
THE
AUSTIN
PROTOCOL
COMPILER

Advances in Information Security

Sushil Jajodia
Consulting editor

Center for Secure Information Systems
George Mason University
Fairfax, VA 22030-4444
email: jajodia@gmu. edu

The goals of Kluwer International Series on ADVANCES IN INFORMATION SECURITY
are, one, to establish the state of the art of, and set the course for future research in
information security and, two, to serve as a central reference source for advanced and timely
topics in information security research and development. The scope of this series includes all
aspects of computer and network security and related areas such as fault tolerance and
software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive
overviews of specific topics in information security, as well as works that are larger in scope
or that contain more detailed background information than can be accommodated in shorter
survey articles. The series also serves as a forum for topics that may not have reached a level
of maturity to warrant a comprehensive textbook treatment.

Researchers as well as developers are encouraged to contact Professor Sushil Jajodia with
ideas for books under this series.

Additional titles in the series:Additional titles in the series:
ECONOMICS OF INFORMATION SECURITY by L. Jean Camp and Stephen
Lewis; ISBN: 1-4020-8089-1
PRIMALITY TESTING AND INTEGER FACTORIZATION IN PUBLIC KEY
CRYPTOGRAPHY by Song Y. Yan; ISBN: 1-4020-7649-5
SYNCHRONIZING E-SECURITY by Godfried B. Williams; ISBN: 1-4020-7646-0
INTRUSION DETECTION IN DISTRIBUTED SYSTEMS:
An Abstraction-Based Approach by Peng Ning, Sushil Jajodia and X. Sean Wang
ISBN: 1-4020-7624-X
SECURE ELECTRONIC VOTING edited by Dimitris A. Gritzalis; ISBN:
1-4020-7301-1
DISSEMINATING SECURITY UPDATES AT INTERNET SCALE by Jun Li, Peter
Reiher, Gerald J. Popek; ISBN: 1-4020-7305-4
SECURE ELECTRONIC VOTING by Dimitris A. Gritzalis; ISBN: 1-4020-7301-1
APPLICATIONS OF DATA MINING IN COMPUTER SECURITY, edited by Daniel
Barbará, Sushil Jajodia; ISBN: 1-4020-7054-3
MOBILE COMPUTATION WITH FUNCTIONS by ISBN:
1-4020-7024-1
TRUSTED RECOVERY AND DEFENSIVE INFORMATION WARFARE by Peng Liu
and Sushil Jajodia, ISBN: 0-7923-7572-6

Additional information about this series can be obtained from
http://www.wkap.nl/prod/s/ADIS

THE
AUSTIN
PROTOCOL
COMPILER

by

Tommy M. McGuire
Mohamed G. Gouda
The University of Texas at Austin

Springer

eBook ISBN: 0-387-23228-1
Print ISBN: 0-387-23227-3

Print ©2005 Springer Science + Business Media, Inc.

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2005 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

To Dianne Driskell.
T.M.M.

To the memory of my
parents.

M.G.G.

CONTENTS

Preface xi

Acknowledgements xiii

Network Protocols 1
Protocol development problems

1
1
5
6
9

Existing solutions
Protocol layering
Protocol frameworks
Protocol languages 10

12

15
16
17
18
18
19
20
21
22

24
25
26
28

31
31
32
32
32
33

The Austin Protocol Compiler

2 The Timed Abstract Protocol Notation
Messages and channels
Processes

Actions
Statements
Protocol style
Justification
Details of TAP

Message syntax
Process syntax
Action syntax
Statement syntax
Expression syntax

3 Execution Models of Network Protocols
Two Models
Abstract Execution Model

Abstract protocol state
Abstract protocol execution
Abstract faults

viii CONTENTS

Abstract timeout behavior 34

36

37

39

42

42

42

45

45

46

46

46

47

49

49

51

52

52

52

53

53

54

55

57

63

64

67

67

67

68

68

Abstract execution of the request/reply protocol

The slow request/reply protocol

Justification

Concrete Execution Model

Concrete protocol state

Concrete protocol execution

Delayed message propagation

Concrete faults

Concrete timeout behavior

Local fairness

Concrete execution of the request/reply protocol

Justification

4 Equivalence of Execution Models

Protocol states

Equivalent protocol states

State transitions

Computations

Whole computations

Equivalent computations

Proof of equivalence

Implementation consistency

Event serialization

Event reordering

Implementation completeness

Related work

5 Preserving Fairness

Global fairness

Local fairness

Proof of fairness equivalence

Fairness and the Austin Protocol Compiler

CONTENTS ix

6 The Austin Protocol Compiler
Architecture of the compiler

71
72
73
74
77
77
79
79
80
81

85
85
86
87
93
95
98

Message handling
TAP processes

APC runtime interfaces
Initializing and executing the runtime system
Invoking C functions from TAP
Message functions

Architecture of the runtime system
Implementation of the concrete execution model

7 Two examples
The secret exchange protocol

Hop integrity
Implementation of the secret exchange protocol
Behavior of the secret exchange protocol

The accelerated heartbeat protocol
Implementation of the accelerated heartbeat protocol
Behavior of the accelerated heartbeat protocol

8 A DNS Server
The authoritative DNS server
Implementation performance

Latency
Throughput
Overhead

Performance of the Austin Protocol Compiler

9 Concluding Remarks

102

107
110
116
118
120
121

122

125
125
126
127
127
128

129

133

Summary
Future directions

Enhancements
Alternative compiler back ends
Alternative runtime systems

Bibliography

Index

PREFACE

There are two groups of researchers who are interested in designing network
protocols and who cannot (yet) effectively communicate with one another con-
cerning these protocols. The first is the group of protocol verifiers, and the
second is the group of protocol implementors.

The main reason for the lack of effective communication between these
two groups is that these groups use languages with quite different semantics to
specify network protocols. On one hand, the protocol verifiers use specification
languages whose semantics are abstract, coarse-grained, and with large atomic-
ity. Clearly, protocol specifications that are developed based on such semantics
are easier to prove correct. On the other hand, the protocol implementors use
specification languages whose semantics are concrete, fine-grained, and with
small atomicity. Protocol specifications that are developed based on such se-
mantics are easier to implement using system programming languages such as
C, C++, and Java.

To help in closing this communication gap between the group of protocol
verifiers and the group of protocol implementors, we present in this monograph
a protocol specification language called the Timed Abstract Protocol (or TAP,

for short) notation. This notation is greatly influenced by the Abstract Protocol
Notation in the textbook Elements of Network Protocol Design, written by the
second author, Mohamed G. Gouda. The TAP notation has two types of seman-
tics: an abstract semantics that appeals to the protocol verifiers and a concrete
semantics that appeals to the protocol implementors group.

More significantly, we show in this monograph that the two types of se-
mantics of TAP are equivalent. Thus, the correctness of a TAP specification
of some protocol, that is established based on the abstract semantics of TAP,
is maintained when this specification is implemented based on the concrete
semantics of TAP. The equivalence between the abstract and concrete seman-
tics of TAP suggests the following three-step method for developing a correct
implementation of a protocol:

1. Specify the protocol using the TAP notation.

xii

2.

3.

Verify the correctness of the specification based on the abstract semantics
of TAP.

Implement the specification based on the concrete semantics of TAP.

To aid in step 3 of this method, we developed the Austin Protocol Compiler
(or APC, for short) that takes as input a TAP specification of some protocol and
produces as output C-code that implements this protocol based on the concrete
semantics of TAP. The design of the Austin Protocol Compiler is one of the
main features of this monograph.

This monograph is primarily directed towards protocol designers, verifiers,
reviewers, and implementors. It is also directed towards graduate students who
are interested in designing, verifying, and implementing network protocols.

The authors wish to express their thanks to their friends and colleagues at
the Department of Computer Sciences at The University of Texas at Austin for
their encouragement and support.

The Austin Protocol Compiler software, including the compiler, runtime
system, and the examples from this book, is available from the Austin Protocol
Compiler home page1.

1http://www.cs.utexas.edu/users/mcguire/software/apc/

ACKNOWLEDGEMENTS

The authors would like to thank Lorenzo Alvisi, Michael D. Dahlin, Mootaz
Elnozahy, and Aloysius K. Mok for their suggestions which have improved this
monograph.

Tommy M. McGuire would like to thank his friends and coworkers in
UTCS and elsewhere for their support: Kay Nettle, Fletcher Mattox, John
Chambers, Stephanie Tomlinson, Dan Machold, Cyndy Matuszek, Toren
Smith, Joe Trent, Scott Sutcliffe, Chris McCraw, Tony Bumpass, Casey
Cooper, Pat Horne, Chris Kotrla, Matt Larson, Bart Phillips, Carol Hyink,
Lewis Phillips and his ex-boss, Patti Spencer. Without their patience, this work
would not have been completed. He is also grateful for the support and encour-
agement of his family.

Mohamed G. Gouda is grateful to his parents from whom he inherited his
moral pursuit and work ethics. His mother, an art teacher and a school principal
in Cairo, was born on June 29, 1917 and passed away on September 10, 2002.

His father, a language teacher and an education official in Cairo, was born on
April 1, 1916 and passed away on June 3, 1996. This monograph is dedicated
to their living and loving memory.

T.M.M.
M.G.G.
Austin, TX
July, 2004

