) only contain real machine instructions. Its semantic is
defined as an LTS consisting of init and step relations as introduced in Sect. 2.2.
The initial memory as a result of calling init consists of a finite and continuous
stack block, a unique block with initialized data for each internal function or
variable, and a unique empty block for each external function or variable. The
step relation of RealAsm programs is similar to CompCert’s assembly except
that no transition for pseudo instructions is defined and that it makes use of
Stack-Aware CompCert’s memory model.

Relocatable Programs. The relocatable program is a uniform intermedi-
ate representation for the assembly passes. It is a record parameterized by the
instructions and data types (I and D, respectively):

S := λ(I D : Type).〈code : List I , rwdata : List D , rodata : List D〉
PR := λ(I D : Type).{sectbl : id → �S I D�, symbtbl : id → �B�,

reloctbls : id → �List R�}.

Here, PR encodes the four different kinds of ELF sections introduced in Sect.
2.3. It contains a table of sections (for code and data sections), a symbol table,
and a mapping of relocation tables. They respectively map an identifier into a
section (of type S I D), a symbol entry (of type B), and a relocation table
(of type List R where R is the type of relocation entries). An element in the
section table is either a code section containing a list of elements of type I,
or a read-write or read-only data section containing elements of type D. The
formal definitions of symbol entries and relocation entries mirror their informal
definitions in Sect. 2.3.

The semantics for relocatable programs denoted as [[·]]R serves as the uni-
form foundation for describing other languages’ semantics (except for RealAsm)
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in our framework. In this semantics, the order of memory blocks allocated during
memory initialization is different from that for assembly or higher-level programs
where memory blocks for global definitions are allocated in the same order as the
definitions occurring in the program. In the definition of init in [[·]]R, the memory
blocks for sections corresponding to internal definitions with non-empty initial-
ization data or code are first allocated, then followed by the allocation of variable
definitions with no initial values (corresponding to common symbols) and exter-
nal definitions. The step relation is similar to RealAsm as it reuses the semantics
of RealAsm’s instructions. Note that [[·]]R cannot be directly applied to P2 and
P3 which, although also relocatable programs, are the results of further compi-
lation by C1 and C2. To define their semantics by reusing [[·]]R, we first apply
D1 and D2 to disassemble them and then apply [[·]]R. Therefore, their semantics
are [[D1(P2)]]R and [[D1 ◦ D2(P3)]]R, respectively. The definitions of compilation
and disassembly and their interfaces will be discussed in detail in Sect. 3.3.

Relocatable ELF Objects. Relocatable ELF objects (denoted by E) formalize
the ELF format introduced in Sect. 2.3. They are encoded as triples of the form
(Eh, Es, Esh), where Eh formalizes the ELF header, Es is a list of ELF sections
in binary forms and Esh is a list of section headers. To define the semantics of
a relocatable ELF program P4 (denoted as [[P4]]E), we first use a function D3

which models ELF loading to get a relocatable program in binary form and then
apply D2 and D1. That is, [[P4]]E is formulated as [[D1 ◦ D2 ◦ D3(P4)]]R.

Rationale Behind Disassembly. As we have discussed above, we use dis-
assembly functions to describe program semantics so that we only need a uni-
form semantics for relocatable programs which in turn reuses the semantics of
assembly instructions. This greatly simplifies the verification of assemblers. This
reliance on disassembly is not a fundamental limitation for two reasons. First,
some form of disassembly is unavoidable for describing semantics for binary pro-
grams. For example, to describe the semantics of ELF, it is necessary to model
ELF loading and instruction decoding, which are encoded in D3 and D2 in our
framework, respectively. Second, the structure of our framework does not change
even if we use a more realistic ISA or ELF semantics without disassembly (e.g.,
Sail [2]). The only difference is that the forward simulation �= need to be gen-
eralized to �∼. Except for that, the structure of proofs should remain the same.
Therefore, our framework is still applicable with more realistic binary semantics.
The discussion about verification below should make these points clear.

3.3 Assembly Passes

The four assembly passes (C0 to C3) build relocatable ELF objects step-by-step.
C0 and C1 build the relocatable programs, among which C0 constructs a collec-
tion of sections and a symbol table from a RealAsm program and C1 iterates
the sections to generate relocation entries and eliminate unresolved symbols. C2

performs instruction and data encoding that converts the contents in sections
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into bytes. C3 generates relocatable ELF objects on a particular architecture
(e.g., X86 or RISC-V). Their correctness are established as lock-step forward
simulations as depicted in Fig. 4. The semantics of P0 to P4 have already been
described in the last section. We use ∼ to denote the invariant for verifying
C0 which relates the states of PA and PR. For the remaining three passes, as
the program semantics are defined by reverting the compilation, we use the
equivalent relation = as invariants. This in turn reduces lock-step simulation to
proving correct that disassembly functions are exactly the inversion of compila-
tion. Finally, by composing the correctness proofs of the four passes, we get the
following semantics preservation theorem for our assembler:

Theorem 2 (Semantics Preservation of the Assembler).

∀P P ′, C3 ◦ C2 ◦ C1 ◦ C0(P ) = �P ′� =⇒ [[P ]]A � [[P ′]]E .

In the remaining section, we discuss how to implement and verify these passes.

Generation of Relocatable Programs. This pass (C0) transforms a RealAsm
program into a relocatable program containing sections and a symbol table in
two steps. First, for every internal global definition in the source program, a cor-
responding section is built by invoking a function called gen_section to extract
code or data from the definition. Second, a symbol table is created by repeat-
edly invoking gen_symbol_entry on all global definitions to get the symbol
entries and inserting them into the initially empty symbol table. The types of
C0, gen_section and gen_symbol_entry are given as follows:

gen_section : ∀I , (G (Fd I ) Unit) → �S I Data�
gen_symbol_entry : ∀I , (G (Fd I ) Unit) → B

C0 : ∀I , (PA I ) → �PR I Data�.
Here, Data is the type of initial values of global variables defined in Comp-
Cert. For our running example, C0 generates two sections for incr and main
and a symbol table with three symbol entries for the three global definitions.
Therefore, the generated relocatable program mirrors the structure of the ELF
object as depicted in Fig. 1c (except for the relocation tables). Note that the
implementation of C0 is ignorant of I, therefore independent of architectures.

Given C0(P0) = �P1�, we need to prove [[P0]]A �∼ [[P1]]R. Following the
ideas described in Sect. 2.2, we define an invariant ∼ and prove that it holds for
the initial states and is preserved by lock-step execution. The only non-trivial
component of ∼ is a memory injection between source memory blocks for global
definitions and corresponding target blocks for sections and symbols. The main
difficulty of the proof is to show this injection indeed holds after initialization.
Once the invariant is established, lock-step simulation naturally follows from
it. Establishing this initial injection has been easy for all of CompCert’s passes:
since the global definitions for source and target are initialized in the same order,
the injection is proved to hold by starting from an empty injection and incre-
mentally showing that it is preserved after adding memory blocks for each pair
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of corresponding source and target global definitions. However, this incremental
approach no longer works for C0 because the order of initialization is changed.
Consider our running example. In the source RealAsm program, the order of
initialization is counter, incr and main. However, as described in Sect. 3.2, in
relocatable programs memory blocks are first allocated for sections and then for
the remaining symbols. As a result, the initialization order for the relocatable
program of our example is incr, main and counter. Therefore, incremental pairing
of definitions and growth of injection during initialization is no longer possible.
To solve this problem, we directly prove that an injection between all source defi-
nitions and target blocks holds right after the initialization is completed. Because
of its monolithic nature, this proof is considerably more complicated than the
incremental proofs. Nevertheless, the initial injection can be directly established
by observing that the source block initialized from a definition g is related to
the target block initialized from gen_section(g) or gen_symbol_entry(g).

Generation of Relocation Tables. C1 generates relocation entries for
instructions or data that refer to symbols whose addresses are not determined
until linking. For each code or data section, it generates one relocation table. To
facilitate encoding of instructions and data into binary forms, it also eliminates
the symbols in them. Its type is:

C1 : ∀I, (Z → I → (�R� × I)) → (PR I Data) → �PR I Data�.
The first argument of C1 is a parameter named gen_reloc. As its color shows, it is
part of the interfaces for encapsulating the architecture-dependent components.
Given an instruction i and its offset o in i, gen_reloc o i produces a relocation
entry for i if i contains a symbol and returns an updated instruction with the
symbol replaced by the constant 0. For example, given movl counter,%eax and its
offset inside the incr section, an instance of gen_reloc for the X86 architecture
constructs a relocation entry for counter as described in Sect. 2.3. It also produces
an updated instruction movl 0,%eax where counter is replaced by 0. This makes
the instruction independent of any symbol and hence can be encoded into bits.

Given C1(P1) = �P2�, we need to prove [[P1]]R �= [[D1(P2)]]R. Note that, if
we could show that D1 reverts C1, then the forward simulation holds trivially
with an equality invariant. D1 has the following type:

D1 : ∀I, (R → I → I) → (PR I Data) → (PR I Data).

Its first argument is called restore_symb and is also part of our framework’s
interfaces. Given an instruction i and its relocation entry r, restore_symb r i
extracts the symbol stored in r and writes it back into i. For example,
restore_symb converts movl 0,%eax back to movl counter,%eax given the gen-
erated relocation entry. The key to showing that D1 reverts C1 is to prove the
following property, i.e., restore_symb reverts gen_reloc, whose proof is straight-
forward:

∀ i i′ e o, gen_reloc o i = (�e�, i′) =⇒ restore_symb e i′ = i.

The above verification process is also applicable to the remaining two passes.
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Instruction and Data Encoding. C2 encodes instructions and data sections
into sections containing bytes. It has the following type:

C2 : ∀I I ′, (I → �List I ′�) → (I ′ → �List Byte�) → (PR I Data) → �PR Byte Byte�.

The first two arguments are called translate_instr and csled_encode, respec-
tively. They are also part of our framework’s interfaces. translate_instr is a
hand-written instruction translator for converting RealAsm instructions into
a list of abstract assembly instructions characterized by the inductive defini-
tion for instructions generated from CSLED specifications (i.e., A introduced
in Sect. 2.5). These CSLED instructions are subsequently encoded into bytes
by csled_encode which makes use of the encoder generated from CSLED spec-
ifications (i.e., E in Sect. 2.5). Unlike instruction encoding, data encoding is
independent of architectures. The data encoder (of type Data → List Byte) is
directly embedded into C2. It encodes data of different types (e.g. int, float, or
double) into bytes by using appropriate encoders for scalar values.

Given C2(P2) = �P3�, we need to prove [[D1(P2)]]R �= [[D1 ◦ D2(P3)]]R. It
follows by showing that D2 reverts C2. D2 decodes binary instructions back to
RealAsm instructions. It has the following type:

D2 : ∀ I I ′, (List Byte → �I ′�) → (List I ′ → �I �) → (PR Byte Byte) → �PR I Byte�.

The first two arguments are called csled_decode and revert_translate where
csled_decode is the instruction decoder generated by CSLED (i.e., D in Sect.
2.5) and revert_translate further decodes CSLED instructions into RealAsm
assembly instructions. To show instruction encoding is reverted by D2, the key is
to prove that revert_translate reverts translate_instr and csled_decode reverts
csled_encode. The former is easily proved manually with certain automation
scripts in Coq. The latter follows directly from Theorem 1 which is automatically
generated by CSLED. Note that there is no need to show data encoding can be
reverted: we can prove that the initial memory values (in bytes) obtained from
data of type Data are equal to those initialized from data of type Byte.

Generation of Relocatable ELF Objects. C3 : (PR Byte Byte) → PE
encodes the symbol table and relocation tables to a list of ELF sections, and
generates headers for all the sections. As mentioned in Sect. 3.2, the ELF seman-
tics is defined by employing an ELF loader D3. To verify this pass, we show that
D3 reverts C3. We elide a discussion of this proof as it is straightforward.

4 Applications

We demonstrate the effectiveness of our framework by building assemblers for
X86 and RISC-V that support all the 32 and 64-bit X86 and RISC-V instructions
used by CompCert. By design, all we need to do is to provide instances for the
interfaces exposed by our framework.
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Fig. 5. A Snippet of the X86 Specifications

4.1 Building an Assembler for X86

To obtain instances of the interfaces for supporting X86 instructions in Comp-
Cert, the most challenging task is to write down the CSLED specifications that
capture the complex X86 instruction format. Instantiation of the remaining inter-
faces (e.g., gen_reloc and translate_instr) is straightforward.

As demonstrated in Sect. 2.5, CSLED is already sufficient for specifying 32-bit
X86 instructions. However, it is more difficult to support 64-bit X86 instructions
which can be viewed as 32-bit instructions prepended with an REX prefix which
extends operands to 64 bits. An obvious solution is to write down two versions of
CSLED specifications: one for 32-bit without the REX prefix and the other for
64-bit with the prefix. However, this duplication is not only tedious and error-
prone, but also generates inefficient encoders and decoders with bloated proofs.
To solve this problem, we treat REX as a new “instruction”, as depicted in Fig. 5
where the first operand (bit) w denotes whether the instruction is in 32-bit or
64-bit mode and the remaining three operands (bits) are used to encode the
extended registers referred by the instruction. The key observation that enables
the treatment of REX as a separate instruction is that, by the design of the
X86 64-bit extension, the binary form of REX does not overlap with any regular
instruction. Therefore, unambiguous encoders and decoders can be generated
from the CSLED specifications in Fig. 5.

4.2 Building an Assembler for RISC-V

RISC architectures have more consistent and much simpler instruction for-
mats than CISC architectures. For instance, no REX prefix is needed to dis-
tinguish between 32-bit and 64-bit instructions. Therefore, it is conceptually
more straightforward to build assemblers for RISC-V than for X86. However, to
apply our framework, we still need to address a practical problem: the original
CSLED cannot directly support encoding and decoding of RISC-V instructions.
The original CSLED describes an instruction as a sequence of bytes such that a
field cannot span over more than one byte. Therefore, CSLED is insufficient for
encoding many RISC-V instructions with this characteristic.

The root cause of the above problem is that the algorithm for generating
encoders and decoders in CSLED treats byte as the atomic unit for binary data.
To support RISC instructions, we switched the atomic unit to bit and refactored
the algorithm so that it can still correctly generate encoders and decoders, and
their correctness proofs. After that, it is easy to write a RISC-V instruction
specification for CompCert and to generate a verified RISC-V assembler.
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Fig. 6. The End-to-end Compilation Chain

5 Evaluation

5.1 Connecting with Stack-Aware CompCert

To evaluate the effectiveness of our approach, we connect our verified assemblers
with Stack-Aware CompCert [19,21]. The complete compilation chain is shown
in Fig. 6. The pretty printers translate CompCert assembly code into RealAsm
code by expanding all the pseudo instructions into real assembly instructions.
This phase is the only part not yet formally verified. The difficulty in its veri-
fication is mainly caused by the discrepancy between the memory models used
by (Stack-Aware) CompCert and our verified assemblers. In particular, pointer
values and certain scalar values stored in CompCert’s memory are abstract and
cannot be directly interpreted as binary values. As a result, the source and target
semantics of the pretty printer cannot be matched via simulation. To solve this
problem, we will need a version of Stack-Aware CompCert with a more concrete
memory model. This is a non-trivial task and left for future work.

5.2 Statistics and Comparison

To examine the efficiency of our assemblers, we have applied our X86 and RISC-V
compilation chains to the test suite provided by CompCert. Initially, we observed
a 2.6% slowdown on average by running the code generated by our compilation
chains and comparing it with the performance of the code generated by Comp-
Cert which uses the GNU assembler as. By inspecting the code generated by as,
we discovered that it runs more efficiently by choosing instructions operating on
aligned data (especially for floating-point values). We then modified our pretty
printer to generate the same instructions, which brought the slowdown down to
1.1%. We conjecture that our performance can be further improved by choosing
instructions with smaller immediate values (e.g., 8-bit instead of 32-bit), which
may reduce cache misses. Such experiments are left to future work.

The statistics of our Coq development are shown in Table 1, where the num-
bers are measured in lines of code (LoC) and obtained by using coqwc. Note that
we count Coq specifications and proofs separately. The framework column dis-
plays LoC for architecture-independent components, while the applications col-
umn displays LoC for architecture-dependent components. The second to fourth
rows show the statistics for the program representations in our framework. The
subsequent four rows are for the assembly passes. In instruction and data encod-
ing, we show LoC for the manually written translators and the CSLED spec-
ifications separately. The next row shows the statistics for the pretty printers
which are developed for each architecture (but not verified). As shown in the
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Table 1. Statistics of Our Development

Components Framework Applications
X86 RISC-V

Spec Proof Spec Proof Spec Proof

Realistic Assembly 40 28 221 8 332 15
Relocatable Programs 1347 2165 797 48 423 38
Relocatable ELF 970 507 16 0 16 0
Generation of Relocatable Programs 685 1600 251 548 156 134
Generation of Relocation Tables 217 501 443 54 140 21
Instruction and Data Encoding 244 1016 0 0 0 0
• Instruction Translators 0 0 2178 469 2144 432
• CSLED Specifications 0 0 150 0 229 0
Generation of Relocatable ELF 605 1032 87 153 83 121
Pretty Printers 0 0 1005 0 1127 0
Total 4108 6849 5148 1280 4650 761

last row, a major part of the work for developing verified assemblers is isolated
in the generic and architecture-independent framework. Note that a major part
of the architecture-dependent development is for instruction translators (about
2.5k LoC each for X86 and RISC-V). However, we observe that these code and
proofs are highly structured and may be simplified with further automation.
The Coq proof scripts automatically generated by CSLED are quite large and
may slow down the proof checking significantly when the number of instructions
increases. We plan to solve this problem by dividing instructions into smaller
categories which can be verified independently.

Finally, we compare our work with the most relevant existing work, i.e.,
CompCertELF [20] which also implements a verified assembler for the 32-bit X86
backend of CompCert. The main difference is that CompCertELF only supports
a subset of X86-32 instructions and this support is hard-coded in its implemen-
tation. In particular, 89 X86-32 instructions of CompCert are implemented, out
of which 24 are fully verified. This takes about 2300 LoC. As shown in Table 1
we only need 2647 LoC (2178 + 469) for the hand-written translator and 150
lines of the CSLED specifications to support the complete X86-32 and X86-64
backends of CompCert (a total of 146 instructions implemented and verified).
Moreover, since CompCertELF does not separate the architecture-independent
and -dependent implementation and proofs, it is unclear how it can be extended
to support other architectures.

6 Related Work and Conclusion

Verified Assembly. To develop a verified assembler, it is necessary to precisely
describe the semantics of assembly programs and object files. The semantics of
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assembly programs in CompCert [8] is not ideal as it is not based on a realistic
machine model (e.g., pointers can not be represented as binary values) [9]. There
has been work on fixing these problems [3,4,13]. CompCertS [3] uses a concrete
memory model to map memory blocks to 32-bit integers. Kang et al. [4] combines
the logical and concrete memory models to enable injection (casting) of pointers
into integers. Mullen et al. [13] defines a new semantics for X86-32 assembly
which models pointers as 32-bit integers by introducing a memory allocator
to translate memory blocks to concrete addresses. The memory model we use
is based on Stack-Aware CompCert [19,21]. It extends the memory with an
abstract stack to support the finite and continuous stacks in assembly programs.

There exists a lot of work on formalizing generation of low-level code (e.g.,
proof carrying code [1,14] and typed assembly [11,12]). However, none of them
formally proves the correctness of assemblers. Recent work on verified compi-
lation tried to address this problem. CakeML [6,16] is a verified compiler for a
subset of Standard ML. Its backend supports compilation to machine code on
different architectures. However, it uses an internal representation called LABLANG
to store the encoded data instead of a standard binary file format [16]. Comp-
CertELF [20] supports verified compilation from C programs all the way to the
relocatable ELF files. However, it only supports a small subset of X86-32 and
is difficult to extend due to its hard-coded dependency on X86-32. A transla-
tion validator known as Valex has been developed for the PowerPC assembler in
CompCert [5]. It checks the consistency between generated executable programs
and abstract assembly code. However, it is not formally verified.

Instruction Encoding and Decoding. CSLED [22] is a framework for automati-
cally generating verified encoders and decoders from instruction specifications.
Its specification language is based on the instruction specification language
SLED [15] which does not provide any formal guarantee.

Conclusion. We have presented a framework for developing verified assemblers.
It takes the form of a template implementing the architecture-independent parts
of the verified assemblers. To obtain a verified assembler targeting a specific
architecture, users only need to instantiate the architecture-dependent compo-
nents exposed as interfaces in our framework. To demonstrate its effectiveness,
we have applied our framework to develop assemblers sufficient to support the
X86 and RISC-V backends of CompCert. We have further connected them with
Stack-Aware CompCert via pretty printers and experimented on CompCert’s
official test suite. Our work is an initial attempt to develop realistic assemblers
and linkers for end-to-end compiler verification. In the future, we would like
to formally verify the pretty printers by using a more realistic memory model,
extend our work to support verified linkers and verified compositional compila-
tion, and scale our approach to other compilers, optimizations and object file
formats.
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