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PREFACE

There are two groups of researchers who are interested in designing network
protocols and who cannot (yet) effectively communicate with one another con-
cerning these protocols. The first is the group of protocol verifiers, and the
second is the group of protocol implementors.

The main reason for the lack of effective communication between these
two groups is that these groups use languages with quite different semantics to
specify network protocols. On one hand, the protocol verifiers use specification
languages whose semantics are abstract, coarse-grained, and with large atomic-
ity. Clearly, protocol specifications that are developed based on such semantics
are easier to prove correct. On the other hand, the protocol implementors use
specification languages whose semantics are concrete, fine-grained, and with
small atomicity. Protocol specifications that are developed based on such se-
mantics are easier to implement using system programming languages such as
C, C++, and Java.

To help in closing this communication gap between the group of protocol
verifiers and the group of protocol implementors, we present in this monograph
a protocol specification language called the Timed Abstract Protocol (or TAP,

for short) notation. This notation is greatly influenced by the Abstract Protocol
Notation in the textbook Elements of Network Protocol Design, written by the
second author, Mohamed G. Gouda. The TAP notation has two types of seman-
tics: an abstract semantics that appeals to the protocol verifiers and a concrete
semantics that appeals to the protocol implementors group.

More significantly, we show in this monograph that the two types of se-
mantics of TAP are equivalent. Thus, the correctness of a TAP specification
of some protocol, that is established based on the abstract semantics of TAP,
is maintained when this specification is implemented based on the concrete
semantics of TAP. The equivalence between the abstract and concrete seman-
tics of TAP suggests the following three-step method for developing a correct
implementation of a protocol:

1. Specify the protocol using the TAP notation.



xii

2.

3.

Verify the correctness of the specification based on the abstract semantics
of TAP.

Implement the specification based on the concrete semantics of TAP.

To aid in step 3 of this method, we developed the Austin Protocol Compiler
(or APC, for short) that takes as input a TAP specification of some protocol and
produces as output C-code that implements this protocol based on the concrete
semantics of TAP. The design of the Austin Protocol Compiler is one of the
main features of this monograph.

This monograph is primarily directed towards protocol designers, verifiers,
reviewers, and implementors. It is also directed towards graduate students who
are interested in designing, verifying, and implementing network protocols.

The authors wish to express their thanks to their friends and colleagues at
the Department of Computer Sciences at The University of Texas at Austin for
their encouragement and support.

The Austin Protocol Compiler software, including the compiler, runtime
system, and the examples from this book, is available from the Austin Protocol
Compiler home page1.

1http://www.cs.utexas.edu/users/mcguire/software/apc/
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