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Abstract

Synthetic Aperture Radar (SAR) to electro-optical (EO)
image translation is a fundamental task in remote sensing
that can enrich the dataset by fusing information from dif-
ferent sources. Recently, many methods have been proposed
to tackle this task, but they are still difficult to complete the
conversion from low-resolution images to high-resolution
images. Thus, we propose a framework, SAR2EO, aiming at
addressing this challenge. Firstly, to generate high-quality
EO images, we adopt the coarse-to-fine generator, multi-
scale discriminators, and improved adversarial loss in the
pix2pixHD model to increase the synthesis quality. Sec-
ondly, we introduce a denoising module to remove the noise
in SAR images, which helps to suppress the noise while pre-
serving the structural information of the images. To validate
the effectiveness of the proposed framework, we conduct ex-
periments on the dataset of the Multi-modal Aerial View
Imagery Challenge (MAVIC), which consists of large-scale
SAR and EO image pairs. The experimental results demon-
strate the superiority of our proposed framework, and we
win the first place in the MAVIC held in CVPR PBVS
2023.

1. Introduction

Image translation aims at transferring images between
the source domain and the target domain by mixing the con-
tent and style in an end-to-end manner. Typically, given
an image, the image translation task is required to preserve
its content while introducing various styles from images in
different domains, which makes the task extremely useful
in diverse applications, such as face attribute editing and
scene style transferring. In the long run, the image trans-
lation task has attracted much research attention and many
methods are proposed to tackle this problem. Early methods
typically adopt style matrix as a mediator in style transfer-
ring and show good performance. But there is still much
room for improvement.

Recent years, generative adversarial network(GAN)
based models emerge and gradually dominate the image
translation tasks. Many effective methods are proposed in
this field and gain much popularity, include pix2pix [8], cy-
cleGAN [22] and pix2pixHD [18].These models adopt the
encoder-decoder structure, where the encoder encodes the
input image into a low-dimensional feature vector and the
decoder decodes this feature vector into the target image
with desired style. During training, the models use paired
data and attempt to learn how to convert the style of input
image into the target image style via minimizing the differ-
ence between the generated image and the real target im-
age. As the GAN based image translation model is capable
of generating photorealistic images in image style transfer-
ring, it has been widely used in many daily and entertain-
ment scenes.

However, different from the daily tasks, the remote sens-
ing image translation task, especially the Synthetic Aper-
ture Radar(SAR) and electro-optical (EO) translation task,
is still under exploration. Mechanically, the EO images are
collected using electro-optical (EO) sensors by capturing
images in the visible spectrum (such as RGB and grayscale
images). And the SAR images are reproduced through radar
signals and act as a complementation of the EO images in
the severe conditions such as heavy fog or lack of visible
light. The goal of the SAR2EO translation task is to pro-
duce high-quality and high-fidelity EO images with SAR
images. However, due to the large gap between the SAR
and EO images and the heavy noise of images in remote
sensing senario, the translation results are often suboptimal.

In this work, we propose a simple but effective frame-
work based on the pix2pixHD with key improvements.
Based on the characteristics of SAR and EO images, we
propose a denoising enhancement to suppress noise in SAR
images. Compared with pix2pix and some other models, the
quality of the generated images has been greatly improved.
Finally, our solution shows excellent performance on three
evaluation metrics: LPIPS [21], FVD [17], and L2 Norm,
and ranks the first on the leaderboard of the MAVIC held in
the CVPR PBVS 2023 with a final score of 0.09. Our main
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contributions are as follows:

(1) On the basis of pix2pixHD, we proposes an effec-
tive translation framework named SAR2EO, which
demonstrates the capability of converting SAR images
into EO images with high quality.

(2) We propose a denoising enhancement module, which
effectively suppresses noise in SAR images while re-
taining the structural information of the images.

(3) Our proposed method exhibits outstanding perfor-
mance, leading to the first-place in the MAVIC held
in CVPR PBVS 2023.

2. Related Work
2.1. GAN

The GAN model was first proposed in 2014, and gen-
erally includes two types of networks, G and D. G stands
for generator, which generates images by taking a random
code as input and outputting a fake image generated by a
neural network. It provides an example of mapping random
values to real data. The other network, D, stands for Dis-
criminator, which is trained to distinguish between real and
fake data examples generated by the generator. Its input is
the image outputted by G, and then it discriminates whether
the image is real or fake.In summary, the GAN [5] model
consists of a generator and a discriminator, which compete
with each other to better achieve the task of generating more
output that conforms to the mapping relationship for a given
input.

Although GAN [5] has provided a direction for image
translation tasks, traditional GAN [5] has some ”obvious”
flaws: (1) it lacks user control, meaning that in a cGANs
[10, 15], inputting random noise results in a random image.
Random images can deceive the discriminator network and
have the same features as real images, but they are often not
what we want. (2) It has low resolution and quality issues.
The generated images may look good, but when you zoom
in, you will find that the details are quite blurry. However,
over time, researchers have proposed a series of improved
GAN network models, such as cGANs [10,15], Wasserstein
GAN (WGAN) [2], and CycleGAN [22], which greatly im-
prove the performance and stability of GAN networks in
image translation tasks.

2.2. Image-to-Image Translation

The task goal of image translation is to learn the map-
ping relationship between the source domain images and
target domain images. Depending on the input dataset, im-
age translation can typically be classified into two types:
paired and unpaired.

The purpose of supervised learning methods is to learn
the mapping relationship between input and output images

by training a set of paired image pairs [7,8,12,18,23], which
is usually achieved through filename pairing. For example,
the training dataset for a facial translation task needs to in-
clude pairs of photographs of the same person in different
languages. Paired image translation tasks are usually eas-
ier to train than unpaired tasks because there is a definite
correspondence between images in the dataset.

In fact, it is difficult, and often impossible, to collect
dataset with precise pixel-to-pixel mappings. most of the
data that we can obtain in real life cannot be one-to-one
correspondence, which poses a great obstacle and difficulty
for supervised learning. Unpaired image-to-image trans-
lation often maps images between two or more domains
[1, 3, 9, 13, 16, 19, 20], where image instances do not match.
However, those models can be affected by unwanted images
and cannot concentrate on the most usefull part of image.
Therefore, the ”explorers” of deep learning strive to find
GAN [5] to solve this problem.

2.3. pix2pix

The pix2pix [8] method trains a network by specifying
a certain correspondence between input images and output
images, imposing constraints on the traditional GAN [5]
network and no longer allowing it to generate any arbi-
trary output images that fit the characteristics of real im-
ages. In other words, while learning from real images, the
pix2pix [8] network also learns from the input images that
can reflect where the real images come from. Pix2pix [8]
ensures that the output image has a certain relationship with
the input image, or in other words, given a pair of input
and output images, it not only satisfies the characteristics of
real images, but also preserves the original information of
the input image. This is due to the fact that pix2pix uses
the dataset rather than the neural network structure to en-
sure the correspondence between the output and input, and
therefore, the pix2pix network requires paired datasets.

Pix2pix is an ”upgrade” to the traditional GAN [5]. In-
stead of inputting random noise, it takes in user-given im-
ages and generates images with a structured correspondence
to the input. This solves the first drawback of the GAN [5]
network mentioned earlier.

In the SAR-to-EO challenge, we first conducted experi-
ments using the pix2pix model. Although the training speed
of the pix2pix model is relatively fast, the quality of the
generated images is poor and the image details are blurry.
Meanwhile, the data collected by EO sensors often requires
a certain level of clarity. As a result, we ultimately aban-
doned this approach.

2.4. CycleGAN

Pix2pix requires paired data for training, but it is difficult
to obtain paired data in real life. CycleGAN, also known
as Cycle-constraint Adversarial Network [22], is designed

2



D
e
n

o
is

in
g
 

M
o
d

u
le

...

Output

/2 /2

Output
Ground 

Truth

Multi-scale 

Discriminator

GAN Loss & 

GANFeat 

Loss

VGG 

Loss

VGG Net

Level1

Level2

Level1

GeneratorInput

Figure 1. The overview of our proposed framework.

to solve this problem. This type of network does not re-
quire paired data (referred to as unpaired datasets), only a
set of input data and a set of output data. If pix2pix uses
the dataset to ensure the correspondence between the out-
put and input, CycleGAN uses the structure of the neural
network to ensure this correspondence. CycleGAN [22]
adds a restoration network to the GAN network structure,
which is used to restore the output and compare the re-
stored image with the original image in terms of pixels to
ensure the correspondence between output and input. The
success of CycleGAN lies in the separation of style and
content.Designing an algorithm to separate style and con-
tent manually is difficult, but with neural networks, we can
easily change the style while keeping the content constant.

Since the challenge provides paired images, it is conve-
nient for us to conduct supervised training. Therefore, the
CycleGAN approach would mean that we are voluntarily
giving up this advantage, which we consider unwise.

3. Proposed Method

This section presents a description of the proposed trans-
lation framework. The framework comprises coarse-to-fine
generator, multi-scale discriminators, and a denoising en-
hancement, as illustrated in Fig. 1. The coarse-to-fine gen-
erator is designed to extract both global and local features
by combining them. Meanwhile, the multi-scale discrim-
inators are not limited to the input size but are designed
to synthesize both the overall image and image details by
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using smaller and larger discriminators, respectively. The
improved adversarial loss further improves the quality of
the synthesized images by enhancing their realism. Addi-
tionally, the denoising enhancement module is capable of
reducing noise in SAR images by applying a non-linear ap-
proach to replace the noise.

Figure 2. The examples of SAR and EO images.

3.1. Preliminary : pix2pixHD

The pix2pix model is unable to generate high resolution
images, and the generated images lack details and realistic
texture. Thus, pix2pixHD proposes the following solutions:
coarse-to-fine generator, multi-scale discriminators and im-
proved adversarial loss to improve the above problems [18].

Coarse-to-fine generator: The generator is split into
two sub-networks, G1 and G2, with G1 as the global gener-
ator and G2 as the local enhancer, The generator is denoted
as G = G1, G2, where G1 operates at 1,024 × 512 resolution
and G2 outputs an image with 4x the previous output size
for synthesizing. G2 can be used to synthesize higher res-
olution images. G1 is comprised three components: a con-

volutional front-end GF
1 , a set of residual blocks GR

1 , and
a transposed convolutional back-end GB

1 . A semantic label
map of resolution 1,024 × 512 is fed through these three
components to generate an image of the same resolution.
G2 also has three components: a convolutional front-end
GF

2 , a set of residual blocks [6] GR
2 , and a transposed con-

volutional back-end GB
2 . The input label map to G2 has a

resolution of 2,048 × 1,024. The input to GR
2 is the element-

wise sum of two feature maps: the output feature map of
GF

2 and the last feature map of GB
1 . This integrates global

information from G1 to G2. Training involves first training
G1, followed by training G2 in order of resolution. Finally,
all networks are fine-tuned together. This generator design
is effective in aggregating global and local information for
image synthesis.

Multi-scale discriminators: For a generative network,
designing a discriminator is a rather difficult task. Com-
pared to low-resolution images, for high-resolution images,
the discriminator requires a large receptive field, which re-
quires a large convolutional kernel or a deeper network
structure. Adding a large convolutional kernel or deepening
the network is easy to cause overfitting and will increase
the computational burden. To solve the above problems,
multi-scale discriminators have been proposed. It consists
of three different discriminators, D = D1, D2, D3, which
are the same network structure but operate on different im-
age scales. Then, the generated images are downsampled
with a factor of 2 and 4, resulting in three images with dif-
ferent resolutions, which are then inputted into the three
identical discriminators. This way, the D corresponding to
the image with the smallest resolution will have a larger re-
ceptive field, providing a stronger global sense for image
generation, while the D corresponding to the image with
the largest resolution will capture finer and more detailed
features.

LFM (G,Dk) = E(s,x)

T∑
i=1

1

Ni
∗[∥∥∥D(i)

k (s,x)−D
(i)
k (s, G(s))

∥∥∥
1

] (1)

Improved adversarial loss: Since the discriminators
have three different sizes and they all are multi-layer con-
volutional networks, the loss extracts convolutional features
from different levels of the synthesized image and matches
them with the features extracted from the real image. Then,
the feature matching loss is obtained, and its equation is
shown Eq. (1):

D
(i)
k denotes discriminator, where k refers to the kth

discriminator and i refers to the number of layers in each
discriminator. N refers to the number of elements in each
layer. T refers to the number of layers. This feature loss is
combined with the GAN’s real or fake loss to form the final
loss:
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3.2. SAR and EO Images

SAR is a type of high-resolution imaging radar that can
obtain high-resolution radar images similar to optical pho-
tographs under extremely low visibility meteorological con-
ditions. SAR image interpretation is very difficult for sev-
eral reasons. The unique geometric characteristics of SAR
images increase the difficulty interpretation [11]; the inher-
ent coherent speckle noise of SAR images causes target
edges to be blurred, and the clarity to decrease, requiring
completely different methods for SAR image interpretation.
SAR images also have multiple reflection effects, false phe-
nomena, doppler frequency shifts, etc. In contrast, EO im-
ages can clearly display imaging edge features, and their
resolution is higher than that of SAR images. The difficulty
in converting SAR images to EO images lies in eliminating
noise in SAR images and improving the resolution of the
generated images. Fig. 4 shows the examples of SAR and
EO images.

3.3. Denoising Enhanced SAR2EO Framework

Based on the characteristics of SAR images and EO im-
ages, we propose the SAR2EO solution as shown in the
Fig. 1. It is based on pix2pixHD and utilizes the coarse-
to-fine generator to fuse global and local features, making
the model’s feature learning more comprehensive and spe-
cific. With the multi-scale discriminators, this method can
enhance the details of generated images. The improved ad-
versarial loss improves the quality of the synthesized im-
ages by enhancing their realism.

Denoising enhancement module: It is common for the
energy of signals or images to be concentrated in the low-
frequency and mid-frequency bands of the amplitude spec-
trum, while the information of interest is often submerged
by noise in the higher frequency bands [4]. To address the
problem of high frequency noise in SAR images, a denois-
ing enhancement module is applied. This module is par-
ticularly effective in smoothing noise and can protect sharp
edges of the image by choosing appropriate values to re-
place polluted points. It performs well for salt-and-pepper
noise, and is especially useful for speckle noise.

During the training and inference stages, the SAR im-
ages will go through denoising enhancement module to re-
duce the high-frequency noise of the SAR images and pre-
serve more edge details, and then fed into the generator. As
for the EO images used as the label, we hope that the gen-
erated images of the model will be closer to this label, so
we do no changes to the EO images. This is also the advan-
tage of the image-to-image pair method over the unpaired
method. The denoising enhancement algorithm is shown in
Algorithm 1.

Algorithm 1 The denoising enhancement algorithm.
Data: An input image I and a window size of n×m.
Result: An output image I ′.
I ′ is initialized to I; for i = 1 to height(I)− n do

for j = 1 to width(I)−m do
M is a sub-image of size n × m centered at pixel
(i, j); I ′i,j is set to the median pixel value of M ;

end
end

4. Experiments
In this section, we first discuss the dataset and evalua-

tion metrics briefly, and then introduce the implementation
details. We then quantitatively evaluate the performance of
our approach on the dataset. Finally, some ablation exper-
iments are conducted to demonstrate the effectiveness of
each component.

4.1. Dataset

The data for this challenge consists of two types of small
window regions (chips) taken from large images captured
by several EO and SAR sensors mounted on an airplane.
The EO chips are 256 X 256 pix images and belong to tar-
gets taken from an airplane. The SAR chips contain roughly
the same field of view as the corresponding EO images and
are of matching resolution to the EO images. The dataset is
divided into:

* Train data: This set resembles the data which is non-
uniform and imbalanced.

* Validation: This set is a uniformly distributed among
all classes with about ¡ 100 of samples per class.

* Test data: This split resembles the validation test.

The purpose is to use the provided (SAR+EO) train image
to design and implement a method for translating SAR im-
ages to EO images.

4.2. Metrics

It is open and difficult to evaluate the quality of synthe-
sized images [14]. L2 Norm, FV D and LPIPS are used
as the metrics.

L2 Norm, also known as Euclidean distance or L2 dis-
tance, is a commonly used distance metric to measure the
difference between two vectors.

The L2 Norm measures the length of the vector, which
is the distance from the origin to the point represented by
the vector. In image processing, the L2 Norm is often used
to calculate the pixel-wise difference between two images.

LPIPS (Learned Perceptual Image Patch Similarity) is a
perceptual image quality metric that measures the similarity
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SAR pix2pix pix2pixHD Ours EO(label)

Figure 3. The results generated by the different models and the corresponding EO images(labels). The first column of images depicts the
original SAR images, while the second and third columns showcase the results generated by pix2pix and pix2pixHD, respectively. The
fourth column presents the results generated by our framework, and the fifth column displays the corresponding EO images, which serve
as the labels for the SAR images. Better viewed in color with zoom-in.

between two images based on the response of deep neural
networks. LPIPS was introduced in a paper by [21] and
has been shown to correlate well with human perception of
image quality. The LPIPS metric is calculated by passing
two images through a pre-trained deep neural network and
computing the distance between the feature representations
of the two images. The distance metric used is typically the
L2 Norm. The final LPIPS score is obtained by averaging
the distances over multiple image patches.

where I1 and I2 are the two images being compared, fi
is the feature extractor for the i-th image patch, and n is the
total number of patches.

FVD (Fréchet Video Distance) is a metric that measures
the similarity between two sets of images. FV D was intro-
duced in a paper by [17] and is based on the distance be-
tween the feature representations of the images calculated
by a pre-trained deep neural network. The FV D metric is
calculated by first computing the mean and covariance of
the feature representations of the real images and the gen-
erated images. The distance between the mean and covari-
ance is then computed using the Fréchet distance, which is
a measure of similarity between two multivariate Gaussian
distributions. A lower FV D score indicates a higher simi-
larity between the two sets of images.

6



User Final Score LPIPS FVD L2 CPU[1]/GPU[0] Extra Data/No Extra Data
USTC-IAT-United 0.09 0.25 0.02 0.01 0.00 0.00

pokemon 0.14 0.35 0.04 0.01 -1.00 -1.00
wangzhiyu918 0.14 0.38 0.02 0.01 0.00 0.00

ngthien 0.18 0.43 0.10 0.01 0.00 0.00
Wizard001 0.26 0.50 0.27 0.02 -1.00 -1.00

hanhai 0.30 0.30 0.59 0.01 0.00 0.00
u7355608 0.33 0.54 0.43 0.02 -1.00 -1.00

jsyoon 0.33 0.46 0.53 0.01 0.00 0.00

Table 1. PBVS 2023 Multi-modal Aerial View Imagery Challenges - Translation test set leaderboard.

where mureal and sigmareal are the mean and co-
variance of the feature representations of the real images,
mufake and sigmafake are the mean and covariance of
the feature representations of the generated images, and
Tr() denotes the trace of a matrix.

The evaluation indicator on the final ranking is the aver-
age of the above three indicators.

Figure 4. SAR images and images after denoising enhancement.

4.3. Implementation Details

Development phase/learning: Since we have the vali-
dation set and the corresponding labels accessible at this
phase, we perform the validation offline, train on the train-
ing set, and then test on the validation set.

Final Evaluation: In this phase, the training and valida-
tion sets were jointly used as the training set to expand the
data. The experiments were performed on NVIDIA GPU
3090.

4.4. Main results

Challenge overview: Sensor translation algorithms al-
low for dataset augmentation and allows for the fusion of
information from multiple sensors. EO and SAR sensors
provide a unique environment for translation. The motiva-
tion for this challenge is to understand how if and how data
from one modality can be translated to another modality.
This competition challenges participants to design methods
to translate aligned images from the SAR modality to the
EO modality.

In the context of the Multi-modal Aerial View Imagery
Challenge (MAVIC), the team USTC-IAT-United attained
the first rank in the ultimate test set ranking. This feat was
accomplished through the attainment of noteworthy perfor-
mance metrics, specifically a LPIPS score of 0.25, a FVD
score of 0.02, and a L2 score of 0.01. The composite score
of the team was computed as 0.09, representing the av-
erage of the aforementioned performance indicators. The
obtained results provide compelling evidence of the effi-
cacy of the team’s competition strategy. The final test set
leaderboard is shown in Tab. 1. Additionally, we compared
our proposed method with other image translation models,
namely pix2pix and pix2pixHD. The training data provided
by the competition was utilized for training, and the valida-
tion set was used for evaluation, with LPIPS, FVD and L2
being the chosen metric. The performance of the translators
is presented in a Tab. 2.

The images generated by different methods are show-
cased in Fig. 3. Regarding the quality of the results, SAR
images generally exhibit a high degree of noise and blurry

7



Method LPIPS FVD L2
pix2pix 0.484638 0.08 0.02

pix2pixhd 0.259611 0.02 0.01
ours 0.253924 0.02 0.01

Table 2. The effect of using different schemes on the experimen-
tal results, the LPIPS, FVD and L2 metric on the local validation
dataset.

object boundaries, leading to a patchy visual appearance.
The second column showcases the results generated by the
pix2pix model, which suffers from severe distortions, with
object shapes being deformed and inaccurate color gener-
ation. However, the generated images still exhibit basic
shape contours, albeit with blurry details. In contrast, the
third column depicts the results generated by pix2pixHD,
which exhibit a higher level of image clarity and closely
resemble the labels in terms of shape, with improved color
accuracy. Nevertheless, some details still require refinement
when compared to the label images. Finally, the results pro-
duced by our framework exhibit even better quality com-
pared to pix2pixHD, with shapes and colors that are more
similar to the label images, and sharper details in the gener-
ated images.

4.5. Ablation studies

In this section, we conducted ablation experiments to
demonstrate the effectiveness of our framework. The val-
idation dataset was utilized for the experimentation. Fur-
thermore, visualizations of the images in this section were
presented to illustrate the efficacy of our denoising enhance-
ment.

Effectiveness of denoising enhancement module of
our framework: In the Tab. 3, the metric is slightly im-
proved, it shows the effectiveness of denoising enhance-
ment.

Method LPIPS FVD L2
pix2pixHD 0.259611 0.02 0.01

+denoising enhancement 0.253924 0.02 0.01

Table 3. Conducting the experiments on the pix2pixHD and
pix2pixHD with denoising enhancement, the metric is LPIPS,
FVD and L2 on the local validation dataset.

5. Conclusion

This paper presents a novel framework for converting
SAR images to EO images. Our framework is based on
pix2pixHD architecture, which is known for its ability to
generate high-quality images. The coarse-to-fine generator,
multi-scale discriminators, and improved adversarial loss in

pix2pixHD are utilized to enhance the resolution and qual-
ity of the generated EO images. To further improve the con-
version quality, we analyzed the specific characteristics of
SAR and EO images and proposed a denoising enhance-
ment module to reduce the noise in SAR images and en-
hance the contours of objects in SAR images. This denois-
ing enhancement module was incorporated into the over-
all framework and resulted in a significant improvement in
image quality. The proposed framework has several ad-
vantages over existing methods. First, our framework is
highly effective in generating high-quality EO images from
SAR images, which is a challenging task due to the sig-
nificant differences between the two modalities. Second,
our denoising enhancement module effectively reduces the
noise in SAR images, which is a common issue in SAR im-
ages. Third, our framework is based on the widely-used
pix2pixHD architecture, making it easy to implement and
deploy in various applications. We evaluated the perfor-
mance of our framework in the MAVIC competition, where
the goal was to generate high-quality EO images from SAR
images. Our framework achieved a final score of 0.09,
which was the highest among all participating teams and
secured the first place in the competition.

References
[1] Asha Anoosheh, Eirikur Agustsson, Radu Timofte, and Luc

Van Gool. Combogan: Unrestrained scalability for image
domain translation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
pages 783–790, 2018.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
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