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Aalborg University, Aalborg, Denmark
{gica,matthias}@create.aau.dk

Abstract. The role of trust in human-robot interaction (HRI) is becoming in-
creasingly important for effective collaboration. Insufficient trust may result in
disuse, regardless of the robot’s capabilities, whereas excessive trust can lead to
safety issues. While most studies of trust in HRI are based on questionnaires, in
this work it is explored how participants’ trust levels can be recognized based on
electroencephalogram (EEG) signals. A social scenario was developed where the
participants played a guessing game with a robot. Data collection was carried out
with subsequent statistical analysis and selection of features as input for differ-
ent machine learning models. Based on the highest achieved accuracy of 72.64%,
the findings indicate the existence of a correlation between trust levels and the
EEG data, thus offering a promising avenue for real-time trust assessment during
interactions, reducing the reliance on retrospective questionnaires.

Keywords: Trust in Human-Robot Interaction · Social Robotics · Human-Robot
Collaboration.

1 Introduction

In social scenarios, trust is an important aspect of human robot collaboration because
the level of trust of the human towards the robot can seriously affect the performance
during the interaction. In other words, it can cause unbalance workload, inefficient
monitoring of the robot, or even disuse of the system [4]. For example, socially as-
sistive robots provide assistance to elderly people for improving their quality of life and
independence [22] or serving as robot companions for activating and stimulating the
users [27]. In such scenarios, fostering trust in the robot is crucial not only for the user
but also for care personnel and relatives, ensuring a successful interaction.

Numerous attempts have been investigated to define the characteristics of trust as
an emergent phenomenon in human-human as well as human-robot interaction (HRI).
A meta-review of trust-related studies of human robot interaction [15] showed that the
two main variants of trust are performance-based and relation-based, which in turn are
related to specific domains of applications. Performance-based trust is mostly explored
in manipulative robot systems in industrial contexts. By contrast, relation-based trust is
more relevant for social scenarios focusing on communication rather than on manipu-
lation of objects.
⋆ The work described in this paper was funded by the Independent Research Fund Denmark,

grant number 1032-00311B.
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To be able to use trust as a control parameter in the context of human-robot collab-
oration, evaluating real-time trust levels throughout the interaction becomes essential.
As result, the behavior of the robot can be adapted to match the trust level of the user,
increasing efficiency or preventing potentially dangerous situations. The current trust
measurements are based on subjective, post-hoc questionnaires (e.g. [25, 28]) that pro-
vide only summary information about the subjects’ interpretation of the interaction but
do not support a continuous trust assessment during the collaboration. For this reason,
new methods must be developed for data-driven assessment of trust. Recent studies
have shown some promising steps in this direction (e.g. [7, 9, 26, 30]). For instance,
Hu et al. [9] successfully experimented with electroencephalogram (EEG) signals as a
real-time measurement of trust for a scenario based on performance-based trust. While
their results are promising, the trust rating that was used for labeling the data was an
oversimplification relying only on one question.

This paper proposes trust assessment based on EEG signals and Machine Learn-
ing (ML) within the context of relation-based trust. For the purpose of having a solid
basis for labeling the EEG data, the Multi-dimensional Measure of Trust (MDMT) ques-
tionnaire [28] is used as the baseline measurement to infer the trust levels. The deci-
sion to opt for MDMT hinges on the necessity for a more in-depth comprehension of
trust. Trust, being multifaceted, is thoroughly examined by MDMT across a spectrum
of dimensions, allowing to gain a more holistic insight into trust-related constructs.
The aforementioned approach allows for the automatic labeling of the data, facilitat-
ing the subsequent real-time analysis of the correlation between trust and physiological
responses, thereby overcoming the limitations associated with questionnaire responses.

2 Related Work

Trust can be defined as the operator’s perception of the competence of the machine
where it is essential that the operator is confident that the system appropriately accom-
plishes its tasks [18]. A correlation is present between the operator’s trust in the machine
and his willingness to use it, i.e. the more the human trusts the system, the more he is
likely to use it. In [18], Muir and Moray reported that the level of trust of the human
subject in a machine was heavily affected by the machine’s performance. As a matter
of fact, trust is a relevant factor that could affect the acceptance of a robot as assis-
tant, co-worker or companion in social scenarios [12, 16]. Moreover, it can influence
the human’s perception of the capabilities of a robot [8, 23].

In HRI, the concept of trust is a timely and relevant topic for various reasons. First
of all, there is a lack of a general understanding of the dynamic nature of trust and
the methodologies to study it [14]. Trust is not a static phenomenon: it can be built,
repaired, adjusted and it changes over time according to events that occur. Secondly,
trust is an essential feature of human decision-making in collaboration tasks and it be-
comes crucial when robots are closely working together with human users [29]. Thirdly,
mismatches in trust towards a robot can lead to severe consequences, ranging from
unbalance workload, to loss of expensive equipment or even human life due to ineffi-
cient monitoring [4, 19]. Therefore, both under-trust and over-trust in robots have to be
avoided.
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Most trust assessments rely primarily on post-hoc questionnaires (e.g. [10, 25]).
Only a limited number of methods have endeavored to gauge trust through performance,
with a primary emphasis on task success and efficiency. Floyd et al. [6], for instance,
estimated the robot’s trustworthiness based on observable performance which was cal-
culated as a comparison between the number of successful task completions and failed
or interrupted attempts. Xu and Dudek [30] proposed a data-driven approach to infer
trust levels, focusing specifically on a performance-centric definition of trust, which
evaluated success or failure in performing the task. A HRI trust scale was developed by
Yagoda et al. [31] that is based on a list of item dimensions including HRI attributes:
team configuration, team process, context, task, and system. Salem et al. [24] explored
the factors that affect human perception and trust towards an erroneous robot.

The post-hoc questionnaires are not sufficient to promptly determine the change
of trust level over time. Therefore, it is essential to track the unfolding of trust (and
distrust) in HRI to define reliable, real-time measures of trust [9] with the goal of
adapting the robot’s behavior to the user’s trust level. According to [21], the use of
psycho-physiological signals could be a solution to sense trust level. Among the several
psycho-physiological measurements, EEG is identified as a non-invasive and conve-
nient method for capturing brain signals and observing brain activity in response to a
specific event-related potential (ERP). Researchers have conducted studies on trust by
means of EEG signals. Hu et al. [9] introduced an initial attempt to establish a con-
nection between real-time physiological signals and human-machine trust. Regrettably,
their trust measurement remains superficial as it solely relies on asking participants
about their trust in the system. In a coin toss experiment that simulated trust and dis-
trust [3], Boudeau et al. found that ERP components had different peak amplitudes for
the several participants involved. Akash et al. [2] analyzed approaches to develop a
classification model to sense human trust using EEG and galvanic skin response mea-
surements.

3 Methodology

3.1 The Human Subject Study

To assess the trust level of the human subjects based on EEG signals, a social exper-
imental scenario was designed. A human and EZ-robot JD Humanoid1 played a col-
laborative game inspired by the board game Activity. As shown in Fig. 1, the game
consisted of five sections where, depending on the section, the humanoid robot either
mimed or vocally described a word among four options presented to the participant.
Throughout the interaction, the participant had to guess which word the robot was pre-
senting. In case of correct answer, the participant received a candy as reward; otherwise
one candy had to be returned. Each section was composed of two trials where, for each
trial, a different set of four words were presented by the robot. Furthermore, each sec-
tion implemented a different trust strategy that determined how the robot would behave.
The first two sections were used for building up trust. Section 2 showed some situation
awareness, e.g. by commenting on the participant’s cloth with the purpose to establish

1 https://www.ez-robot.com/
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Section 1: 

Mime

Trust Building

Section 2: 

Description

Trust Building + 

Situation 

Awareness

Section 3: 

Mime

Trust 

Dampening + 

Transparency

Section 4: 

Description

Trust 

Violation

Section 5: 

Mime

Trust Repair

Fig. 1. Sequence of the sections with the different trust strategies associated.

a relation. In section 3 the robot introduced the participant to some technical limitations
of the system (trust dampening + transparency). Section 4 violated trust by a deliberate
malfunction of the robot while section 5 was used to regain trust. In the end, between
each section and after the last section of the experiment, the MDMT questionnaire was
used to assess the average trust score. The participants were asked to rate on a 8-point
scale (0-7) how well some trust-based descriptors applied to the robot. Finally, an av-
erage trust score was calculated over the several dimensions measured by the MDMT.
To conclude, it is essential to emphasize that the initial three sections were employed
to establish a solid foundation of trust between the participants and the robot prior to
any violation of trust taking place. Consequently, Section 3 serves as a comprehensive
synthesis, bringing together all the trust-related insights derived from the earlier stages.

The experiment protocols were in accordance with the Declaration of Helsinki.
Ethical approval was obtained from the institutional review board prior to the study.
Twenty-one participants were recruited, 9 male and 12 female with an average age of
28.3 (SD=9.94). The sample size of 20 participants was chosen to initiate a preliminary
assessment of trust levels, considering resource limitations and the exploratory nature of
the study. Familiarity with robots was limited, three had previous practical experience
with robots, while the remaining had only encountered them either in reality (12 par-
ticipants) or through media (6 participants). The completion of the experiment required
30 minutes for each participant.

3.2 Experimental Setup

At the beginning of each session, a consent form and a description of the task were
provided and, subsequently, the participant was equipped with an EMOTIV EPOC+ 14-
Channel Wireless EEG Headset2 connected to a computer to record brain waves with
a rate of 128 Hz. To ensure a good contact quality, a saline liquid was applied to each
electrode in order to have an efficient conductivity. A sensor map was used to check
the location and contact quality of each sensor. The placement of the 14 electrodes is
reported in Fig. 2 (left). Furthermore, participants were given instructions to avoid mak-
ing pronounced movements to prevent any sensor shifts. The participant was seated on
a chair facing a table with the robot (Fig. 2 right), which was controlled through the
EZ-Builder software. In order to have a controlled data collection, a Wizard of Oz pro-
tocol was adopted, where the robot was manually controlled throughout the procedure.
The participant remained unaware of this fact until the debriefing.

2 https://www.emotiv.com/
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Fig. 2. Left: Placement of EEG electrodes. Right: Experimental scenario with the Humanoid
Robot JD and the participant wearing the EEG headset.

3.3 Data Pre-Processing

The EEG data was pre-filtered to remove the DC offset with 0.16 Hz high-pass cutoff.
Before computing the Fast Fourier Transform (FFT), the EMOTIV Cortex API was
used to minimize artifacts in the EEG signal. EEG waves can be affected by intrinsic
artifacts (e.g. movements of the eye, eye blinks, bio-electric potentials from muscle and
heart) and by external artifacts (e.g. environmental noise). Moreover, a Hanning win-
dow function was applied to obtain good frequency resolution and leakage protection
with fair amplitude’s accuracy. In order to analyze the alpha frequency band power,
the continuous time series EEG data were transformed through FFT to assess the in-
volved frequencies. Afterwards, the power spectral density was computed to determine
the power of each band. Subsequently, the extraction of the power, expressed in µV2,
was performed from the following frequency bands: Theta (4-8 Hz), Alpha (8-12 Hz),
Low Beta (12-16 Hz), High Beta (16-25 Hz) and Gamma (25-45 Hz). Considering the
nature of the task, the alpha brain waves were analyzed since previous studies have
shown a strong correlation between attention and this typology of waves. In [13], it
is reported that alpha suppression reflects attentional processes. The hypothesis is that
if the robot committed errors during the performance, the human would less trust the
robot, thus paying more attention in order to correctly guess the answer.

3.4 Data Analysis

For the trust assessment, the focus lay on the break point between section 3 and 4,
where a trust violation occurs. Firstly, it was necessary to validate whether the trust
scores from the MDMT were impacted by the trust violation. If that was the case, the
data collected in sections 3 and 4 could be utilized for training a trust assessment model,
incorporating the labels derived from the MDMT. A Shapiro-Wilk test revealed that the
difference in average trust scores between section 3 and section 4 did not follow a nor-
mal distribution (p=0.001). Therefore, instead of paired t-test, a Wilcoxon Signed-Rank
Test was performed. The statistical test reported a significant difference in trust scores
between section 3 (M=5.34, SD=1.31) and section 4 (M=4.64, SD=1.79). Specifically,
the trust scores in section 3 (Mdn=5.45) were significantly higher than those in section
4 (Mdn=5.07), W=26, p=0.002. The results verified the usability of the trust scores for
training the ML models.



6 Giulio Campagna and Matthias Rehm

Table 1. Features related to alpha frequency band power.

Features Description

Mean Value Average value of the power
Peak Maximum value of the power

Standard Deviation Dispersion of the power relative to its mean
Kurtosis Sharpness of the peak

4 Trust Assessment

The categorization of the trust level was modeled as a binary classification problem
(i.e. high trust, low trust). The ML models were based on features of the alpha frequency
band power. For each participant, the contribution of the alpha frequency band power of
each sensor was calculated and then averaged over the 14 channels. To extract the fea-
tures, a window size of 1 second (consisting of 128 data points) was defined. The initial
features calculated on these windows were mean, peak, median, standard deviation and
kurtosis. Based on the results of the MDMT questionnaire, the feature vectors were then
labeled as one of the two classes, i.e. either as high or low trust. The labels were de-
termined using the average of the results from the MDMT questionnaires as threshold
for both section 3 (M=5.34) and section 4 (M=4.64). By applying Univariate Feature
Selection method, the feature space was reduced by eliminating the median. The re-
sulting features are summarized in Table 1. According to [17], classification algorithms
are more suitable than regression models in brain computer interface applications. In
this analysis, several supervised ML algorithms were selected to categorize the trust
level of the participants. The adopted models were Support Vector Machine (SVM),
k-Nearest Neighbors (kNN) and Random Forest. The data were normalized, shuffled
and divided in 70% for the training set and 30% for the testing set. Tuning of hyperpa-
rameters was performed during the modeling phase. In the following, each algorithm is
briefly presented along with the chosen evaluation metric (classification accuracy).

Support Vector Machine With reference to [20], SVM is a suitable model to classify
physiological data. It is a discriminative classifier whose purpose is to provide a hyper-
plane in a N-dimensional space (N corresponds to the number of features) that distinctly
classifies the data points of a binary classification problem. Many hyperplanes can be
chosen and the selection depends on the maximum achieved margin, which is the max-
imum distance between the support vectors, i.e. the data points of the two classes closer
to the hyperplane. Maximizing the margins aims to provide a wider confidence inter-
val for classifying new data points into one of the two regions in the space, based on
their respective class memberships. To determine the optimal hyperplane (i.e. decision
boundary), the hyperparameters must be computed through (1):

min
w,b,ξ

1
2

wtw+
C
n

n

∑
i=1

ξ i for i = 1,...,n (1)

where w and b are hyperparameters, C is a tune parameter, n is the number of training
samples and ξ i is a variable that measures the extent of violation of constraint (2):
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yi(⟨w,xi⟩+b)≥ 1−ξ i (2)

where xi is the training set while yi are the categories. To conclude, SVM robustly
mitigates overfitting due to the margin maximization, support vector utilization and
regulation parameter control. In this analysis, the two regions of the space represented
respectively the high trust and the low trust categories of the participants. The regulation
term C was assigned a value of 0.5 and the radial basis function was selected as the
kernel. The algorithm performs with 63.20% accuracy.

k-Nearest Neighbors kNN is a memory based classifier that exploits the similarity of
the features between classes in order to predict the class of a new feature vector. kNN
estimates the likelihood that a new data point belongs to a specific class (high or low
trust) based on which class most of the data points closest to the new feature vector
belong to. A distance function is used to determine the similarity between a new data
point and its nearest neighbors [11], which is frequently the standard Euclidean distance
(3):

d(xi,yi) =

√√√√ d

∑
i=1

(xi − yi)2 (3)

where xi are the unclassified samples, yi are the labeled data and d is the dimension of
the feature space. kNN is considered robust to overfitting due to its local nature and lack
of assumptions about data distribution. Additionally, the choice of the hyperparameter
k (number of neighbors) helps prevent overfitting. A number of seven neighbors was
determined through experimentation, which resulted in an accuracy of 68.86%.

Random Forest Random Forest utilizes ensemble learning, a technique that combines
many classifiers to make predictions. It consists of a large number of decision trees on
various subsets of the given dataset. Each individual tree derives a class prediction and
the class with the most votes is the output of the algorithm [5]. The robustness of Ran-
dom Forest to overfitting is attributed to the random selection of features and sample
subsets for each tree. This randomness ensures that no single tree have excessive influ-
ence over the ensemble, promoting generalization and reducing the risk of overfitting
to unseen data. This model achieved the highest accuracy of 72.64% by utilizing 100
decision trees and employing Gini criterion as the quality measure for evaluating splits
in each tree.

5 Discussion

The data analysis indicated a statistically significant difference concerning the trust
scores between the two analysed sections of the experiment (p=0.002). Therefore, con-
sidering that each of the two sections had a distinct trust strategy (i.e. the robot’s per-
formance varied), it can be concluded that the robot successfully elicited a noticeable
shift in trust among the participants. Thus, the hypothesis about perceptible variations
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Table 2. Supervised learning models and performance indicators.

Supervised Learning Model Accuracy Precision Recall F1-score

Support Vector Machine 63.20% 0.63 0.63 0.63
k-Nearest Neighbors 68.86% 0.70 0.69 0.69

Random Forest 72.64% 0.75 0.73 0.72

in trust scores around the break point when trust violation occurred has been validated.
Based on this, three different algorithms for trust categorization were examined. The
analysis involved various performance indicators, namely accuracy, precision, recall,
F1-score. The corresponding outcomes are presented in Table 2. The Random Forest
model achieved a higher accuracy (72.64%), likely attributed to its ensemble nature,
indicating a greater number of correct predictions compared to the other models. Its
elevated precision suggested a lower incidence of false positives, which is essential for
minimizing misclassifications. Moreover, the model demonstrated a higher recall value,
signifying its ability to identify a larger proportion of actual positive instances, i.e. high
sensitivity. The second-best performing model was kNN. Its competitive performance
might be attributed to its simplicity and the absence of strong assumptions about the un-
derlying data distribution. Lastly, SVM exhibited low performance possibly due to the
complexity of the dataset and limited feature space. SVM’s performance might improve
with more diverse and higher-dimensional data. For instance, other features concerning
alpha band could be peak-to-peak amplitude and alpha band reactivity.

In summary, the results highlighted the utility of EEG data in estimating trust lev-
els in relation-based trust in human robot collaboration. Being able to classify trust
based on sensor data has two main advantages over traditional trust evaluation through
questionnaires. Firstly, questionnaire results do not always align with user behavior [1].
Trust assessment relying on sensor data becomes more objective, eliminating the need
to rationalize the entire interaction with the robot. Secondly, while questionnaires offer
summative evaluation after interaction, sensor-based trust assessment enables continu-
ous evaluation, capturing trust dynamics as it develops during interaction. This facili-
tates the potential to react in real-time to over/undertrust by adapting the robot’s inter-
action or communication behavior. The study’s main limitation was the fluency of the
robot’s speech, which significantly influences human attention and trust in the robot’s
communication abilities. When a robot communicates smoothly, it appears more com-
petent and reliable, leading to increased trust from humans. To further explore trust, the
next step could involve increasing the risk for human participants during interactions to
elicit stronger trust responses toward the robot.

6 Conclusion

This paper explored the correlation between robot performance and levels of human
trust by leveraging EEG signals as input to trust assessment models. To this end, a sce-
nario fostering social collaboration was designed, requiring the human to engage with
a robot to successfully accomplish a game. Results show the successful manipulation
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of the participants’ trust levels through the robot performance. Using the identified trust
levels, a connection between the EEG data and trust was identified through ML models.
These findings serve as the foundation for future research endeavors. As part of their
ongoing work, the authors intend to delve into the effects of the trust repair section on
the process of regaining trust from user participants following the robot’s performance
error. Additionally, sensor fusion techniques, incorporating EEG data, will be employed
to enhance the robustness of trust level categorization.
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