
10

PACKING TRIANGLES

Finding k disjoint triangles in an arbitrary graph 1

Mike Fellows Pinar Heggernes Frances Rosamond
Christian Sloper Jan Arne Telle

Abstract

We consider theNP-complete problem of deciding whether an input graph
on n vertices hask vertex-disjoint copies of a fixed graphH. For H = K3

(the triangle) we give anO(22k log k+1.869kn2) algorithm, and for generalH an
O(2k|H| log k+2k|H| log |H|n|H|) algorithm. We introduce a preprocessing (ker-
nelization) technique based on crown decompositions of an auxiliary graph.
ForH = K3 this leads to a preprocessing algorithm that reduces an arbitrary
input graph of the problem to a graph onO(k3) vertices in polynomial time.

10.1 INTRODUCTION

For a fixed graphH and an input graphG, theH-packing problem asks for the maximum
number of vertex-disjoint copies ofH in G. TheK2-packing (edge packing) problem,
which is equivalent to maximum matching, played a central role in the history of classical
computational complexity. The first step towards the dichotomy of ’good’ (polynomial-
time) versus ’presumably-not-good’ (NP-hard) was made in a paper on maximum match-
ing from 1965 [E65], which gave a polynomial time algorithm for that problem. On the
other hand, theK3-packing (triangle packing) problem, which is our main concern in this
paper, isNP-hard [HK78].

Recently, there has been a growing interest in the area of exact exponential-time algo-
rithms forNP-hard problems. When measuring time in the classical way, simply by the

1This paper appeared at the conference ’30th International Workshop of Graph-Theoretic Concepts in
Computer Science’ and was published in the proceedings [FHRST04].

10.1 INTRODUCTION 81

size of the input instance, the area of exact algorithms forNP-hard problems lacks the
classical dichotomy of good (P) versus presumably-not-good (NP-hard) [W03]. How-
ever, if in the area of exact algorithms forNP-hard problems we instead measure time in
the parameterized way, then we retain the classical dichotomy of good (FPT - Fixed Pa-
rameter Tractable) versus presumably-not-good (W [1]-hard) [DF99]. It therefore seems
that the parameterized viewpoint gives a richer complexity framework. In fact, a formal
argument for this follows from the realization that the non-parameterized viewpoint, mea-
suring time by input size, is simply a special case of the parameterized viewpoint with the
parameter chosen to be the input size. Parameterized thus, any problem is triviallyFPT
and the race for the bestFPTalgorithm is precisely the same as the race for the best non-
parameterized exact algorithm. Note that for any optimization or decision problem, there
are many interesting possibilities for choice of parameter, that can be guided by both
practical and theoretical considerations, see for example [F03] for a discussion of five
different parameterizations of a single problem. In our opinion, the relevant discussion
for the field of exact algorithms forNP-hard problems is therefore not “parameterized or
non-parameterized?” but rather “which parameter?”

In this paper our focus is on parameterized algorithms for deciding whether a graphG has
k disjoint copies ofK3, with the integerk being our parameter. On input(G, k), whereG
is a graph onn vertices, anFPTalgorithm is an algorithm with runtimeO(nαf(k)), for a
constantα and an unrestricted functionf(k). We want, of course, bothα and the growth
rate off(k) to be as small as possible.

A practical spinoff from the field of parameterized algorithms forNP-hard problems has
been a theoretical focus on the algorithmic technique of preprocessing, well-known from
the heuristic algorithms community. In fact, the parameterized problems havingFPT
algorithms arepreciselythe parameterized problems where preprocessing can in polyno-
mial time reduce a problem instance(G, k) to a kernel,i.e., a decision-equivalent problem
instance(G′, k′) where the size ofG′ is bounded by a function ofk (only), and where also
k′ ≤ k [DFS97]. One direction of this fact is trivial, since any subsequent brute-force
algorithm on(G′, k′) would give an overallFPT algorithm. In the other direction, as-
sume we have anFPT algorithm with runtimeO(nαf(k)) and consider an input(G, k)
on n vertices. Ifn ≥ f(k) then the runtime of theFPT algorithm on this instance is in
fact polynomial and can be seen as a reduction to the trivial case. On the other hand, if
n ≤ f(k) then the instance(G, k) already satisfies the kernel requirements. Note that in
this case the kernel sizef(k) is exponential ink, and a smaller kernel is usually achiev-
able. For this reason, in the field of parameterized algorithms forNP-hard problems, it
can be argued that there are two distinct races [F03]:

• Find the fastestFPT algorithm for the problem.

• Find the smallest polynomial-time computable kernelization for the problem.

In this paper, we enter the parameterizedK3-packing problem into both these races, giv-

10.2 PRELIMINARIES 82

ing on the one hand anO(22k log k+1.869kn2) FPT algorithm, and on the other hand an
O(k3) kernelization. OurFPTalgorithm is derived by an application of a fairly new tech-
nique known as greedy localization [JZC04], and our kernelization algorithm by a non-
standard application of the very recently introduced notion of Crown Reduction Rules
[CFJ03, CFJ04, F03]. We end the paper by asking how well these two results onK3-
packing generalize toH-packing. It turns out that theFPT algorithm generalizes quite
easily, givingFPTalgorithms for deciding whether an input graphG hask disjoint copies
of an arbitrary connectedH. However, we presently do not see how to generalize the
kernelization algorithm.

Just in time for the final version of this paper we realized that Theorem 6.3 in [AYZ95]
can be used to give a2O(k) algorithm for graph packing using color coding. However, we
still believe our result to be of practical interest as the constants in color coding can be
impractical.

The next section gives some basic graph terminology. We then proceed in Sections 3, 4
and 5 with the kernelization results, before continuing with theFPT algorithm in Section
6 for K3 and in Section 7 for generalH.

10.2 PRELIMINARIES

We assume simple, undirected, connected graphsG = (V, E), where|V | = n. The
neighbors of a vertexv are denoted byN(v). For a set of verticesA ⊆ V , N(A) = {v 6∈
A | uv ∈ E andu ∈ A}, and the subgraph ofG induced byA is denoted byG(A). For
ease of notation, we will use informal expressions likeG \ u to denoteG(V \ {u}, E),
G \U to denoteG(V \U,E), andG \ e to denote(V,E \ {e}), whereu is a vertex,U is a
vertex set, ande is an edge inG. A subsetS of V is aseparatorif G \ S is disconnected.

An H-packingW of G is a collection of disjoint copies of the graphH in G. We will use
V (W) to denote the vertices ofG that appear inW , andE(W) to denote the edges. A
matchingis aK2-packing.

We will in the following two sections describe a set of reduction rules. If any of these
rules can be applied toG, we say thatG is reducible, otherwiseirreducible.

10.3 REDUCTION RULES FOR K3-PACKING

Let us start with a formal definition of the problem we are solving:

k-K3-PACKING (TRIANGLE PACKING)
INSTANCE: GraphG = (V, E)
PARAMETER: k
QUESTION: DoesG havek disjoint copies ofK3?

10.4 REDUCING INDEPENDENT SETS- CROWN REDUCTION 83

We say that a graphG has ak-K3-packing if the answer to the above question is “yes.” In
this section, we identify vertices and edges of the input graph that can be removed without
affecting the solution of thek-K3-PACKING problem.

Definition 10.3.1 If verticesa, b, andc induce aK3, we say that vertexa sponsorsedge
bc. Likewise, edgebc sponsorsvertexa.

We start with two simple observations that also give preprocessing rules useful to delete
vertices and edges that cannot participate in any triangle.

Reduction Rule 4 If e ∈ E has no sponsor thenG has ak-K3-packing ⇐⇒ G \ e has
a k-K3-packing.

Reduction Rule 5 If u ∈ V has no sponsor thenG has ak-K3-packing⇐⇒ G \ u has
a k-K3-packing.

Both observations are trivially true, and let us remove vertices and edges from the graph
so that we are left with a graph containing only vertices and edges that could potentially
form aK3.

Reduction Rule 6 If u ∈ V sponsors at least3k − 2 disjoint edges thenG has ak-K3-
packing⇔ G \ u has a(k − 1)-K3-packing.

Proof. (⇒:) This direction is clear as removing one vertex can decrease the number of
K3s by at most one.
(⇐:) If G\u has a(k−1)-K3-packingS, thenS can use vertices from at most3(k−1) =
3k − 3 of the disjoint edges sponsored byu. This leaves at least one edge that can form a
K3 with u, thus raising the number ofK3s tok. 2

10.4 REDUCING INDEPENDENT SETS - CROWN REDUC-
TION

In this section we will first give a trivial reduction rule that removes a specific type of
independent sets. This reduction rule is then generalized and replaced by a more powerful
rule that allows us to reduce any large independent set in the graph.

Reduction Rule 7 If ∃u, v ∈ V such thatN(u) = N(v) = {a, b} andab ∈ E, thenG
has ak-K3-packing⇔ G \ u has ak-K3-packing.

10.4 REDUCING INDEPENDENT SETS- CROWN REDUCTION 84

Proof. This is trivial as it is impossible to use bothu andv in anyK3-packing. 2

This reduction rule identifies a redundant vertex and removes it. The vertex is redundant
because it has a stand-in that can form aK3 in its place and there is no use for both
vertices. Generalizing, we try to find a set of vertices such that there is always a distinct
stand-in for each vertex in the set.

Definition 10.4.1 A crown decomposition(H,C,R) in a graphG = (V,E) is a parti-
tioning of the vertices of the graph into three setsH, C, andR that have the following
properties:

1. H (the head)is a separator inG such that there are no edges inG between vertices
belonging toC and vertices belonging toR.

2. C = Cu ∪ Cm (the crown)is an independent set inG.

3. |Cm| = |H|, and there is a perfect matching betweenCm andH.

Crown-decomposition is a recently introduced idea that supports nontrivial and powerful
preprocessing (reduction) rules for a wide variety of problems, and that performs very
well in practical implementations [CFJ03, F03, ACFL04]. It has recently been shown that
if a graph admits a crown decomposition, then a crown decomposition can be computed
in polynomial time [AS04]. The following theorem can be deduced from [CFJ03, page
7], and [F03, page 8].

Theorem 10.4.1Any graphG with an independent setI, where|I| ≥ n/2, has a crown
decomposition(H, C, R), whereH ⊆ N(I), that can be found in linear time, givenI.

For most problems, includingk-K3-PACKING, it is not clear how a crown decomposition
can directly provide useful information. We introduce here the idea of creating an auxil-
iary graph model where a crown decomposition in the auxiliary graph is used to identify
preprocessing reductions for the original graph.

Fork-K3-PACKING we will show that an auxiliary graph model can be created to reduce
large independent sets in the problem instance. Consider an independent setI in a graph
G. Let EI be the set of edges that are sponsored by the vertices ofI.

The auxiliary model that we consider is a bipartite graphGI where we have one vertex
ui for every vertexvi in I and one vertexfj for every edgeej in EI . For simplicity, we
let both sets{ej | ej ∈ EI} and{fj | ej ∈ EI} be denoted byEI . The edges ofGI are
defined as follows: letuifj be an edge inGI if and only if ui sponsorsfj.

We now prove the following generalization of Reduction Rule 7. This rule now replaces
rule 7.

10.4 REDUCING INDEPENDENT SETS- CROWN REDUCTION 85

Reduction Rule 8 If GI has a crown decomposition(H, Cm ∪ Cu, R) whereH ⊆ EI

thenG has ak-K3-packing⇔ G \ Cu has ak-K3-packing.

Proof. Assume on the contrary thatGI has a crown decomposition(H, Cm ∪ Cu, R),
whereH ⊆ EI andG has ak-K3-packingW ∗ but G \ Cu has nok-K3-packing. This
implies that some of the vertices ofCu were used in thek-K3-packingW ∗ of G.

Let H∗ be the set of vertices inH whose corresponding edges inG use vertices from
C = Cm ∪ Cu to form K3s in thek-K3-packingW ∗ of G. Note that vertices inCu can
only formK3s with edges ofG that correspond to vertices inH. Observe that each edge
corresponding to a vertex inH∗ uses exactly one vertex fromC. Further,|H∗| ≤ |H|.
By these two observations it is clear that every edge whose corresponding vertex is inH∗

can be assigned a vertex fromCm to form aK3. ThusCu is superfluous, contradicting the
assumption. 2

Observation 10.4.1 If a bipartite graphG = (V ∪V ′, E) has two crown decompositions
(H, C, R) and(H ′, C ′, R′) whereH ⊆ V andH ′ ⊆ V , thenG has a crown decomposi-
tion (H ′′ = H ∪H ′, C ′′ = C ∪ C ′, R′′ = R ∩R′).

It is easy to check that all properties of a crown decomposition hold for(H ′′, C ′′, R′′).

Lemma 10.4.1 If G has an independent setI such that|I| > 2|EI | then we can in poly-
nomial time find a crown decomposition(H, Cm ∪ Cu, R) whereH ⊆ EI , andCu 6= ∅.

Proof. Assume on the contrary thatG has an independent setI such that|I| > 2|EI | but
G has no crown decomposition with the properties stated in the lemma.

By Theorem 10.4.1 the bipartite modelGI as described above has a crown decomposition
(H, C = Cm ∪ Cu, R) whereH ⊆ N(I) and consequentlyC ⊆ I. If |I \ C| > |EI | then
GI\C has a crown decomposition(H ′, C ′, R′), whereH ′ ⊂ N(I). By Observation 10.4.1
(H, C, R) and(H ′, C ′, R′) could be combined to form a bigger crown. Let(H ′′, C ′′ =
C ′′

m ∪ C ′′
u , R′′) be the largest crown decomposition that can be obtained by repeatedly

finding a new crown inI \ C and combining it with the existing crown decomposition to
form a new head and crown.

By our assumptionC ′′
u = ∅. Since|C ′′

m| = |H ′′| ≤ EI and it follows from Theorem
10.4.1 that|I \ C ′′

m| ≤ |EI | (otherwise a new crown could be formed), we have that
|I| = |C ′′

m|+|I\C ′′
m| ≤ |EI |+|EI | ≤ 2|EI |, contradicting the assumption that|I| > 2|EI |.

2

10.5 COMPUTING A CUBIC KERNEL 86

10.5 COMPUTING A CUBIC KERNEL

We now introduce a polynomial time algorithm that either produces ak-K3-packing or
finds a valid reduction of any input graphG = (V, E) of at least a certain size. We show
that this algorithm gives anO(k3) kernel fork-K3-PACKING.

The algorithm has the following steps:

1. Reduce by Rule 1 and 2 until neither apply.

2. Greedily, find a maximalK3-packing W inG. If |V (W)| ≥ 3k thenACCEPT.

3. Find a maximal matchingQ in G \ V (W). If a vertexv ∈ V (W) sponsors more
than3k − 3 matched edges, thenv can be reduced by Reduction Rule 6.

4. If possible, reduce the independent setI = V \ (V (W) ∪ V (Q)) with Reduction
Rule 8.

We now give the following lemma to prove our result:

Lemma 10.5.1 If |V | > 108k3−72k2−18k, then the preprocessing algorithm will either
find ak-K3-packing or it will reduceG = (V, E).

Proof. Assume on the contrary to the stated lemma that|V | > 108k3 − 72k2 − 18k, but
that the algorithm produced neither ak-K3-packing nor a reduction ofG.

By the assumption the maximal packingW is of size|V (W)| < 3k.

Let Q be the maximal matching obtained by step 2 of the algorithm.

Claim 1 |V (Q)| ≤ 18k2 − 18k

Proof of Claim 1.Assume on the contrary that|V (Q)| > 18k2−18k. Observe
that no edge inG \ V (W) can sponsor a vertex inG \ V (W) as this would
contradict thatW is maximal, therefore all edges in the the maximal matching
Q are sponsored by at least one vertex inV (W). If |V (Q)| > 18k2 − 18k,
Q contains more than9k2 − 9k edges. Thus at least one vertexv ∈ V (W)
sponsors more than(9k2 − 9k)/3k = 3k − 3 edges. Consequentlyv should
have been removed by Reduction Rule 6, contradicting the assumption that
no reduction ofG took place. We have reached a contradiction, thus the
assumption that|V (Q)| > 18k2 − 18k must be wrong. 2

10.6 WINNING THE FPT RUNTIME RACE 87

Let I = V \ (V (W) ∪ V (Q)). Note thatI is an independent set.

Claim 2 |I| ≤ 108k3 − 90k2

Proof of Claim 2.Assume on the contrary that|I| > 108k3 − 90k2. Observe
that each edge that is sponsored by a vertex ofI is either in the subgraph ofG
induced byV (W), or is an edge betweenV (W) andV (Q). There are at most
|EI | = |V (Q)|·|V (W)|+|V (W)|2 ≤ (18k2−18k)·3k+(3k)2 ≤ 54k3−45k2

such edges.

By Lemma 10.4.1 there are no more than2|EI | = 108k3 − 90k2 vertices in
I, which contradicts the assumption that|I| > 108k3 − 90k2. 2

Thus the total size|V | is |V (W)|+ |V (Q)|+ |I| ≤ 3k + 18k2 − 18k + 108k3 − 90k2 =
108k3 − 72k2 − 18k. This contradicts the assumption that|V | > 108k3 − 72k2 − 18k.

2

Corollary 10.5.1 Any instance(G, k) of k-K3-PACKING can be reduced to a problem
kernel of sizeO(k3).

Proof. This follows from Lemma 10.5.1, as we can repeatedly run the algorithm until
it fails to reduce the graph further. By Lemma 10.5.1 the resulting graph is then of size
O(k3). 2

Note that aO(k3) kernel gives us a trivialFPT-algorithm by testing allO(
(

k3

3k

)
) subsets

in a brute force manner. This leads to anO(29k log k + poly(n, k)) algorithm. However,
we will show in the next section that anotherFPT technique yields a faster algorithm.

10.6 WINNING THE FPT RUNTIME RACE

In this section we give a faster FPT-algorithm using the technique of Greedy Localization
and a bounded search tree.

We begin with the following crucial observation.

Observation 10.6.1Let W be a maximalK3-packing, and letW ∗ be ak-K3-packing.
Then for eachK3 T of W ∗, we haveV (T) ∩ V (W) 6= ∅.

Proof. Assume on the contrary that there exists aK3 T in W ∗ such thatV (T)∩V (W) =
∅. This implies thatV (T) ∪ V (W) is aK3-packing contradicting thatW is a maximal
packing. 2

10.6 WINNING THE FPT RUNTIME RACE 88

Theorem 10.6.1 It is possible to determine whether a graphG = (V, E) has ak-K3-
packing in timeO(22k log k+1.869kn2).

Proof. Let W be a maximalK3-packing. If |V (W)| ≥ 3k we have aK3-packing.
Otherwise, create a search treeT . At each node we will maintain a collectionSi =
Si

1, S
i
2, . . . , S

i
k of vertex subsets. These subsets represent thek triangles of the solution,

and at the root node all subsets are empty.

From the root node, create a childi for every possible subsetWi of V (W) of sizek. Let
the collection at each nodei containk singleton sets, each containing a vertex ofWi.

We say that a collectionSi = Si
1, S

i
2, . . . , S

i
k is apartial solutionof a k-K3-packingW ∗

with k disjoint trianglesW ∗
1 ,W ∗

2 , . . . ,W ∗
k if Si

j ⊆ V (W ∗
j) for 1 ≤ j ≤ k.

For a childi, consider its collectionSi = Si
1, S

i
2, . . . , S

i
k. Add vertices toSi

1 such thatSi
1

induces aK3 in G, continue in a greedy fashion to add vertices toSi
2, S

i
3 and so on. If

we can complete allk subsets we have ak-K3 packing. Otherwise, letSi
j be the first set

which is not possible to complete, and letV ′ be the vertices we have added toSi so far.
We can now make the following claim.

Claim 1 If Si = Si
1, S

i
2, . . . , S

i
k is a partial solution then there exists a vertexv ∈ V ′ such

thatSi = Si
1, . . . , (S

i
j ∪ {v}), . . . , Si

k is a partial solution.

Proof of Claim 1. Assume on the contrary thatSi = Si
1, S

i
2, . . . , S

i
k is a

partial solution but that there exists no vertexv ∈ V ′ such thatSi = Si
1, (S

i
j ∪

{v}), . . . , Si
k is a partial solution. This implies thatV (W ∗

j)∩V ′ = ∅, but then
we could addV (W ∗

j) \ Si
j to Si

j to form a newK3, thus contradicting that it
was not possible to completeSi

j. 2

We now create one childu of nodei for every vertex inu ∈ V ′. The collection at child
u is Si = Si

1, (S
i
j ∪ {u}), . . . , Si

k. This is repeated at each nodel, until we are unable to
complete any set in nodel’s collection, i.e.,V ′ = ∅.
By Observation 10.6.1 we know that if there isk-K3-packing then one of the branchings
from the root node will have a partial solution. Claim 1 guarantees that this solution is
propagated down the tree until finally completed at level2k.

At each level the collectionsS at the nodes grow in size, thus we can have at most2k
levels in the search tree. Observe that at heighth in the search tree|V ′| < 2k − h,
thus fan-out at heighth is limited to 2k − h. The total size of the tree is then at most(
3k
k

)
2k · (2k−1) · · · · = (

3k
k

) ·2k! = (3k)!
k!

. Using Stirling’s approximation and suppressing

10.7 PACKING ARBITRARY GRAPHS 89

some constant factors we have(3k)!
k!

≈ 3.654k ·k2k = 22k log k+1.869k. At each node we need
O(n2) time to maximize the sets. Hence, the total running time isO(22k log k+1.869kn2) 2

Note that it is, of course, possible to run the search tree algorithm from this section on the
kernel obtained in the previous section. The total running time is thenO(22k log k+1.869kk6+
p(n, k)). This could be useful ifn is much larger thank as the additive exponential (rather
than multiplicative) factor becomes significant.

10.7 PACKING ARBITRARY GRAPHS

In their paper from 1978, Hell and Kirkpatrick [HK78] prove thatk-H-packing for any
connected graphH of 3 or more vertices isNP-complete. We will in this section show
that our search tree technique fork-K3-packing easily generalizes to arbitrary graphsH,
thus proving that packing any subgraph is in FPT.

k-H -PACKING

INSTANCE: GraphG = (V, E)
PARAMETER: k
QUESTION: DoesG have at leastk disjoint copies ofH?

Theorem 10.7.1 It is possible to determine whether a graphG = (V, E) has ak-H-
packing in timeO(2k|H| log k+2k|H| log |H|n|H|).

Proof. The proof is analogous to the proof of Theorem 10.6.1. However, as we no longer
can depend upon perfect symmetry inH (sinceH is not necessarily complete), we must
maintain a collection of ordered sequences at each tree-node. Each sequence represents a
partialH-subgraph.

The possible size ofV ′ increases tok|H| − k. Then when we want to determine whichv
of V ′ to add to the sequence, we must try everyv in every position inH. Thus the fan-out
at each node increases tok|H|2 − k|H|. The height of the tree likewise increases to at
mostk|H| − k. Thus the new tree size is

(
k|H|

k

)
(k|H|2 − k|H|)k|H|−k, which is strictly

smaller thankk|H||H|2k|H| or 2k|H| log k+2k|H| log |H|. 2

10.8 SUMMARY AND OPEN PROBLEMS

Our main results in the twoFPT races are:

(1) We have shown anO(k3) problem kernel for the problem of packingk triangles.

(2) We have shown that for any fixed graphH, the problem of packingk Hs is in FPT

10.8 SUMMARY AND OPEN PROBLEMS 90

with a parameter function of the formO(2O(k log k)) and more practical constants than
[AYZ95].

In addition to “upper bound” improvements to these initial results, which would be the
natural course for further research - now that the races are on - it would also be interesting
to investigate lower bounds, if possible.

It would be interesting to investigate the “optimality” of the form of ourFPT results in
the sense of [CJ03, DEFPR03]. Can it be shown that there is noO(2o(k)) FPT algorithm
for k-H -PACKING unlessFPT= M [1]?

Many parameterized problems admit linear problem kernels. In fact, it appears that most
naturally parameterized problems inAPX are inFPT and have linear problem kernels.
However, it seems unlikely thatall FPT problems admit linear kernels. We feel thatk-
Kt-PACKING is a natural candidate for anFPT problem where it may not be possible
to improve onO(kt) kernelization. Techniques for the investigation of lower bounds on
kernelization are currently lacking, but packing problems may be a good place to start
looking for them.

BIBLIOGRAPHY

[AS04] F. AbuKhzam and H. Suters, Computer Science Department, University of Ten-
nessee, Knoxville, private communications, Dec. 2003.

[AYZ95] N. Alon, R. Yuster, U. Zwick. Color-Coding. J. ACM, pp. 844-856, 1995

[ACFL04] F. Abu-Khzam, R. Collins, M. Fellows and M. Langston. Kernelization Al-
gorithms for the Vertex Cover Problem: Theory and Experiments.Proceedings
ALENEX 2004, Springer-Verlag,Lecture Notes in Computer Science(2004), to ap-
pear.

[CFJ03] B. Chor, M. Fellows, and D. Juedes. Savingk Colors in TimeO(n5/2). Manu-
script, 2003.

[CFJ04] B. Chor, M. Fellows, and D. Juedes. Linear Kernels in Linear Time, or How to
Save k Colors inO(n2) steps. Proceedings of WG2004, Springer-Verlag,Lecture
Notes in Computer Science(2004)

[CJ03] L. Cai and D. Juedes. On the existence of subexponential parameterized algo-
rithms.Journal of Computer and System Sciences67 (2003).

[DEFPR03] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez and F. Rosa-
mond. Cutting Up is Hard to Do: the Parameterized Complexity ofk-Cut and Re-
lated Problems. Electronic Notes in Theoretical Computer Science 78 (2003), 205–
218.

[DF99] R. Downey and M. Fellows.Parameterized ComplexitySpringer-Verlag (1999).

[DFS97] R. Downey, M. Fellows and U. Stege, Parameterized Complexity: A Frame-
work for Systematically Confronting Computational Intractability, in:Contempo-
rary Trends in Discrete Mathematics, (R. Graham, J. Kratochvil, J. Nesetril and
F. Roberts, eds.), AMS-DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 49, pages 49-99, 1999.

[E65] J.Edmonds. Paths, trees and flowers,Can.J.Math., 17, 3, pages 449-467, 1965.

[F03] M.Fellows. Blow-ups, Win/Wins and Crown Rules: Some New Directions inFPT.
Proceedings WG 2003, Springer Verlag LNCS 2880, pages 1-12, 2003.

BIBLIOGRAPHY 92

[HK78] P. Hell and D. Kirkpatrick. On the complexity of a generalized matching prob-
lem.Proceedings of 10th ACM Symposium on theory of computing, pages 309-318,
1978.

[HS89] C. A. J. Hurkens, and A. Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems,SIAM J. Disc. Math. 2, pages 68-72, 1989.

[JZC04] W. Jia, C. Zhang and J. Chen. An efficient parameterized algorithm form-set
packing,Journal of Algorithms, 50(1):106–117, 2004.r.

[K91] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete,In-
form. Process. Lett. 37, pages 27-35, 1991.

[W03] G. Woeginger. Exact algorithms forNP-hard problems: A survey,Combinatorial
Optimization - Eureka! You shrink!, M. Juenger, G. Reinelt and G. Rinaldi (eds.).
LNCS 2570, Springer, pages 185-207, 2003.

