10

PACKING TRIANGLES

Finding & disjoint triangles in an arbitrary graph *

Mike Fellows Pinar Heggernes Frances Rosamond
Christian Sloper Jan Arne Telle

Abstract

We consider theNP-complete problem of deciding whether an input graph
onn vertices hag: vertex-disjoint copies of a fixed graphh. For H = K3

(the triangle) we give a (22 lee k+1.86%,2) glgorithm, and for generdl an
O(2kIH logk-+2k|H|log | H| | H1) glgorithm. We introduce a preprocessing (ker-
nelization) technique based on crown decompositions of an auxiliary graph.
For H = K3 this leads to a preprocessing algorithm that reduces an arbitrary
input graph of the problem to a graph 6X{%?) vertices in polynomial time.

10.1 INTRODUCTION

For a fixed graph{ and an input graphy, the H-packing problem asks for the maximum
number of vertex-disjoint copies df in G. The K,-packing (edge packing) problem,
which is equivalent to maximum matching, played a central role in the history of classical
computational complexity. The first step towards the dichotomy of 'good’ (polynomial-
time) versus 'presumably-not-good’ (NP-hard) was made in a paper on maximum match-
ing from 1965 [E65], which gave a polynomial time algorithm for that problem. On the
other hand, thé(s-packing (triangle packing) problem, which is our main concern in this
paper, iNP-hard [HK78].

Recently, there has been a growing interest in the area of exact exponential-time algo-
rithms for NP-hard problems. When measuring time in the classical way, simply by the

1This paper appeared at the conference '30th International Workshop of Graph-Theoretic Concepts in
Computer Science’ and was published in the proceedings [FHRST04].

10.1 INTRODUCTION 81

size of the input instance, the area of exact algorithmd\figthard problems lacks the
classical dichotomy of goodH) versus presumably-not-gootiP-hard) [W03]. How-

ever, if in the area of exact algorithms fdP-hard problems we instead measure time in
the parameterized way, then we retain the classical dichotomy of ¢g#d0-(Fixed Pa-
rameter Tractable) versus presumably-not-gdéd1(-hard) [DF99]. It therefore seems
that the parameterized viewpoint gives a richer complexity framework. In fact, a formal
argument for this follows from the realization that the non-parameterized viewpoint, mea-
suring time by input size, is simply a special case of the parameterized viewpoint with the
parameter chosen to be the input size. Parameterized thus, any problem is trkially
and the race for the beBPT algorithm is precisely the same as the race for the best non-
parameterized exact algorithm. Note that for any optimization or decision problem, there
are many interesting possibilities for choice of parameter, that can be guided by both
practical and theoretical considerations, see for example [FO3] for a discussion of five
different parameterizations of a single problem. In our opinion, the relevant discussion
for the field of exact algorithms fdP-hard problems is therefore not “parameterized or
non-parameterized?” but rather “which parameter?”

In this paper our focus is on parameterized algorithms for deciding whether a@ragdh
k disjoint copies ofi(3;, with the integelk being our parameter. On inp(¥, k), whereG
is a graph om vertices, arFPT algorithm is an algorithm with runtim@(n“ f (k)), for a
constanty and an unrestricted functiof{ k). We want, of course, both and the growth
rate of f(k) to be as small as possible.

A practical spinoff from the field of parameterized algorithmsNd#*-hard problems has
been a theoretical focus on the algorithmic technique of preprocessing, well-known from
the heuristic algorithms community. In fact, the parameterized problems h&#iig
algorithms arepreciselythe parameterized problems where preprocessing can in polyno-
mial time reduce a problem instan@@, k) to a kernelj.e., a decision-equivalent problem
instancg G', k') where the size of’ is bounded by a function df (only), and where also

k' < k [DFS97]. One direction of this fact is trivial, since any subsequent brute-force
algorithm on(G’, k') would give an overalFPT algorithm. In the other direction, as-
sume we have aRPT algorithm with runtimeO(n® f(k)) and consider an inpu@G, k)

onn vertices. Ifn > f(k) then the runtime of th&PT algorithm on this instance is in

fact polynomial and can be seen as a reduction to the trivial case. On the other hand, if
n < f(k) then the instancé’, k) already satisfies the kernel requirements. Note that in
this case the kernel siz&k) is exponential irk, and a smaller kernel is usually achiev-
able. For this reason, in the field of parameterized algorithm&l®hard problems, it

can be argued that there are two distinct races [FO3]:

 Find the fastesEPT algorithm for the problem.

 Find the smallest polynomial-time computable kernelization for the problem.

In this paper, we enter the parameterizégpacking problem into both these races, giv-

10.2 FRELIMINARIES 82

ing on the one hand a(2%+leek+1.86%y,2) EPT algorithm, and on the other hand an
O(k?) kernelization. OuFPT algorithm is derived by an application of a fairly new tech-
nique known as greedy localization [JZC04], and our kernelization algorithm by a non-
standard application of the very recently introduced notion of Crown Reduction Rules
[CFJO03, CFJO04, F03]. We end the paper by asking how well these two resuk$-on
packing generalize té/-packing. It turns out that thEPT algorithm generalizes quite
easily, givingFPT algorithms for deciding whether an input gra@ghask disjoint copies

of an arbitrary connected. However, we presently do not see how to generalize the
kernelization algorithm.

Just in time for the final version of this paper we realized that Theorem 6.3 in [AYZ95]
can be used to give2’®) algorithm for graph packing using color coding. However, we
still believe our result to be of practical interest as the constants in color coding can be
impractical.

The next section gives some basic graph terminology. We then proceed in Sections 3, 4
and 5 with the kernelization results, before continuing withRRE algorithm in Section
6 for K3 and in Section 7 for generdl.

10.2 PRELIMINARIES

We assume simple, undirected, connected graphs (V, E), where|V| = n. The
neighbors of a vertex are denoted by (v). For a set of verticesl C V, N(A) = {v &
A | w € E andu € A}, and the subgraph a@F induced byA is denoted by=(A). For
ease of notation, we will use informal expressions lik& « to denoteG(V \ {u}, E),
G\ U todenote7(V \ U, E), andG \ e to denoteV, E'\ {e}), whereu is a vertex[is a
vertex set, and is an edge irG. A subsetS of V is aseparatorif G'\ S is disconnected.

An H-packinglV of GG is a collection of disjoint copies of the graphin G. We will use
V(W) to denote the vertices @F that appear iV, and E(1V) to denote the edges. A
matchingis a K»-packing.

We will in the following two sections describe a set of reduction rules. If any of these
rules can be applied tG, we say that is reducible otherwisarreducible

10.3 REDUCTION RULES FOR K3-PACKING

Let us start with a formal definition of the problem we are solving:

k-K3-PACKING (TRIANGLE PACKING)
INSTANCE: GraphG = (V, E)

PARAMETER: k

QUESTION: DoesG havek disjoint copies off(3?

10.4 REDUCING INDEPENDENT SETS CROWN REDUCTION 83

We say that a grap@i has ak- K3-packing if the answer to the above question is “yes.” In
this section, we identify vertices and edges of the input graph that can be removed without
affecting the solution of thé- K3-PACKING problem.

Definition 10.3.1 If verticesa, b, and c induce ak;, we say that vertex sponsoredge
be. Likewise, edgéc sponsoryertexa.

We start with two simple observations that also give preprocessing rules useful to delete
vertices and edges that cannot participate in any triangle.

Reduction Rule 4 If e € E has no sponsor the@ has ak-K;-packing <= G\ e has
a k- K3-packing.

Reduction Rule 5 If u € V' has no sponsor thef¥ has ak-K3-packing <= G \ u has
a k- K;-packing.

Both observations are trivially true, and let us remove vertices and edges from the graph
so that we are left with a graph containing only vertices and edges that could potentially
form a K.

Reduction Rule 6 If u € V sponsors at leasik — 2 disjoint edges thenr has ak-K3-
packings G\ u has a(k — 1)-K3-packing.

Proof. (=-:) This direction is clear as removing one vertex can decrease the number of
K3s by at most one.

(<) If G\u has ak—1)-K;-packingS, thenS can use vertices from at maxtkc — 1) =

3k — 3 of the disjoint edges sponsored byThis leaves at least one edge that can form a
K3 with u, thus raising the number @f;s tok. O

10.4 REDUCING INDEPENDENT SETS - CROWN REDUC-
TION

In this section we will first give a trivial reduction rule that removes a specific type of
independent sets. This reduction rule is then generalized and replaced by a more powerful
rule that allows us to reduce any large independent set in the graph.

Reduction Rule 7 If 3u,v € V such thatN(u) = N(v) = {a,b} andab € E, thenG
has ak-K;-packings G \ u has ak-K3-packing.

10.4 REDUCING INDEPENDENT SETS CROWN REDUCTION 84

Proof. This is trivial as it is impossible to use bothandv in any K3-packing. O

This reduction rule identifies a redundant vertex and removes it. The vertex is redundant
because it has a stand-in that can fornkain its place and there is no use for both
vertices. Generalizing, we try to find a set of vertices such that there is always a distinct
stand-in for each vertex in the set.

Definition 10.4.1 A crown decompositionH, C, R) in a graphG = (V, F) is a parti-
tioning of the vertices of the graph into three sétsC, and R that have the following
properties:

1. H (the head)s a separator inz such that there are no edgesGhbetween vertices
belonging toC and vertices belonging t&.

2. C =C,Uc,, (the crown)is an independent set @.
3. |Cy| = |H|, and there is a perfect matching betwegn and H.

Crown-decomposition is a recently introduced idea that supports nontrivial and powerful
preprocessing (reduction) rules for a wide variety of problems, and that performs very
well in practical implementations [CFJ03, FO3, ACFLO04]. It has recently been shown that
if a graph admits a crown decomposition, then a crown decomposition can be computed
in polynomial time [AS04]. The following theorem can be deduced from [CFJ03, page
7], and [FO3, page 8].

Theorem 10.4.1 Any graphG with an independent sét where|/| > n/2, has a crown
decompositioriH, C, R), whereH C N(I), that can be found in linear time, givdn

For most problems, including- K3-PACKING, it is not clear how a crown decomposition
can directly provide useful information. We introduce here the idea of creating an auxil-
iary graph model where a crown decomposition in the auxiliary graph is used to identify
preprocessing reductions for the original graph.

For k- K3-PACKING we will show that an auxiliary graph model can be created to reduce
large independent sets in the problem instance. Consider an independeint agjraph
G. Let E; be the set of edges that are sponsored by the vertickes of

The auxiliary model that we consider is a bipartite grdaphwhere we have one vertex
u; for every vertexy; in I and one vertex; for every edges; in £;. For simplicity, we
let both setge; | e; € E;} and{f; | e; € E;} be denoted by;. The edges of:; are
defined as follows: let; f; be an edge id; if and only if u; sponsorsf;.

We now prove the following generalization of Reduction Rule 7. This rule now replaces
rule 7.

10.4 REDUCING INDEPENDENT SETS CROWN REDUCTION 85

Reduction Rule 8 If G; has a crown decompositioft/, C,, U C,, R) where H C E;
thenG has ak-K3-packings G\ C, has ak-K3-packing.

Proof. Assume on the contrary th&t; has a crown decompositioif, C,,, U C,, R),
whereH C E; andG has ak-K3-packingiV* but G \ C, has nok-Kj3-packing. This
implies that some of the vertices 6f, were used in thé- K5-packingiV* of G.

Let H* be the set of vertices i/ whose corresponding edgesGhuse vertices from
C = C,, UC, toform K3s in thek-K3-packingiV* of G. Note that vertices i€, can
only form K3s with edges of that correspond to vertices f. Observe that each edge
corresponding to a vertex i uses exactly one vertex frofi. Further,|H*| < |H].

By these two observations it is clear that every edge whose corresponding vertéx‘is in
can be assigned a vertex fratf), to form aK;. ThusC, is superfluous, contradicting the
assumption. O

Observation 10.4.11f a bipartite graphG = (V UV’, E') has two crown decompositions
(H,C,R)and(H',C', R') whereH C V and H' C V, thenG has a crown decomposi-
tion(H" =HUH',C"=CUC',R"=RNR).

It is easy to check that all properties of a crown decomposition holdHdr C”, R").

Lemma 10.4.1If G has an independent sétsuch that /| > 2|E;| then we can in poly-
nomial time find a crown decompositio#, C,, U C,,, R) whereH C E;, andC, # 0.

Proof. Assume on the contrary that has an independent sesuch that/| > 2| E;| but
G has no crown decomposition with the properties stated in the lemma.

By Theorem 10.4.1 the bipartite mod&} as described above has a crown decomposition
(H,C =C,,UC,, R)whereH C N(I)and consequentlg' C . If |1\ C| > |E/| then
G\ C has a crown decompositid®’, C’, R'), whereH’ C N(I). By Observation 10.4.1
(H,C,R) and(H',C", R") could be combined to form a bigger crown. Le{", C" =

C U Cl R") be the largest crown decomposition that can be obtained by repeatedly
finding a new crown in7 \ C' and combining it with the existing crown decomposition to
form a new head and crown.

By our assumptiorC!’! = (). Since|C!| = |H"| < E; and it follows from Theorem
10.4.1 that|// \ C| < |E;| (otherwise a new crown could be formed), we have that
[I| = |CI|+|I\C | < |Er|+|Er| < 2|E;|, contradicting the assumption that > 2| F|.

O

10.5 COMPUTING A CUBIC KERNEL 86

10.5 COMPUTING A CUBIC KERNEL

We now introduce a polynomial time algorithm that either producés/g;-packing or
finds a valid reduction of any input gragh= (V, F) of at least a certain size. We show
that this algorithm gives a@(k?) kernel fork- K3-PACKING.

The algorithm has the following steps:

1. Reduce by Rule 1 and 2 until neither apply.
2. Greedily, find a maximak(;-packing W inG. If |V (W)| > 3k thenACCEPT.

3. Find a maximal matchin@ in G \ V(IW). If a vertexv € V(W) sponsors more
than3k — 3 matched edges, thencan be reduced by Reduction Rule 6.

4. If possible, reduce the independent 5et V' \ (V(W) U V(Q)) with Reduction
Rule 8.

We now give the following lemma to prove our result:

Lemma 10.5.1If |V| > 108k3 —72k* — 18k, then the preprocessing algorithm will either
find ak-K3-packing or it will reduceZ = (V. E).

Proof. Assume on the contrary to the stated lemma fat> 108k — 72k — 18k, but
that the algorithm produced neithekak’;-packing nor a reduction df.

By the assumption the maximal packifg is of size|V (V)| < 3k.

Let @ be the maximal matching obtained by step 2 of the algorithm.
Claim1 |V(Q)| < 18k* — 18k

Proof of Claim 1.Assume on the contrary thit (Q)| > 18k?—18k. Observe

that no edge irG \ V(W) can sponsor a vertex ii \ V(1V) as this would
contradict thatV is maximal, therefore all edges in the the maximal matching

@ are sponsored by at least one verteXifiV’). If |V (Q)| > 18k* — 18k,

@ contains more thafk? — 9% edges. Thus at least one vertexc V(W)
sponsors more thai®k? — 9k)/3k = 3k — 3 edges. Consequentlyshould

have been removed by Reduction Rule 6, contradicting the assumption that
no reduction ofGG took place. We have reached a contradiction, thus the
assumption that’ (Q)| > 18k* — 18k must be wrong. O

10.6 WAINNING THE FPTRUNTIME RACE 87

Let/ =V \ (V(W)UV(Q)). Note that/ is an independent set.
Claim 2 |I] < 108k3 — 90k

Proof of Claim 2.Assume on the contrary thgt| > 108%* — 90k*. Observe
that each edge that is sponsored by a verteéxiskither in the subgraph of
induced byl (W), or is an edge betwedn(1/) andV (). There are at most
|Er| = |V (Q)|-[VIW)|+|V(W)|?* < (18k*—18%)-3k+(3k)? < 54k3—45k>

such edges.
By Lemma 10.4.1 there are no more tHAf;| = 108k — 90k? vertices in
I, which contradicts the assumption that > 108k — 90k2. O

Thus the total sizeV| is |V (W)| + |V(Q)| + |I] < 3k + 18k* — 18k + 108k* — 90k* =
108%3 — 72k* — 18k. This contradicts the assumption thet > 108%% — 72k* — 18k.

g

Corollary 10.5.1 Any instanceG, k) of k- K3-PACKING can be reduced to a problem
kernel of size)(k?).

Proof. This follows from Lemma 10.5.1, as we can repeatedly run the algorithm until
it fails to reduce the graph further. By Lemma 10.5.1 the resulting graph is then of size
O(k?). 0

Note that aO(k?) kernel gives us a trividFPT-algorithm by testing aI(Q((’;Z)) subsets
in a brute force manner. This leads to @(2%!°¢* + poly(n, k)) algorithm. However,
we will show in the next section that anotHePT technique yields a faster algorithm.

10.6 WINNING THE FPT RUNTIME RACE

In this section we give a faster FPT-algorithm using the technique of Greedy Localization
and a bounded search tree.

We begin with the following crucial observation.

Observation 10.6.1Let W be a maximalK;-packing, and lei?V* be ak-K;-packing.
Then for eachi; T' of W*, we havel/ (T) N V(W) # (.

Proof. Assume on the contrary that there exists 7" in W* such that/ () NV (W) =
(. This implies that/(T") U V(W) is a K3-packing contradicting that’ is a maximal
packing. O

10.6 WAINNING THE FPTRUNTIME RACE 88

Theorem 10.6.11t is possible to determine whether a graph= (V, E) has ak-K;-
packing in timeD (22Flog 1869k, 2,

Proof. Let W be a maximalK;-packing. If |V(1V)| > 3k we have ak;-packing.
Otherwise, create a search trée At each node we will maintain a collectioff =
Si, 8%, ..., Sioof vertex subsets. These subsets represent thiangles of the solution,
and at the root node all subsets are empty.

From the root node, create a childor every possible subsét; of V(W) of sizek. Let
the collection at each nodecontaink singleton sets, each containing a verteXiof

We say that a collectio® = S, S, ..., S is apartial solutionof a k- K3-packingiv*
with % disjoint trianglesV, Wy, ..., Wy if St C V(W) for1 < j < k.

For a childi, consider its collectiory; = Si, S, ..., Si. Add vertices taS; such thatS:
induces aK3 in G, continue in a greedy fashion to add verticesS{oS; and so on. If
we can complete ak subsets we havefa K3 packing. Otherwise, Ie$*;i be the first set
which is not possible to complete, and 1ét be the vertices we have added%bso far.
We can now make the following claim.

Claim1 If S*= S}, S ..., Siisa partial solution then there exists a vertex V"’ such
thatS* = S},...,(S; U {v}),..., S} is a partial solution.

Proof of Claim 1. Assume on the contrary th&t' = Si Si,..., S is a
partial solution but that there exists no vertex 1’ such thats” = 51, (S} U
{v}),...,Siis apartial solution. This implies th&t(1V*) "V’ = §), but then
we could add/ (W7) \ S to S’ to form a newk’s, thus contradicting that it
was not possible to completg. a

We now create one child of nodei for every vertex inu € V. The collection at child
uis S* = S}, (S5 U{u}),...,S;. Thisis repeated at each nogaintil we are unable to
complete any set in nodé& collection, i.e.,V’ = (.

By Observation 10.6.1 we know that if therekis/3-packing then one of the branchings
from the root node will have a partial solution. Claim 1 guarantees that this solution is
propagated down the tree until finally completed at |evel

At each level the collection$§' at the nodes grow in size, thus we can have at mbst
levels in the search tree. Observe that at heigim the search treéV’| < 2k — h,
thus fan-out at height is limited to 2k — h. The total size of the tree is then at most
(*)2k- (2k—1)---- = (3) -2k! = X Using Stirling’s approximation and suppressing

10.7 ACKING ARBITRARY GRAPHS 89

some constant factors we ha¥! ~ 3.654" . k2 = 22+logk+186% At each node we need
O(n?) time to maximize the sets. Hence, the total running tim@ {82~ 108 k+1.869% 2y O

Note that it is, of course, possible to run the search tree algorithm from this section on the
kernel obtained in the previous section. The total running time is@h@p os #+1-869% 6 1.

p(n, k)). This could be useful if. is much larger thak as the additive exponential (rather
than multiplicative) factor becomes significant.

10.7 PACKING ARBITRARY GRAPHS

In their paper from 1978, Hell and Kirkpatrick [HK78] prove thatH -packing for any
connected grapl® of 3 or more vertices ilNP-complete. We will in this section show
that our search tree technique foti;-packing easily generalizes to arbitrary graghs
thus proving that packing any subgraph is in FPT.

k- H-PACKING

INSTANCE GraphG = (V, E)

PARAMETER: k

QUESTION: DoesG have at least disjoint copies ofH ?

Theorem 10.7.11t is possible to determine whether a graph= (V, E) has ak-H-
packing in timeO (2~ |log k+2k|H|log | H]p|HI),

Proof. The proof is analogous to the proof of Theorem 10.6.1. However, as we no longer
can depend upon perfect symmetrydn(since H is not necessarily complete), we must
maintain a collection of ordered sequences at each tree-node. Each sequence represents a
partial H-subgraph.

The possible size df” increases t&|H| — k. Then when we want to determine which

of V' to add to the sequence, we must try eveiy every position in//. Thus the fan-out
at each node increaseskf/ | — k|H|. The height of the tree likewise increases to at
mostk|H| — k. Thus the new tree size {§) (k| H|* — k|H|)*"=*, which is strictly
smaller thark* 4! |H|2k|H\ or 2k H|log k+2k|H|log |H| 0

10.8 SUMMARY AND OPEN PROBLEMS
Our main results in the twBPT races are:
(1) We have shown a@(%?) problem kernel for the problem of packiigriangles.

(2) We have shown that for any fixed graph the problem of packing Hs is inFPT

10.8 SUMMARY AND OPEN PROBLEMS 90

with a parameter function of the fori® (29 1°s*)) and more practical constants than
[AYZ95].

In addition to “upper bound” improvements to these initial results, which would be the
natural course for further research - now that the races are on - it would also be interesting
to investigate lower bounds, if possible.

It would be interesting to investigate the “optimality” of the form of dtRPT results in
the sense of [CJ03, DEFPRO03]. Can it be shown that there @(2¢*)) FPT algorithm
for k- H-PACKING unlessFPT= M[1]?

Many parameterized problems admit linear problem kernels. In fact, it appears that most
naturally parameterized problems APX are inFPT and have linear problem kernels.
However, it seems unlikely thatll FPT problems admit linear kernels. We feel that
K;-PACKING is a natural candidate for dfPT problem where it may not be possible

to improve onO (k') kernelization. Techniques for the investigation of lower bounds on
kernelization are currently lacking, but packing problems may be a good place to start
looking for them.

BIBLIOGRAPHY

[AS04] F. AbuKhzam and H. Suters, Computer Science Department, University of Ten-
nessee, Knoxville, private communications, Dec. 2003.

[AYZ95] N. Alon, R. Yuster, U. Zwick. Color-Coding. J. ACM, pp. 844-856, 1995

[ACFLO4] F. Abu-Khzam, R. Collins, M. Fellows and M. Langston. Kernelization Al-
gorithms for the Vertex Cover Problem: Theory and ExperimeRteceedings
ALENEX 2004 Springer-Verlaglecture Notes in Computer Scien@904), to ap-
pear.

[CFJO03] B. Chor, M. Fellows, and D. Juedes. Savingolors in TimeO(n°/?). Manu-
script, 2003.

[CFJ04] B. Chor, M. Fellows, and D. Juedes. Linear Kernels in Linear Time, or How to
Save k Colors inO(n?) steps. Proceedings of WG2004, Springer-Verlaggture
Notes in Computer Scien¢2004)

[CJO3] L. Cai and D. Juedes. On the existence of subexponential parameterized algo-
rithms.Journal of Computer and System Sciengé$2003).

[DEFPRO3] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez and F. Rosa-
mond. Cutting Up is Hard to Do: the Parameterized Complexity-&fut and Re-
lated Problems. Electronic Notes in Theoretical Computer Science 78 (2003), 205—
218.

[DF99] R. Downey and M. FellowdXarameterized Complexi§pringer-Verlag (1999).

[DFS97] R. Downey, M. Fellows and U. Stege, Parameterized Complexity: A Frame-
work for Systematically Confronting Computational Intractability, @ontempo-
rary Trends in Discrete Mathematjo®k. Graham, J. Kratochvil, J. Nesetril and
F. Roberts, eds.), AMS-DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 49, pages 49-99, 1999.

[E65] J.Edmonds. Paths, trees and flow@=an.J.Math, 17, 3, pages 449-467, 1965.

[FO3] M.Fellows. Blow-ups, Win/Wins and Crown Rules: Some New DirectiorizH.
Proceedings WG 2003&pringer Verlag LNCS 2880, pages 1-12, 2003.

BIBLIOGRAPHY 92

[HK78] P. Hell and D. Kirkpatrick. On the complexity of a generalized matching prob-
lem. Proceedings of 10th ACM Symposium on theory of compytiages 309-318,
1978.

[HS89] C. A. J. Hurkens, and A. Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problemsSIAM J. Disc. Math. 2pages 68-72, 1989.

[JZCO04] W. Jia, C. Zhang and J. Chen. An efficient parameterized algorithm-feet
packing,Journal of Algorithms50(1):106-117, 2004.r.

[K91] V. Kann. Maximum bounded 3-dimensional matching is MAXBcompleteJn-
form. Process. Let87, pages 27-35, 1991.

[WO03] G. Woeginger. Exact algorithms fdfP-hard problems: A surveg;ombinatorial
Optimization - Eureka! You shrinkM. Juenger, G. Reinelt and G. Rinaldi (eds.).
LNCS 2570, Springer, pages 185-207, 2003.

