Image and Video Encryption From Digital Rights Management to Secured Personal Communication

Advances in Information Security

Sushil Jajodia

Consulting editor Center for Secure Information Systems George Mason University Fairfax, VA 22030-4444 email: jajodia@gmu.edu

The goals of Kluwer International Series on ADVANCES IN INFORMATION SECURITY are, one, to establish the state of the art of, and set the course for future research in information security and, two, to serve as a central reference source for advanced and timely topics in information security research and development. The scope of this series includes all aspects of computer and network security and related areas such as fault tolerance and software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive overviews of specific topics in information security, as well as works that are larger in scope or that contain more detailed background information than can be accommodated in shorter survey articles. The series also serves as a forum for topics that may not have reached a level of maturity to warrant a comprehensive textbook treatment.

Researchers as well as developers are encouraged to contact Professor Sushil Jajodia with ideas for books under this series.

Additional titles in the series:

INTRUSION DETECTION AND CORRELATION: Challenges and Solutions

by Christopher Kruegel, Fredrik Valeur and Giovanni Vigna; ISBN: 0-387-23398-9

THE AUSTIN PROTOCOL COMPILER by Tommy M. McGuire and Mohamed G. Gouda; ISBN: 0-387-23227-3

ECONOMICS OF INFORMATION SECURITY by L. Jean Camp and Stephen Lewis; ISBN: 1-4020-8089-1

PRIMALITY TESTING AND INTEGER FACTORIZATION IN PUBLIC KEY CRYPTOGRAPHY by Song Y. Yan; ISBN: 1-4020-7649-5

SYNCHRONIZING E-SECURITY by Godfried B. Williams; ISBN: 1-4020-7646-0 INTRUSION DETECTION IN DISTRIBUTED SYSTEMS:

An Abstraction-Based Approach by Peng Ning, Sushil Jajodia and X. Sean Wang ISBN: 1-4020-7624-X

SECURE ELECTRONIC VOTING edited by Dimitris A. Gritzalis; ISBN: 1-4020-7301-1

DISSEMINATING SECURITY UPDATES AT INTERNET SCALE by Jun Li, Peter Reiher, Gerald J. Popek; ISBN: 1-4020-7305-4

SECURE ELECTRONIC VOTING by Dimitris A. Gritzalis; ISBN: 1-4020-7301-1

APPLICATIONS OF DATA MINING IN COMPUTER SECURITY, edited by Daniel Barbará, Sushil Jajodia; ISBN: 1-4020-7054-3

MOBILE COMPUTATION WITH FUNCTIONS by Zeliha Dilsun Kırlı, ISBN: 1-4020-7024-1

Additional information about this series can be obtained from http://www.wkap.nl/prod/s/ADIS

Image and Video Encryption From Digital Rights Management to Secured Personal Communication

by

Andreas Uhl Andreas Pommer Salzburg University, Austria

Springer

eBook ISBN: 0-387-23403-9 Print ISBN: 0-387-23402-0

©2005 Springer Science + Business Media, Inc.

Print ©2005 Springer Science + Business Media, Inc. Boston

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: and the Springer Global Website Online at: http://ebooks.kluweronline.com http://www.springeronline.com

I dedicate this book to my wife Jutta – thank you for your understanding and help in my ambition to be both, a loving and committed partner and father as well as an enthusiastic scientist.

Andreas Uhl

I dedicate this book to all the people with great ideas who make the net an enjoyable place.

Andreas Pommer

Contents

De	dication	v
Lis	t of Figures	ix
Lis	st of Tables	xiii
Pre	eface	XV
Ac	knowledgments	xvii
1.	INTRODUCTION	1
2.	VISUAL DATA FORMATS	11
	1 Image and Video Data	11
	2 DCT-based Systems	12
	3 Wavelet-based Systems	14
	4 Further Techniques	18
3.	CRYPTOGRAPHY PRIMER	21
	1 Introduction, Terminology	21
	2 Secret key vs. Public key Cryptography	22
	3 Block Ciphers	23
	4 Stream Ciphers	27
	5 Hybrid Algorithms, some Applications	28
	6 Cryptanalysis Overview	29
	7 Further Information	30
4.	APPLICATION SCENARIOS FOR THE ENCRYPTION	31
	OF VISUAL DATA	
	1 Security provided by Infrastructure or Application	31
	2 Full Encryption vs. Selective Encryption	32
	3 Interplay between Compression and Encryption	37

5.	IMAGE AND VIDEO ENCRYPTION	45
	1 DCT-based Techniques	47
	2 Wavelet-based Techniques	82
	3 Further Techniques	115
	4 Transparent Encryption	127
	5 Commercial Applications and Standards	129
6.	CONCLUSIONS	135
Ap	ppendices	137
А	Copyrighted sections	137
В	Test Images and Videos	139
	1 Cover Page	139
	2 Test Images	139
	3 Sequence 1 — Bowing	141
	4 Sequence 2 — Surf Side	141
	5 Sequence 3 — Coast Guard	141
	6 Sequence 4 — Akiyo	142
	7 Sequence 5 — Calendar	142
С	Authors' Biographies	143
Re	eferences	145
Inc	dex	159

List of Figures

2.1	Frame-structure of video (football sequence)	11
2.2	Block-Matching motion estimation	13
2.3	1-D and 2-D wavelet decomposition	15
2.4	Comparison of DCT-based and wavelet-based compres-	
	sion schemes	16
2.5	Spatial Orientation Tree	17
2.6	JPEG 2000 coding pipeline	18
4.1	Runtime analysis of JJ2000 compression for increasing	
	image size	36
4.2	Testimages used to evaluate the rate distortion performance.	39
4.3	Rate-distortion performance of JPEG and JPEG 2000.	39
4.4	Time demand.	40
4.5	Wireless connections, AES encryption.	42
4.6	Wired connections (ethernet), AES encryption	42
5.1	VLC encryption results	63
5.2	MB permutation results	65
5.3	DCT block permutation results	66
5.4	Motion vector permutation results	67
5.5	Results of motion vector prediction sign change	68
5.6	Results of motion vector residual sign change	68
5.7	DCT coefficient sign change results	69
5.8	I-frame sign change results	70
5.9	I-frame + I-block sign change results	70
5.10	DC and AC coefficient mangling results	71
5.11	DC and AC coefficient mangling results	72

5.12	DC and AC coefficient mangling results	72
5.13	Modified Scan Order (example)	73
5.14	Zig-zag order change results	74
5.15	Compression performance — baseline and progressive JPEG	79
5.16	Lena image; a three level pyramid in HP mode is used with the lowest resolution encrypted	79
5.17	Mandrill image; SS mode is used with DC and first AC coefficient encrypted	80
5.18	Subjective quality of reconstructed Lena image	82
5.19	Images from Fig. 5.18 median filtered (3x3 kernel) and blurred (5x5 filter).	83
5.20	Compression performance, Lena image 512 x 512 pixels	86
5.21	Reconstruction using random filters	89
5.22	Reconstructed image where the heuristic failed at the finest level of decomposition	89
5.23	Reconstructed image where the heuristic failed at 3 out of 5 levels	89
5.24	Quality of JPEG 2000 compression	91
5.25	Attack against a 1-D parameter scheme	92
5.26	Quality of attacked images	93
5.27	Attack against a 2-D parameter scheme	94
5.28	Quality of attacked images	95
5.29	Quality values for $K = 0$.	97
5.30	Parameterised biorthogonal 4/8 filters.	98
5.31	Frequency response	98
5.32	minimum and maximum level of decomposition influ- encing the quality	100
5.33	Various weight factors for the decomposition decision	100
5.34	All parameters of figures 5.32(a), 5.32(b), 5.33(a), 5.33(b)	101
5.54	in one plot	102
5.35	Variance for increasing number of coefficients	104
5.36	Reconstruction using a wrong decomposition tree	105
5.37	Comparison of selective encryption	110
5.38	Angiogram: Comparison of selective encryption	110
5.39	Comparison of selective encryption	111
5.40	Comparison of selective encryption	112

List of Figures

5.41	Angiogram: PSNR of reconstructed images after re-	
	placement attack	113
5.42	PSNR of reconstructed images after replacement attack	113
5.43	Visual quality of reconstructed Angiogram after replacement	114
5.44	Visual quality of reconstructed Lena after replacement attack	115
5.45	Baker Map (1/2,1/2).	116
5.46	Baker Map (1/2,1/2) applied to Lena.	118
5.47	Visual examples for selective bitplane encryption, di-	
	rect reconstruction.	119
5.48	Further visual examples for selective bitplane encryption.	120
5.49	Visual examples for encryption of MSB and one addi-	
	tional bitplane.	121
5.50	Visual examples for the efficiency of the Replacement Attack.	122
5.51	MSB of the Lena image and reconstructed Bitplane.	123
5.52	Combination of two half-images after Reconstruction Attack.	124
5.53	Example for leaf ordering I and II.	125

List of Tables

4.1	Number of basic operations for AES encryption	35
4.2	Magnitude order of operations for wavelet transform	35
4.3	Numbers of instructions for wavelet decompositions	36
5.1	Overall assessment of the Zig-zag Permutation Algorithm	49
5.2	Overall assessment of Frequency-band Coefficient Shuffling	49
5.3	Overall assessment of Scalable Coefficient Encryption (in coefficient domain)	50
5.4	Overall assessment of Coefficient Sign Bit Encryption	51
5.5	Overall assessment of Secret Fourier Transform Domain	51
5.6	Overall assessment of Secret Entropy Encoding	52
5.7	Overall assessment of Header Encryption	52
5.8	Overall assessment of Permutations applied at the bit- stream level	54
5.9	Overall assessment of One-time pad VEA	56
5.10	Overall assessment of Byte Encryption	56
5.11	Overall assessment of VLC Codeword encryption	57
5.12	Overall assessment of I-frame Encryption	59
5.13	Overall assessment of Motion Vector Encryption	60
5.14	Objective quality (PSNR in dB) of reconstructed images	81
5.15	Overall assessment of Coefficient Selective Bit Encryption	84
5.16	JPEG 2000/SPIHT: all subbands permuted, max. ob- served file size increase at a medium compression rate	
	ranging from 25 up to 45	86
5.17	Overall assessment of Coefficient Permutation	87

Overall assessment of Coefficient Block Permutation	
and Rotation	88
Overall assessment of Secret Wavelet Filters	90
Overall assessment of Secret Wavelet Filters: Parametri-	
sation Approach	99
Overall assessment of Secret Subband Structures	107
Overall assessment of SPIHT Encryption	108
Overall assessment of JPEG 2000 Encryption	114
Overall assessment of Permutations	116
Overall assessment of Chaotic Encryption	117
PSNR of images after direct reconstruction	120
Number of runs consisting of 5 identical bits	121
Overall assessment of Bitplane Encryption	124
Overall assessment of Quadtree Encryption	126
Overall assessment of Encrypting Fractal Encoded Data	126
Overall assessment of the Virtual Image Cryptosystem	127
	and Rotation Overall assessment of Secret Wavelet Filters Overall assessment of Secret Wavelet Filters: Parametri- sation Approach Overall assessment of Secret Subband Structures Overall assessment of SPIHT Encryption Overall assessment of JPEG 2000 Encryption Overall assessment of Permutations Overall assessment of Chaotic Encryption PSNR of images after direct reconstruction Number of runs consisting of 5 identical bits Overall assessment of Bitplane Encryption Overall assessment of Quadtree Encryption

xiv

Preface

Contrasting to classical encryption, security may not be the most important aim for an encryption system for images and videos. Depending on the type of application, other properties (like speed or bitstream compliance after encryption) might be equally important as well. As an example, the terms "soft encryption" or "selective encryption" are sometimes used as opposed to classical "hard" encryption schemes like full AES encryption in this context. Such schemes do not strive for maximum security and trade off security for computational complexity. They are designed to protect multimedia content and fulfil the security requirements for a particular multimedia application. For example, real-time encryption for an entire video stream using classical ciphers requires much computation time due to the large amounts of data involved, on the other hand many multimedia applications require security on a much lower level (e.g. TV broadcasting) or should protect their data just for a short period of time (e.g. news broadcast). Therefore, the search for fast encryption procedures specifically tailored to the target environment is mandatory for multimedia security applications. The fields of interest to deploy such solutions span from digital rights management (DRM) schemes to secured personal communication.

Being the first monograph exclusively devoted to image and video encryption systems, this book provides a unified overview of techniques for the encryption of visual data, ranging from commercial applications in the entertainment industry (like DVD or Pay-TV DVB) to more research oriented topics and recently published material. To serve this purpose, we discuss and evaluate different techniques from a unified viewpoint, we provide an extensive bibliography of material related to these topics, and we experimentally compare different systems proposed in the literature and in commercial systems. Several techniques described in this book can be tested online, please refer to http://www.ganesh.org/book/. The cover shows images of the authors which have been encrypted in varying strength using techniques described in section 1.3.8 (chapter 5) in this book.

The authors are members of the virtual laboratory "WAVILA" of the European Network of Excellence ECRYPT, which focuses on watermarking technologies and related DRM issues. National projects financed by the Austrian Science Fund have been supporting the work in the multimedia security area. Being affiliated with the Department of Scientific Computing at Salzburg University, Austria, the authors work in the Multimedia Signal Processing and Security research group, which will be organising as well the 2005 IFIP Communications and Multimedia Security Conference CMS 2005 and an associated summerschool. For more informations, please refer to the website of our group at http://www.scicomp.sbg.ac.at/research/multimedia.html or at http://www.ganesh.org/.

Acknowledgments

This work has been partially funded by the Austrian Science Fund FWF, in the context of projects no. 13732 and 15170. Parts of the text are copyrighted material. Please refer to the corresponding appendix to obtain detailed information.