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Abstract. Real-world point clouds usually suffer from incompleteness
and display different poses. While current point cloud completion meth-
ods excel in reproducing complete point clouds with consistent poses as
seen in the training set, their performance tends to be unsatisfactory
when handling point clouds with diverse poses. We propose a network
named Rotation-Invariant Completion Network (RICNet), which con-
sists of two parts: a Dual Pipeline Completion Network (DPCNet) and
an enhancing module. Firstly, DPCNet generates a coarse complete point
cloud. The feature extraction module of DPCNet can extract consistent
features, no matter if the input point cloud has undergone rotation or
translation. Subsequently, the enhancing module refines the fine-grained
details of the final generated point cloud. RICNet achieves better rotation
invariance in feature extraction and incorporates structural relationships
in man-made objects. To assess the performance of RICNet and existing
methods on point clouds with various poses, we applied random trans-
formations to the point clouds in the MVP dataset and conducted ex-
periments on them. Our experiments demonstrate that RICNet exhibits
superior completion performance compared to existing methods.

Keywords: Point cloud completion · Rotation invariance · 3D vision.

1 Introduction

Point clouds are widely used for representing the 3D world in computer vision
and robotics tasks, but they are often incomplete in real-world scenarios due to
limitations of LiDAR scannings, such as object occlusion and range constraints,
which result in information loss and constrain point cloud practicality.

Among the existing point cloud completion methods, [2,3,4,5] rely on de-
terministic partial-to-complete mappings to generate complete shapes, lacking
the ability to conditionally generate depending on the incomplete point cloud.
Additionally, they fail to capture important attributes such as geometric sym-
metries, regular arrangements, and surface smoothness. To address these issues,
VRCNet[7] further incorporates relational structural attributes to enhance the
recovery of fine details in point clouds. Although numerous point cloud com-
pletion methods proposed in recent years have shown impressive completion
performance on various datasets, they only perform well on point clouds with a
specific pose in the training dataset, while performance significantly deteriorates
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on rotated point clouds. However, incomplete point clouds in the real world ex-
hibit various poses, and it is essential for point cloud completion networks to
have good generalization performance for point clouds with different poses.

To address these challenges, we propose the Rotation-Invariant Completion
Network (RICNet), comprising a Dual Pipeline Completion Network (DPCNet)
and an enhancing module. DPCNet generates a coarse complete point cloud,
while the enhancing module enhances the detailed features and structural rela-
tionships of the coarse point cloud. DPCNet adopts an encoder-decoder archi-
tecture. We extract the rotation invariant features by considering the correlation
not only between points and their neighbors, but also the internal relationships
among the neighboring points. Our feature extraction module ensures consistent
predictions during training and testing, regardless of whether the input point
cloud has undergone rigid transformations like rotation and translation. Inspired
by Pluralistic image completion[8], our first module DPCNet uses a dual-path
architecture comprising a reconstruction path of the complete point cloud and a
completion path of the incomplete point cloud. The reconstruction path adopts
a VAE framework, with an encoder that embeds the point cloud into a feature
space to obtain an intermediate latent distribution of point cloud features. The
Decoder then reconstructs the complete shape from this code. In a similar vein,
the completion path attempts to reconstruct a complete shape using the latent
distributions and features of the partial input. The encoder and decoder weights
are shared between both paths, with the exception of the distribution inference
layers. During the training process, we regularize the consistency between the
posterior distribution of the encoded incomplete point cloud and the prior dis-
tribution of the complete point cloud. Regarding the enhancing module, there
exist several plausible options. Inspired by the effectiveness of fine-grained detail
and structural relationship enhancement in the coarse point cloud completion of
VRCNet[7], we adopt RENet to infer correlated structures from the incomplete
point cloud observations and the generated rough framework after the comple-
tion network of the coarse point cloud stage.

We conducted experiments on the MVP dataset. To assess the completion
performance and compare it with existing methods on point clouds with differ-
ent poses, we randomly initialized rigid transformations for each point cloud and
trained on them. Then we test the network on both the original and transformed
point clouds. Numerous experiments show RICNet’s exceptional completion out-
comes on both original and transformed point clouds in the MVP dataset.

In conclusion, the following contributions are made by this paper: 1) We
propose a network architecture for rotation-invariant point cloud completion,
consisting of a Dual Pipeline Completion Network (DPCNet) and an enhancing
module. 2) We have designed a rotation-invariant feature extraction module
for learning features of rotated point clouds. This module can be transferred
to other point cloud tasks to enhance the network’s rotation invariance. 3) We
compared the completion rates of our approach with other methods on the MVP
dataset point clouds after random rotations. The results show that our RICNet
outperformed the existing methods.
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2 Related Works

2.1 Rotation-Invariant Convolution

Previous models for point clouds like [9,21] often ignore the rotation invariance.
PointNet[1] only used a T-net to learn the rotational features of point clouds,
but its performance suffered greatly from the simple object rotations if there
is no data augmentation. The disorderliness of the point cloud makes it diffi-
cult to capture the rotational features. For instance, if some rotation is applied
to the point cloud in PointNet++[9], the segmentation performance becomes
particularly poor. [11] proposed a simpler approach using hand-crafted features
based on Euclidean distance and angle. However, the resulting local features
may not be sufficiently expressive, leading to reduced accuracy. [12] proposes a
global context-aware convolution approach that utilizes anchor points and local
reference frames (LRF). [13,14] further utilized LRF to learn rotation-invariant
local descriptors to improve performance. [15] proposed an effective framework
based on several features. However, it will be unstable in the presence of noise or
outliers, limiting overall performance. To tackle these difficulties, RIConv++[16]
proposed a straightforward and powerful convolutional operator. This operator is
specifically designed to capture robust rotation-invariant features from local re-
gions. It enhances feature distinctiveness by considering the correlation not only
between the points and their neighboring points, but also the internal relation-
ships among the neighboring points. To address these challenges, RIConv++[16]
proposed a simple and effective convolutional operator, which is designed to ex-
tract robust rotation-invariant features from local regions and improve feature
discrimination by considering the relationships between interest points and their
neighbors, as well as the internal relationships among neighbors.

2.2 Point Cloud Completion

PCN [2] employs folding operations for upsampling to generate coarse completion
by leveraging global features learned from incomplete point clouds. The decoder
proposed by TopNet [6] can effectively predicts complete shapes. [4,5,11] utilize
local features to enhance the quality of their completion results. The aforemen-
tioned approaches focus on the generation of overall shape frameworks while
neglecting fine-grained details. Moreover, they largely learn deterministic map-
pings from partial to complete, ignoring structural relationships in man-made
objects. Slice Sequential Network[20] utilizes a slice-based approach to process
incomplete point clouds. By slicing the input point cloud, it can effectively cap-
ture the inter-slice information and generates the missing parts with high fidelity.
VRCNet[7] proposed a variational framework consisting of PMNet and RENet.
PMNet leverages the advantages of explicit reconstruction and generative mod-
eling to generate coarse and complete point clouds. RENet further extracts re-
lational point features through point self-attention and point selection modules
to refine local shape details. The recently proposed methods have achieved im-
pressive completion results on various point cloud datasets. However, they lack
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Fig. 1. The architecture of RICNet. DPCNet generates a coarse complete point
cloud Yc

′, while the enhancing module refines the fine-grained details of the final output
to produce the final completion Yf

′. DPCNet employs an encoder-decoder architecture,
with the two parallel paths sharing weights. The distribution link ensures consistency
between the posterior distribution of the encoded partial point cloud and the prior
distribution of the complete point cloud.

rotation invariance and generalization ability for handling rotated point clouds,
leading to unsatisfactory results for point clouds with diverse poses. The neglect
of rotation invariance in current point cloud completion networks restricts their
practical applicability in real-world scenarios.

3 Our Method

To address the issue of unsatisfactory results in point clouds with varied poses,
we propose a network architecture for rotation-invariant point cloud completion,
as shown in Fig. 1. We define X as a partial observation, while Y represents the
ground truth. The objective of our network is to generate a predicted complete
point cloud Yf

′ based on the provided input X.

3.1 Rotation-Invariant Embedding Module

We employ RIConv++ to explicitly extract global features, while simultane-
ously integrating DGCNN[17] to enhance the extraction of local features. The
RIConv++ network, comprising four convolutional layers, processes the input
point cloud to obtain a global feature gri. The definition of the convolutional
layer can be found in Rotation-Invariant Convolution. Besides, DGCNN converts
each point into a point feature vector fi. We connect gri to each fi to create a
point feature matrix F where each row represents a concatenated feature vector
[gri, fi]. Extensive experiments demonstrate that our feature extraction module
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Fig. 2. A Rotation-Invariant Convolutional Layer. We perform farthest point
sampling to select a set of reference points {rj} (red dots) from the point cloud. K-NN
is utilized to obtain local point sets Xj = {xn} (blue dots) for each reference point
rj . IRIFs are then calculated and transformed into a high-dimensional space using an
MLP. These features are combined with previous layer features (if any), followed by
pointwise convolution and Maxpooling to generate the New Features.

inherits the rotation invariance and global feature extraction capabilities from
RIConv++, while also effectively extracting local features with the assistance of
DGCNN.

Rotation-Invariant Convolution RIConv++ employs a sequence of four con-
volutional layers to explicitly extract rotation-invariant global features of point
clouds, denoted as gri. Fig. 2 illustrates the structure of a rotation-invariant con-
volutional layer. The reference point set obtained in a convolutional layer will
serve as the input point cloud for the subsequent layer, and the New Features
obtained in the current layer will be combined with the point cloud features
of the next layer, generating the feature matrix G for the subsequent layer, as
indicated by the dashed line in Fig. 2.

IRIF serves as a powerful feature representation. Fig. 3 can facilitate our
comprehension of IRIF, which is a transformation that maps each neighboring
point xn to a tuple, comprising seven attributes:

tn = [s, δ, a1, a2, a3, b1, b2, b3], (1)

where tn represents the IRIF feature tuples of xn. s, a1, a2, and a3 quantify
the correlation between neighbor point xn and the reference point r (radial
direction). δ, b1, b2, and b3 encode the correlation between xn and its adjacent
neighbor xn+1 :
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s = ∥xn − r∥ ,
a1 = arccos(LRAr,

−−→xnr),

a2 = arccos(LRAxn ,
−−→xnr),

a3 = ka · arccos(LRAxn , LRAr).

δ = arccos(−−−→xn+1r,
−−→xnr),

b1 = arccos(LRAxn ,
−−−−−→xnxn+1),

b2 = arccos(LRAxn+1 ,
−−−−−→xnxn+1),

b3 = kb · arccos(LRAxn , LRAxn+1).

(2)

Here, LRA is a reliable and stable shape descriptor reference vector that is
invariant to rotation, as introduced in [10]. LRApi can be represented by normal
vectors at point pi. The arccos values are only defined in the interval [0, π],
introducing a signed ambiguity. To capture angle and directional information
between two vectors, we employ the utilization of signed angles as indicated in
Equation (3).

ka =

{
+1, if a1 ≤ a2
−1, otherwise

, kb =

{
+1, if b1 ≤ b2
−1, otherwise

. (3)

𝐿𝑅𝐴!
𝐿𝑅𝐴"!

𝐿𝑅𝐴"!"#
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Fig. 3. IRIF Construction. Given a reference point r, the K-NN algorithm retrieves
k nearest neighbors Xj = {xn} and orders the points clockwise. The IRIF of a neighbor
point xn is represented by (1).

After MLP transformation, we obtain a Nnext × k × C0 feature matrix. The
previous convolutional layer’s features represented as a Nprev×C1 matrix will be
transmitted to this layer. For each reference point rj , C1-dimensional features are
assigned to its k neighboring points based on the k-neighbors’ indices. Therefore,
we obtain a Nnext × k × C1 feature matrix, which will be combined with the
features obtained in the current layer to form the feature matrix G. We order
the points clockwise by projecting each point xn onto the local tangent disk.
The ordering is established by selecting a starting point (e.g. x0) and setting
its projection −→x0p as the reference point on the disk. Then, we compute the
angles between the projected points −−→xnp and −→x0p and sort them in ascending
order from 0 to 360 degrees. In our implementation, x0 is chosen as the farthest
point from the reference point p in the local neighborhood. Then we apply a 1D
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convolution to the feature tensor, followed by Maxpooling along the k-nearest
neighbors dimension, to obtain the New Feature for this layer.

In more formulaic terms, we define a point set ℧ = {pi} where pi denotes
the 3D coordinates of the point i, and ti represents the IRIF feature of pi. The
convolution operation h for learning the features of ℧ is expressed as follows:

h(℧) = σ(κ(MLP (ti) : ∀i)), (4)

Here, σ is an activation function, and κ is a Maxpooling function. It consists of a
1D convolutional kernel and an ordering function, ensuring rotational invariance
is preserved. We denote the IRIF features after passing through the MLP as mi.

κ(mi) = Maxpool(1Dconv (order (mi))), (5)

Here, the function order arranges the points in clockwise order by projecting pi
onto the local tangent disk, and 1Dconv refers to a one-dimensional convolution.

3.2 DPCNet: Dual-Pipeline Completion Network

To construct the overall framework of the complete point cloud, we introduce a
dual-path design. Fig. 1 shows that the architecture consists of a reconstruction
path dedicated to the ground truth Y and a completion path for the incomplete
point cloud X. The reconstruction path utilizes a VAE framework, with an
encoder (Rotation-Invariant Embedding Module) that embeds the point cloud
into a feature space to obtain an intermediate latent distribution of point cloud
features. The Decoder then reconstructs the complete shape from this code.

Specifically, the reconstruction path first extracts point cloud features to
obtain a feature matrix F . MLP and Maxooling are then applied to derive the
global feature vr, from which we extract the latent distributions λ(vr|Y ) for the
complete shape Y , and then use a decoding distribution to recover a complete
shape Yr

′. The reconstruction path is only used for training. The loss function
of the reconstruction path is formulated as:

Lrec = −KL[λ(vr|Y ) || p(vr)] + LCD

(
Yr

′, Y
)

(6)

Here, KL represents the Kullback-Leibler divergence, p(vr) = N(0, I) is a pre-
defined Gaussian conditional prior, and CD denotes the symmetric chamfer dis-
tance (CD) loss formulated as:

LCD(P,Q) =
1

|P |
∑
x∈P

min
y∈Q

∥x− y∥2 + 1

|Q|
∑
y∈Q

min
x∈P

∥x− y∥2 . (7)

Here, x and y stand for points that belong to point clouds P and Q.
The structure of the completion path is similar to that of the reconstruction

path and shares its encoder and decoder weights, except for the distribution in-
ference layer. Its main objective is to reconstruct the complete shape Yc

′ based
on the global feature vc and the latent distribution φ(vc|X) obtained from the in-
put X. To effectively use the most significant features from the incomplete point
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cloud, a learned conditional distribution λ(vr|Y ), which encodes its correspond-
ing complete 3D shape Y , is employed to adjust the latent distribution φ during
training. Thus, λ(vr|Y ) forms the prior distribution, and φ(vc|X) serves as the
posterior importance sampling function. The completion path is characterized
by the following loss function formulation:

Lcom = −KL[λ(vr|Y )||φ(vc|X)] + LCD

(
Yc

′, Y
)

(8)

3.3 Enhancing Module

Inspired by the effectiveness of fine-grained detail and structural relationship
enhancement in the coarse point cloud completion of VRCNet[7], we utilize the
Relation Enhancement Network (RENet) as our enhancement module to improve
structural relationships and recover the fine completion Yf

′ based on the initial
completion Yc

′. The R-PSK module, comprising an MLP and PSK module, plays
a crucial role in RENet. The PSK module enables the adaptive fusion of structure
relations learned at various scales, allowing neurons to dynamically adjust their
receptive field sizes to match the distinct scales of PSA’s relation structures.
PSA effectively aggregates point features in local neighborhoods by leveraging
learned relations. The loss function for the enhancing module is formulated as:

Lfine = LCD

(
Yf

′, Y
)

(9)

3.4 Loss Function

The joint training loss L of our RICNet is formulated as follows:

L = ωrecLrec + ωcomLcom + ωfineLfine (10)

Here, Lrec, Lcom and Lfine are the losses defined in (6), (8), and (9). ωrec, ωcom,
and ωfine are weighted parameters.

4 Experiments

We utilized PyTorch to implement our network and our model was trained on an
NVIDIA TITAN Xp GPU. We employ the Adam optimizer [18], with an initial
learning rate of 1e−4, decaying by 0.7 every 40 epochs. The Chamfer distance
(7) is used to calculate the distance between the final predicted complete point
cloud (Y’) generated by the network and the ground truth point cloud (Y), while
the F-score [19] is utilized to measure the distance between object surfaces.

To evaluate the proposed network’s completion performance under different
point cloud poses, we randomly apply a rigid transformation to each point cloud
and train the network on these transformed point clouds, testing it on both the
original and transformed point clouds.
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Table 1. Completion results of the orig-
inal cloud without transformation. Our
RICNet outperforms all existing methods.

Method CD ↓ F1 ↑
TopNet[6] 29.46 0.167
PCN[2] 26.13 0.173

Cascade[5] 21.48 0.309
MSN[3] 22.79 0.344
ECG[4] 13.48 0.424

VRCNet[7] 10.58 0.461
RICNet(Ours) 9.14 0.470

Table 2. Completion results of the trans-
formed cloud. Our RICNet also outper-
forms all existing methods.

Method CD ↓ F1 ↑
TopNet[6] 20.561 0.193
PCN[2] 15.68 0.236

Cascade[5] 16.46 0.318
MSN[3] 15.81 0.362
ECG[4] 9.44 0.440

VRCNet [7] 7.75 0.469
RICNet(Ours) 7.57 0.477

Table 3. Completion results on the transformed cloud of MVP. Here we adopt the
CD loss (multiplied by 104) as the evaluation metric. Lower values indicate better
performance. RICNet stands out as the top-performing model overall.

Method Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Bed Bench Bookshelf Bus Guitar Motorbike Pistol Skateboard Avg.

PCN[2] 6.556 22.618 11.042 19. 017 22.916 17.612 18.55 13.197 27.329 13.012 21.363 15.028 4.482 9.956 8.831 7.157 14.916

TopNet[6] 8.986 31.152 14.174 25.553 29.211 24.133 23.326 14.861 34.320 16.196 28.045 20.389 6.506 11.706 10.966 9.350 19.304

MSN[3] 5.678 25.246 13.853 18.138 21.559 19.218 16.064 13.624 25.646 10.483 20.125 17.017 4.546 10.122 9.210 8.391 14.932

Cascade[5] 6.435 29.065 11.847 19.728 20.418 19.819 20.836 11.205 26.301 12.92 24.034 17.094 4.453 8.942 8.364 6.659 15.507

ECG[4] 3.522 15.009 7.631 11.191 12.196 11.754 10.326 8.463 18.117 6.888 13.469 9.327 2.409 5.858 5.515 4.504 8.510

VRCNet[7] 2.679 13.904 7.108 8.932 8.031 9.644 8.629 6.572 14.939 5.287 10.386 7.451 1.816 4.713 4.004 2.959 7.315

RICNet(Ours) 2.644 12.950 7.607 9.096 7.341 9.277 8.774 6.115 13.771 4.950 11.582 7.134 1.669 4.859 3.929 2.975 7.167

Table 4. Completion results on the transformed cloud of MVP. Here we adopt the F-
score [20] as the evaluation metric. Higher values indicate better performance. RICNet
also stands out as the top-performing model overall.

Method Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Bed Bench Bookshelf Bus Guitar Motorbike Pistol Skateboard Avg.

PCN[2] 0.509 0.102 0.153 0.143 0.211 0.116 0.192 0.267 0.108 0.278 0.120 0.197 0.519 0.243 0.346 0.470 0.248

TopNet[6] 0.409 0.078 0.131 0.120 0.170 0.098 0.170 0.243 0.092 0.245 0.097 0.150 0.464 0.226 0.309 0.400 0.212

MSN[3] 0.650 0.193 0.239 0.302 0.440 0.23 0.337 0.408 0.249 0.446 0.238 0.289 0.640 0.375 0.439 0.494 0.373

Cascade[5] 0.615 0.145 0.209 0.230 0.392 0.179 0.252 0.394 0.197 0.362 0.171 0.268 0 .639 0.326 0.436 0.538 0.294

ECG[4] 0.737 0.242 0.300 0.375 0.547 0.283 0.403 0.495 0.308 0.556 0.289 0.391 0.748 0.442 0.541 0.656 0.382

VRCNet[7] 0.780 0.250 0.308 0.403 0.619 0.302 0.430 0.530 0.333 0.606 0.315 0.405 0.824 0.474 0.579 0.700 0.491

RICNet(Ours) 0.772 0.246 0.310 0.414 0.636 0.308 0.439 0.541 0.346 0.617 0.318 0.406 0.814 0.486 0.579 0.706 0.496

Quantitative Evaluation The completion results on the original point cloud
are shown in Table 1, while the results on randomly rotated point clouds are
presented in Table 2. Previous methods only consider point clouds with fixed
poses, and notable performance degradation can be observed when applied to
rotated point clouds. RICNet performs better than existing methods on both
non-rotated and randomly rotated point clouds.

MVP dataset comprises 16 categories of point clouds. Table 3, 4 quantita-
tively the completion results on incomplete point clouds with different poses
among all categories. Although RICNet may have slightly inferior performance
in certain specific categories compared to VRCNet, it still stands out as the
top-performing model overall.
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Table 5. Qualitative completion results on the transformed cloud using different meth-
ods. The point clouds in the dataset consist of 2,048 points. RICNet surpasses VRCNet
in capturing the overall structure in completion and exhibits significantly superior com-
pletion capability compared to other existing methods.

Input PCN[2] TopNet[6] MSN[3] Cascade[5] ECG[4] VRCNet[7] RICNet
(Ours)

Ground
Truth

Qualitative Evaluation Table 5 qualitatively shows the completion results on
the transformed cloud by different methods. As we discussed in the previous
section, [2,3,4,5,6] neglect the fine-grained local details. Furthermore, unlike the
completion results on fixed-pose point clouds in previous studies, we can clearly
observe that existing methods exhibit a significant deterioration in completion
performance on rotated point clouds. For example, TopNet [6] almost lacks the
ability to complete local features on the rotated point cloud, and MSN [3] only
roughly recovers the outline, leaving many intermediate points missing. RICNet
generates complete shapes with finer details compared to other alternatives, with
clearly observable relational structures.

More specifically, compared with the results of VRCNet[7], RICNet achieves
a more comprehensive completion of specific global characteristics. In the first
row, RICNet produces chair completions with straighter legs. In the second row,
VRCNet shows a higher occurrence of outliers in the completion of airplanes,
while RICNet demonstrates a cleaner and more precise representation of the
surface. In the third row, VRCNet neglects the completion of the missing mo-
torcycle headlight, whereas RICNet exhibits remarkable proficiency in recover-
ing the overall point cloud structure of motorcycles, highlighting its enhanced
completion capabilities for local features. Lastly, in the fourth row, RICNet ac-
curately recovers the smooth and rounded edge contours of guitars, preserving
intricate details and ensuring faithful reconstruction. These achievements are at-
tributed to our robust rotation-invariant point cloud completion network, which
effectively handles the completion of randomly rotated point clouds.
Ablation Study This section presents the results of the ablation study con-
ducted on RICNet to evaluate the effectiveness of each component. The study
focuses on three key components of our model: the rotation-invariant encoder,
the dual-path architecture, and the enhancing module. We use PCN[2] to denote
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Table 6. Ablation experiments are conducted on the proposed network modules. These
experiments examine the effectiveness of rotation-invariant encoder, dual-path archi-
tecture, and the enhancing module.

Enhancing
Module

Dual-Path
Architecture

Rotation-Invariant
Encoder

CD↓ F1↑

15.68 0.236
√

8.51 0.468
√ √

7.75 0.469
√ √ √

7.57 0.477

the model that does not incorporate any of the three aforementioned modules.
Table 6 illustrates the results of the ablation study conducted on our proposed
modules. The completion results are evaluated with 2048 points. The results of
the ablation study convincingly highlight the crucial significance of the proposed
module within our network.

5 Conclusion

In this paper, we propose RICNet, a rotation-invariant point cloud completion
network. Our feature extraction module exhibits robustness to rigid transforma-
tions such as rotation and translation of the input point clouds. This module
can be transferred to other point cloud tasks to enhance the network’s rotation
invariance. We evaluate the completion performance of existing methods and
our network on rotated point clouds through comprehensive experiments. RIC-
Net exhibits excellent generalization performance on incomplete point clouds
with different poses, making it suitable for practical applications like robotics,
autonomous driving, and 3D reconstruction. RICNet benefits downstream tasks
like point cloud segmentation, classification, and registration. Our network mod-
ules are also available for future research on incomplete point clouds.
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